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Abstract: In recent times, heat and mass transportation have had some of the most recognized and
attractive research areas in computational fluid dynamics. It is useful in the modeling of the flow of
nuclear reactors, bioinformatics, the medical discipline, etc. Driven by the execution of the flow in the
manufacturing application, the goal of the present analysis is to explore the novel effect of micropolar
fluid configured by an exponentially elongated sheet positioned horizontally in a porous channel.
The impact of activation energy, internal heating, and heat and mass transfer features are integrated
into the revised flow model. A mathematical framework for different flow fields is developed in
order to highlight the significant aspects of the thermal and concentration slip effects evaluated on the
extended plat surface, with the aid of appropriate transformation factors to diminish the nonlinear
fundamental flow equations (PDEs) to a system of (ODEs). Precise numerical treatment for a wide
range of pertinent parameters is adopted to solve the nonlinear system through a built-in algorithm
in the MATHEMATICA platform. The features of prominent emerging parameters against various
flow fields are viewed and addressed through plotted visuals. The influence of the factors on skin
friction, heat, and mass coefficients offered through 3D animation is evaluated. The temperature
profile improves with ascending values of Brownian parameter and thermophoretic diffusion force
but diminishes with subject expansions in Prandtl number and thermal slip parameter. It has been
noticed that the concentration outlines increase for reaction rate and activation energy parameters but
dwindle for expending values of porosity parameter, Lewis number, and concentration slip parameter.
Skin fraction values increase due to the growing nature of the micropolar and second-grade fluid
parameters. Nusselt numbers upsurge for increasing thermophoretic diffusion parameters while
exhibiting a declining trend for Brownian motion parameters.

Keywords: numerical approach; nanofluid; porous media; chemical reaction; extended sheet

MSC: 76D05; 76-10

1. Introduction

Magnetohydrodynamics is the branch of fluid mechanics that examines the study
of electrically conducting liquids with magnetic arenas, such as seawater, electrolytes,
or molten metals (MHD). The combined study of fluid dynamics and electromagnetics,
sensing, magnetohydrodynamic power production, geophysics, and electromagnetic drug
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targeting, and other fields of engineering and sciences, are only a few of the fields in which
MHD finds uses. The fascinating books by Roberts [1] and Davidson [2] specifically discuss
obvious verifications and a few implementations. Zeeshan et al. [3] and Haroon et al. [4]
have conducted a homotopic solution of electrically conductive fluid triggered by an
accelerating flat surface beneath the effect of internal heating and chemical reaction. They
have specifically carried out research features on motivated magnetics, such as Newtonian
heating and reaction rate on unsteady MHD movement through porous media. Whirter
et al. [5] studied thermal radiation and MHD flow experimentally through a porous channel.
Second-grade channels are a typical subclass of viscoelastic fluid in which the velocity field
is a second-order derivative and a second-order tensor. Hakeem et al. [6] have carried out
a comparative analysis of non-Newtonian and Newtonian liquids as base fluids across a
liquid medium in the presence of a uniform magnetic field. Non-Newtonian fluids are
useful in manufacturing on a large scale, which includes, ceramic pastes, inks, petroleum
drilling, paints, and much more. Keeping in mind, such crucial importance, several
researchers and engineers explored second-grade nanofluid models in different second-
grade and boundary postulates. Sarkar et al. [7] and Rasheed et al. [8] studied electrically
conductive nanofluid moan del to analyze the nature of heat and mass transmission in
view of a porous channel. Channels et al. [9] and Bilal et al. [10] studied hydromagnetic
second-grade fluid through the permeable inclined surface with the impact of internal
heating. Moreover, as indicated in [11–18], and other studies therein, nanomaterials have a
diversity of dynamic applications in various emerging sciences.

The work required to start the chemical reaction is called activation energy. The entire
atoms or nanoparticles in a chemical reaction have either kinetic or potential energy. A
Swedish scientist Svabte Arrhenius introduced the idea of the activation energy for the first
time. Some of the elements respond to the presence of a fixed energy at the same time.

The impact of the transfer rates of heat and mass in a rotating nanofluid flow sub-
ject to Brownian diffusion and chemical reaction effects is offered by Awad et al. [19].
Zaib et al. [20] offered to analyze the radiation effect of stagnation flow of a Carreau fluid
configured by a heated flat channel with a Newtonian heating and chemical reaction effect.
Majeed et al. [21] surveyed heat transfer mechanisms in electrically conductive fluids with
thermal radiation and second-order momentum slip condition effects.

Irfan et al. [22] performed a computation framework for thermally radiative Carreau
nanofluid with Arrhenius energy and joule heating effects. Rasheed et al. [23] carried out
a computational framework of thermally radiative nanofluid flow driven by a stretching
surface. Shah et al. [24] studied the thermally radiative Casson across a nonlinear extended
surface with entropy generation. Khan et al. [25] examined micropolar fluid across a per-
meable rotating disk with micro-organisms and an internal heating effect. Song et al. [26]
investigated the impact of radiation in a modified Darcy-law flow model over a rotating
stretching disk. Chu et al. [27] inspected the significance of bioconvection and MHD
flow in a third-grade fluid model driven by a stretching medium with the Buongiorno
flow model. Ramzan et al. [28] explored the role of magnetized 3D ionized nanofluid
with a Cattaneo-Christov model, CCM. Waqas et al. [29] inspected the time-dependent
flow of nanomaterials configured by a stretching wedge with a melting heat chemical
reaction effect. Xia et al. [30] considered convective heat behavior in Eyring fluid flow
with bioconvection and microorganisms. Ramesh et al. [31] looked into the bioconvection
in Maxwell’s nanofluid flow across a Riga plate with radiation effect and activation en-
ergy. More information is available in [32–40]. Recently, Riaz et al. [41] investigated the
impact carbon nanoparticles in a base fluid with entropy generation. The second-grade
fluid containing nanoparticles over the vertical channel studied by Nadeem et al. [42].
Nadeem et al. [43] discussed the Buongiorno-based nanofluid model numerically over a
nonlinear stretching sheet.

In the light of the cited literature above, it is praiseworthy to mention that there was an
attempt to inspect the heat and mass features of the micropolar fluid flow mechanism on the
stretching sheet in view of thermophoretic force, activation energy, and thermal radiation
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effects. Therefore, by the massive amount of analysis we interacted with, the phenomenon
of thermophoresis diffusion and internal heating are subject to convection boundary layer
flow axioms. The resultant boundary layer equations for different flow fields in the form of
(PDEs) are diminished to (ODEs) with the aid of transformation variables. The nonlinear
flow fields are then engaged numerically through an explicit shooting algorithm via a
computational software in the MATHEMATICA 11.0 programing platform.

2. Flow Configuration and Model

We consider two-dimensional MHD micropolar fluid with heat and mass transfer
transient across a permeable exponentially stretchable plate surface. The influence of solute
and energy equations are modified with the impact of activation energy, Brownian move-
ment are incorporated in the proposed model. Additionally, the heat transfer mechanism
is estimated by assuming the viscous forces and heat source/sink features are engaged in
the revised model. The impact of thermal slip and concentration slip effect is indorsed at
the boundary of the stretching surface. The entire flow is triggered by the Lorenz force
due to the two magnetic fields in the normal direction and electric field. The stretching
velocity is uw where the reference velocity is denoted with U0, such that U0 > 0. Here
T∗ and C∗ are the corresponding fluid temperature and concentration, T∗w and C∗w are the
wall temperature and concentration, and away from the wall is indicated by T∗∞ and C∗∞.
Figure 1 displays the physical sketched of the flow configuration and coordinates under
the effect of the applied magnetic field.
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A revised mathematical model is established under the opted assumptions by means
of boundary layer approximation in the form of PDES are offered below [37,43]:
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The heat source/sink term q′′′ is exemplified as follows:

q′′′ =
k
χ

Uw(x)
[
A1(T∗w − T∗∞)F′(η) + B1(T∗w − T∗∞)

]
Herein, A1 and B1 are the temperature and space dependent heat source/sink param-

eters, A1, B1 > 0 signify heat sources whereas A1, B1 < 0 are designated for heat sink.
The associative boundary postulates are [43]:
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at y∗ = 0 : u∗ = uw = U0e
x
l ; v∗ = 0; N∗1 = −n ∂u∗

∂y∗ ; T∗ = T∗∞ + λ1
∂T∗
∂y∗ ; C∗ = C∗∞ + λ2

∂C∗
∂y∗

at y∗ = ∞ : u∗ = 0; v∗ = 0; N∗1 → 0; T∗ → T∗∞; C∗ → C∗∞
(6)

whereas ρ is the fluid density, Ea is the activation energy coefficient, α1 is the fluid parameter,
B0 is the external field strength, µ is the fluid viscosity, ϕ1 is the medium of porosity, kr is
the chemical reaction rate, k4 is the porous medium permeability, k∗1 is the vortex viscosity,
γ∗ denotes the spin gradient viscosity, Cp is the heat capacity, j∗ is the microinertia density,
σ is the electrical conductivity, DB is the Brownian effect, DT∗ is the thermophoretic effect,
τ is the heat capacitance ratio, U0 is the exponential stretching factor, λ1 is the thermal
slip coefficient, λ2 is the concentration slip coefficient and n is the gyration parameter
respectively.

Introducing:

η =
(

U0
2lv

)0.5
exp

( x
2l
)
y∗; u∗ = U0 exp

( x
l
)
u′0(η); v∗ = −

(
U0ν
2l

)0.5
exp

( x
2l
)
[u0(η) + ηu′0(η)];

N∗1 =

(
U3

0
2lv

)0.5
exp

( 3x
2l
)
h(η); T∗ = T∗∞ + T∗0 exp

( x
2l
)
θ(η); C∗ = C∗∞ + C∗0 exp

( x
2l
)

ϕ(η)
(7)

With the assistance of similarity transformation given in Equation (7) the PDEs
Equations (2)–(6) are diminished into a dimensionless form given as:

(1 + K)u′′′0 + Kh′ + u0u′′0 − 2
(
u′0
)2

+ β
(

5u′0u′′′0 + 2ηu′′0 u′′′0 + 3u′′0
2 − u0u

′′′′
0

)
− 2(ε + M)u′0 = 0 (8)(

1 +
K
2

)
h′′ + u0h′ − 3u′0h− K

(
2h + u′′0

)
= 0 (9)

θ′′ + Pr
[

Ntθ′2 − u0θ′ + 2u′0θ + Nbθ′ϕ′ + A1u′0 + B1θ + βEc
(

u′0u′′0
2 − u0u′′0

2
+ (1 + K)u′0

2
)]

= 0 (10)

ϕ′′ − PrLe
(

ϕu′0 + ϕ′u0
)
+ 2ε1(1 + εθ)me−

E
(1+εθ) ϕ− Nt

Nb
θ′′ = 0 (11)

Dimensionless boundary points are:

at η = 0 : u0 = 0; u′0 = 1; h = −nu′′0 ; θ = 1 + S1θ′; ϕ = 1 + S2 ϕ′

at η = ∞ : u′0 → 0; h→ 0; θ → 0; ϕ→ 0
(12)

The significant physical parameters are symbolized as:

M =
2σlB2

0
ρU0

; E = Ea
k1T∗∞

; Pr = µCp
K ; β =

U0α∗1
υρl ; Nt = τDT∗∆T∗0

υT∗∞
;

Nb = τDB∆C
υT∞

; ε = 2lυ
KU0

; Ec = u2
w

Cp(T∗w−T∗∞)
; Le = υ

DB
; K = k1

µ ;

∈1=
kr2

c ; ∈= T∗w−T∗∞
T∗∞

; S1 = λ1T∗0
√

U0
2υl ; S2 = λ2C∗0

√
U0
2υl

The important physical quantities of interest are characterized as the magnetic field,
activation energy, Prandtl number, second-grade fluid parameter, thermophoresis diffusion,
Brownian movement, porosity parameter, Eckert and Lewis numbers, micropolar parame-
ter, reaction rate, temperature difference, thermal slip, and concentration slip parameters.
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3. Parameters of Interest

The significant parameters of interest are the surface force, heat transfer number, and
mass flow coefficient, given as follows:

C fx =
2τw

ρu2
w

, Nu =
xqw

k(T∗ − T∗∞)
, Sh =

xhm

k(C∗ − C∗∞)
(13)

τw =
α1

ρ

(
u∗

∂2u∗

∂y∗2
− 2

∂u∗

∂x∗
∂v∗

∂y∗
+ u∗

∂2u∗

∂x∗∂y∗
+

(
µ + k∗1

ρ

)
∂u∗

∂y∗
+ k∗1 N∗1

)∣∣∣∣
y∗=0

(14)

qw = −∂T∗

∂y∗
k
∣∣∣∣
y∗=0

(15)

qm = − x
(C∗w − C∗∞)

∂C∗

∂y∗

∣∣∣∣
y∗=0

(16)

The dimensionless form of the parameters of interest are C f , Nu, and Sh and are
signified as:

C f =
[
3βu′0u′′0 − βu0u′′′0 + (1 + K)u′′0

](Rex

2

)−0.5
∣∣∣∣∣
η=0

(17)

1√
Rex

√
2l
x

Nu = −θ′(0) (18)

1√
Rex

√
2l
x

Sh = −ϕ′(0) (19)

whereas qm signifies heat flux; hm denotes mass flux; τw is the wall shear stress; and Rex is
the Reynolds number.

4. Numerical Solution

In this section, the nonlinear ordinary differential Equations (8)–(11) subjected to
extremes conditions in Equation (13) computed numerically by using RK4 along with
the shooting technique are discussed. A detailed procedure can be found in [43]. The
resulting equations are diminished into a system of first order differential equations
through suitable transformation techniques. The system of first order equations is then
integrated numerically via the Runge-Kutta (RK-4) method with an appropriate choice of
u′′′0 (0), h′(0), θ′(0) and ϕ′(0). Newton’s method is then used to iteratively estimate the
values of u′′′0 (0), h′(0), θ′(0) and ϕ′(0), such that solutions approach zero with the desired
accuracy of 10−6.

In addition to studying and facilitating learning the shooting technique algorithm
manner, a flow chart is labeled in Figure 1b.

5. Discussion

In a prevailing effort, the two-dimensional micropolar fluid flow in view of the ex-
ternal magnetic source subject to and slip boundary postulates driven by an extended
exponentially permeable stretchable surface are evaluated. The approximate numerical
computations are apprehended through the manifold governing parameters. The conse-
quences pertinent field and the physical conditions of the flow problem are examined by
visualizing the impact of manifold parameters. For computational analysis, the successive
values of the default flow parameters are deputized as: β = 0.5, K = 0.4, M = 0.30, ε = 0.1,
n = 0.3, Ec = 0.5, Nb = 0.5, Nt = 0.5, Pr = 0.06, Le = 0.4, Kr = 0.50, S1 = 0.5, S2 = 0.5.
The graphical behaviors of the upstairs flow terms on the velocity profile, micropolar
distribution, energy field, concentration distribution, drag force coefficient, heat transfer,
and mass flow coefficient are scrutinized in Figures 2–26.
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Figure 2 reveals the effect of β on velocity outlines u′0(η). From this graph, it is wit-
nessed that as expending behavior β upsurges, the velocity field curves increase. In reality,
the momentum diffusivity enhances through higher estimation of the β parameter. As
expected, u′0(η) increases. Figure 3 explains the consequence of the micropolar parameter K
on u′0(η) field. As shown, the expanding values of K increases the fluid flow significantly in
the boundary region. Physically, larger expansion of micropolar parameter enhances fluid
movement. Consequently, u′0(η) profile increases. Figure 4 demonstrates the influences of
M on u′0(η) field. From this visual it is perceived that u′0(η) diminishes through a higher
estimation magnetic parameter. Actually, increasing the values of M develops the resistive
force of fluid flow and the associative layer thickness due to the Lorenz force. Thus, velocity
and associative boundary layer thickness declines. Figure 5 elaborates the porous medium
parameter ε impact on u′0(η). Evidently an augmentation in the ε magnitude diminishes
fluid flow. Consequently, larger ε estimations create a decline in u′0(η) and related layer
thickness. The outcome of K on micropolar distribution g(η) is addressed via Figure 6. This
figure illustrates the enhancement in h(η) subject to an increment in micropolar parameter
K. Thus, h(η) enhances. The influence of n is interpreted in Figure 7. Clearly h(η) enhances
with higher values of constant n. Variations of Eckert number Ec for scrutinization of
energy field θ(η) are disclosed in Figure 8. Larger Ec corresponds to an enhancement
θ(η) in the flow region. Physically, such scenario is observed because kinetic energy (K.E)
of the fluid particles increases with the expending values of Ec and ultimate θ(η) boosts.
Figure 9 elaborates on Nb impression on θ(η). Evidently an expansion in the Nb upsurges
the speed through which fluid particles move faster in arbitrary direction with diverse
random path owing to the Brownian aspect. Consequently, stronger estimations of Nb
enhance energy profile and related thermal boundary layer thickness. Figure 10 reveals Nt
variations subject to θ(η). Here, θ(η) expands through higher Nt. Actually, thermophoresis
diffusion increases when diffusion coefficient Nt is increased. Such force assists to outflow
nanoscale particles by a region towards colder region and eventual T(η) lifts. Effect of
Pr on energy profile θ(η) is revealed in Figure 11. Here, θ(η) reduces with expanding
values of Pr estimations. It is clear from this visual that variations in Pr is why the ther-
mal nature of the nanofluid diminishes that indicates a dwindle in the internal heating.
Subsequently, boundary layers’ thickness and the energy field of the nanofluid dwindle
in the flow domain. The result of the slip parameter S1 on θ(η) is attained via Figure 12.
This plot exemplifies declines in θ(η). In fact, the thermal layer and energy distribution
enhances with higher values of slip parameter. Thus θ(η) decreases. Attributes of β are
outlined in Figure 13. Here, the thermal energy found lower θ(η) subject to increment
in the second-grade fluid parameter. Such situation is noticed due to higher values of β
implies destruction in thermal boundary layer density effectively. In consequence, θ(η)
diminishes. The contribution of the space dependent heat generation/sinks parameter A1
on θ(η) is estimated through Figure 14. One can identify that θ(η) diminishes through
higher estimation of A1 and related boundary layer. Figure 15 depicts θ(η) variations
subjected to B1. This plot reveals that θ(η) dwindles at a stronger different dependent
parameter B1. Physically, the working fluid lost energy for expanding values of B1. In
consequence θ(η) declines.

The concentration field ϕ(η) curves for reaction rate parameter ∈1 are revealed in
Figure 16. One can recognize that ϕ(η) is an increasing function of ∈1. Physically, higher
estimation of ∈1 leads to activation energy on the ϕ(η). Attributes of energy parameter
E on ϕ(η) is elaborated in Figure 17. This figure confirms that ϕ(η) upsurges subject to
increases in E of the nanofluid. Figure 18 explains the Lewis number Le effects on ϕ(η).
As anticipated as ϕ(η) increases so does Le, which leads to upshots in the mass flow rate
considerably. Similarly, the ϕ(η) rate at sheet surface improves. Additionally, ϕ(η) of
the nanofluid to the sheet surface decays with larger values of Le. The contribution of
concentration slip S2 against concentration profile ϕ(η) is estimated through Figure 19.
As noticed from this plot, growing values of S2 diminishes the concentration distribution.
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Hence, ϕ(η) decays. The implication of ε on ϕ(η) is publicized in Figure 20. One can
recognize from this visual that ϕ(η) decreases the function of temperature ratio parameter.

Figures 21–26 show the attribute of different pertinent parameters on surface force
coefficient C fx, heat transfer Nux, and mass flow rate Shx coefficients. It can be concluded
from Figures 21 and 22 that the drag force increases at higher estimations of M, K and β.
Figures 23 and 24 display a lower heat transfer Nux due to the Pr, Ec, Nb and Nt parame-
ters. Figures 25 and 26 portray mass flow rate Shx for numerous estimates of Pr, Le, Nb and
Nt. The mass flow develops in the case of larger estimation of the proposed Pr and Le
parameters, while it diminishes as the values of Nb and Nt increase.
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6. Conclusions

Computational modeling for two-dimensional MHD micropolar flow with nanopar-
ticles towards an exponentially extended surface with nonlinear heat source parameter
and reaction parameter is evaluated. The resulting dimensionless nonlinear framework
of (ODEs) is solved through built-in algorithms running the numerical code in the MAT-
TEMATICA 11.0 platform. The specific outcomes are shown after conducting the complete
study and are summarized below:

• Velocity outlines increase with the growth of the fluid parameter due to the resistive
force, while velocity outlines fall with the increasing values of porosity parameters.

• It is observed that the linear and angular velocity outlines increase subject to variations
in the values of micropolar parameters.

• The temperature profile improves with ascending values of Brownian parameter and
thermophoretic diffusion force but diminishes with the increasing values of Prandtl
number and thermal slip parameters.

• It has been noticed that the concentration outlines incremented for reaction rate
and activation energy parameters but dwindled for expending values of porosity
parameters, the Lewis number, and concentration slip parameters.

• Skin fraction values increase because of the growing nature of the micropolar factor.
• Nusselt number upsurges for increasing thermophoretic diffusion parameter while

exhibits declining trend for Brownian motion parameter.
• The mass diffusion rate improves when subjected to higher values of Prandtl and

Lewis numbers. On the contrary, it decreases with Brownian and thermophoresis
diffusion force.
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Nomenclature

(u∗, v∗) Velocity components along x∗ and y∗ axes N∗1 Motile microorganism component
µ Kinematics viscosity α1 Material parameter of the fluid
k∗1 Coefficient of viscosity σ Fluid conductivity
ρ Density parameter B0 Magnetic field
ϕ1 Porous medium τ Ratio of heat capacitance
K Permeability of the medium DB Brownian diffusion
γ Spin gradient T∗ Fluid temperature
j∗ Micro inertia T∗∞ Free stream temperature
DT∗ Thermophoretic coefficient C∗ Concentration component
cp Specific heat C∗∞ Ambient concentration
Kr Chemical reaction rate n Constant
uw Stretching velocity of the sheet Ea Activation energy coefficient
λ1 Thermal slip factor U0 Exponential stretching coefficient
λ2 Concentration slip coefficient k Microgyration Parameter
T∗ Fluid parameter M Magnetic field
K Porous medium Pr Prandtl Number
F′ Dimensionless velocity T Dimensionless temperature
g Dimensionless motile microorganism Nb Brownian motion
C Dimensionless concentration Nt Thermophoresis parameter
Le Lewis number ε1 Reaction rate
S1 Thermal slip parameter ε Temperature ratio
S2 Concentration slip parameter E Parameter of Activation energy
C f x Skin friction Nux Nusselt number
Rex Reynolds Number Shx Sherwood number
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