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Abstract: The degree of informatization of coal mine safety management is becoming higher and
higher, and a large amount of information is generated in this process. How to convert the existing
information into useful data for risk control has become a challenge. To solve this challenge, this
paper studies the mathematical model of coal mine risk early warning in China based on data mining.
Firstly, the coal mine risk data was comprehensively analyzed to provide basic data for the risk
prediction model of data mining. Then, the adaptive neuro-fuzzy inference system (ANFIS) was
optimized twice to build the coal mine risk prediction model. By optimizing the calculation method
of the control chart, the coal mine risk early warning system was proposed. Finally, based on the
coal mine risk early warning model, the software platform was developed and applied to coal mines
in China to control the risks at all levels. The results show that the error of the optimized ANFIS
was reduced by 66%, and the early warning error was reduced by 57%. This study aimed to provide
implementation methods and tools for coal mine risk management and control, and data collected
has reference significance for other enterprises.

Keywords: risk; early warning; mathematical model; data mining; coal mine management

MSC: 91G70

1. Introduction

Accident risk has always been a key factor restricting the sustainable development
of enterprises, especially the coal mining enterprises. With the advancement of science
and technology, the scientific and informatization level of enterprise safety management
is becoming higher and higher. In this process, the data of safety management be-comes
more and more complex. However, the utilization rate of these data is very low, resulting
in a waste of data resources. How to convert the existing data into useful in-formation for
risk control has become a challenge. This paper aimed to solve this problem based on data
mining and analysis.

Many studies have committed to studying the risk assessment methods of various
industries and have achieved fruitful results. One of the effective ways of enterprise risk
control is risk assessment. The commonly used evaluation methods are machine learning,
such as the SVM algorithm and mathematical fuzzy set [1,2], the BP neural network [3],
and the MLP-ANN model [4]. Safety management based on risk assessment methods
has been widely studied and applied in many industries, for example, health and safety
policies of microenterprises [5,6]. Currently, the safety risk classification standards for
chemical enterprises are studied from the aspects of personnel technical level, equipment
failure, major hazard source, production process, environment, accident, certification, safety
assessment and emergency response [7]. Based on social cognition theory and behavior
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motivation theory [8], the research model of safety production management mode and
safety behavior has been established. Using the analytic hierarchy process (AHP) and
fuzzy comprehensive evaluation method (FCE) [9], the evaluation index model for safety
production management of oil field enterprises was established. A risk analysis model was
established for the most important and least important emergencies and future situations
in enterprise risk management [10,11].

As one of the high-risk industries, coal mine safety management has had more and
more attention and thoroughly studied [12–14]. According to the historical experiences
contained in the comprehensive database [15], the risks of serious accidents in the fossil
energy chain were compared. Ventilation accidents in underground coal mines were
analyzed to assess the effectiveness of legislative reform on the overall safety of the working
environment [16,17]. The coal mine safety assessment method based on fuzzy logic was
proposed and applied to overcome the uncertainty encountered in the risk assessment
method of the classification decision matrix [18]. The overall framework of mine risk
management was proposed, including risk assessment and risk treatment, to effectively
reduce the negative impacts of mine closure [19]. The models of coal mine safety assessment
and management have been widely studied, mainly including entropy weight and grey
clustering [20,21], fuzzy risk [22], data mining [23] and multi-agent modeling [24]. In
addition, the behavior and psychological factors affecting employees affect the safety state
of coal mines [25–28].

Risk prediction and early warning are widely used, mainly in finance [29], trans-
portation [30–32], construction [33], process of industrial operations [34], human resource
management [35], natural disasters [36,37], and metal dust and natural gas accidents [38,39].
In addition, the analytic hierarchy process, entropy weight method and multiple correlation
number method have been used to analyze the static risk or dynamic risk on urban public
safety, and the regional risk on urban public safety has been predicted [40].

In coal mining enterprises, risk early warning is the key to advance the risk control
gateway. The safety early warning model of coal face was established based on FCM (fuzzy
clustering model) and GA-BP (genetic algorithm–back propagation neural network) [41].
The early warning model of coal and gas outbursts and human factor risk was established
based on data mining [42,43]. The prediction model was constructed to improve the safety
and productivity of underground coal mines, using a hybrid CNN–LSTM (convolutional
neural network–long-short-term memory neural network) model and sensors supported by
the Internet of things [44]. Most studies have studied the risk of coal mine accidents from
the perspective of evaluation and management. However, in an actual working coal mine,
risk is identified and warned of in advance, and then it is dynamically grading controlled.
This can prevent trouble before it happens. Therefore, this paper mines data from coal mine
risk information. Based on this, ANFIS (adaptive network-based fuzzy inference system) is
optimized to predict the risk of coal mine accidents. The optimized control chart is used for
risk early warning to build a coal mine risk management and control system.

With the rapid development of computer technology, risk early warning and system
security rely more and more on computer and information technology. An evaluation
security system based on dynamic Bayesian networks has been constructed [45]. High
reliability software systems have been developed to prevent failures and improve system
safety [46]. An intelligent software platform has been developed to improve the quality of
the process hazard analysis (PHA) by combining hazard and operability studies (HAZOP),
layer of protection analysis (LOPA), safety requirements specification (SRS) and safety
integrity level (SIL) [47]. In coal mining enterprises, the safety management information
system has gradually improved [48–51].

The implementation of monitoring and early warning systems based on sensors has
developed rapidly [52,53]. Tuyen proposed a new deep learning architecture, namely
psounet, and developed an early warning system to improve the performance of mountain
torrent segmentation from satellite images [54]. Based on AHP and fuzzy comprehensive
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evaluation, Xiong established a comprehensive standard cloud model and early warning
system to achieve the purpose of roof risk assessment and identification [55].

The application of computer technology in coal mine enterprise management has
become increasingly mature, and the research on data mining in this field is also developing
rapidly. Combining coal mine risk control with data mining and taking full advantage of
data mining analysis is the current trend.

First, this paper studies the risk of coal mine behavior, which refers to the “three
violations” of coal mine workers in actual safety production. Then, an early warning model
based on the behavior risk data of coal miners (including the time, place, and content of
workers’ violations) is established. Different from other studies, the ANFIS is optimized
twice in this study to build a coal mine risk prediction model. By optimizing the calculation
method for the UCL of the control chart, a coal mine risk early warning method is proposed.
Finally, based on the coal mine risk control technology and data mining, this paper develops
a risk management and control platform for coal mines in China. The application of this
platform can realize functions including dynamic monitoring, data prediction, and risk
early warning of various accident risks for coal mine enterprises, which is a convenient
and effective to carry out coal mine risk control and early warning, greatly improving the
modernization and informatization of risk control and early warning.

2. Methods

Coal mine risk management and control technology consists of data analysis, risk
prediction, and early warning. The data analysis used data mining to analyze the periodic
changes of different types of data, and then calculate the correction coefficient. In the risk
prediction, the optimized ANFIS was used to predict the data within a specified time range.
In the risk early warning, the optimized control chart was used to determine whether to
give early warning.

The coal mine risk prediction of the optimized adaptive neuro-fuzzy inference system
based on data mining in this study includes the following 5 steps (Figure 1).
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2.1. Data Processing and Analysis

According to the characteristics of coal mine risk information text data sources, i.e.,
long text, high noise, large specialized vocabulary, as well as the Chinese text, there are
problems such as continuous uninterrupted words and stop words. Before analyzing and
predicting coal mine hazards information text, it was necessary to pre-process the data
according to the characteristics of the text. In this paper, a text pre-processing method was
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designed for the features of the coal mine hidden danger information text, as shown in
Figure 2. The text pre-processing method mainly included short text localization, removal
of text noise, word separation, and removal of discontinued words. It provided data quality
assurance and text data formalization support for post-sequence data mining analysis and
risk prediction work.

Hidden text was converted into short text, and then the segmentation words and stop
words were removed. In this study, the Jieba partitioning library was used to process the
information on coal mine hazards. Because the text contained some proper nouns, such as
“falling slag”, “piece gang”, “topping out”, etc., the splitting results were biased. Therefore,
we added a custom dictionary for mine accident information to solve this problem. To
remove the special characters and punctuation, the words at the end of the subdivision
were deactivated.

Coal mine hidden danger information was mainly based on a large-scale corpus, and
word vectors were trained to establish the relationship between context and intermediate
words. The higher the correlation between the intermediate words and the context, the
better the effect of the trained word vector. On the contrary, the weaker the correlation
between words in the text, the longer the training time of the word vector, and the worse
the effect. The statistics of the multi-frequency word algorithm were increased to improve
the training effect of the word vector. Multi-frequency words and context were used as the
output layer to improve the effect and rationality of word vector training. Figure 2 shows
the structure of the model training part.
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As shown in Figure 2, since the dataset of the coal mine hidden danger information text
was large, it was necessary to reduce the training window and the dimension of the word
vector during word vector training. The trained word vector contained richer in-formation,
enabling a deep learning network to process more complex natural languages. The process
and results of the word vector training are shown in Appendix A Tables A1 and A2.

2.2. Risk Prediction

ANFIS has a good reasoning and expression ability and combines the self-organization,
self-adaptive, and self-learning abilities of a neural network. In terms of data prediction, it
can not only predict linear data but also non-linear data, which can reduce the prediction
error. Therefore, this paper used ANFIS to predict the coal mine risk data. In practical
application, although ANFIS can predict the changing trend of risk (the change law of risk
with time), the error is large. ANFIS predicts the quantitative change of coal mine risk over
time, and the difference between the prediction result and the actual value is referred to as
the prediction error. For this reason, we optimized the prediction algorithm according to
the trend of risk change and the characteristics of ANFIS.

The gradient search method of the ANFIS minimum error is based on the total error
minimization method. The learning process reduces the error function E in the fastest
direction to adjust the premise parameters until the error value is satisfactory. The risk
prediction error is relatively large due to the constant learning rate of ANFIS. Therefore,



Mathematics 2022, 10, 4028 5 of 20

optimizing the learning efficiency and risk prediction ability of ANFIS was the focus of this
paper. The adjustment of the learning parameters can be expressed by Equation (1).

ai(k + 1) = 2ai(k)− η
∂E
∂ai
− ai(k− 1) (1)

where η is the learning rate, ai is the ith output, k is the kth group of data, and E is the total
error.

In order to further reduce the error, the characteristics of the cyclical changes in the
risks of coal mining enterprises were considered to further optimize ANFIS. Under similar
production conditions in the same coal mining enterprise, the changes in its risk data were
cyclical. In order to improve the reliability of risk prediction, data mining algorithms were
used to analyze the periodic errors of risk data to optimize risk prediction. The model is
shown in Equations (2) and (3).

µ =
1
m

n−1

∑
i=n−m

an−i − an−i−1

an−i
(2)

where m is the amount of data required for prediction analysis; n is the year of the data to
be analyzed; µ is the mean value of the risk data; where 1 ≤ m < n.

λ =

√√√√ 1
m

n−1

∑
i=n−m

(
an−i − an−i−1

an−i
− µ)2 (3)

where λ is the standard deviation of the data error.
Taking the three-violation data on 10 August 2021, as an example, the data of the

previous 3 years can be used as a reference (2018–2020), that is, n = 2021, m = 3. Then, n,
m, and related data are inputted into Equation (3) and the error of the same date in two
consecutive years is analyzed. According to Equation (3), the standard deviation of the
three-violation data in the past 3 years can be calculated to analyze the degree of dispersion.
Finally, the learning efficiency of ANFIS was further optimized, as shown in Equation (4).

ai(k + 1) = ai(k)− η
∂E
∂ai

+
λ

ai(k)
[ai(k)− ai(k− 1)] (4)

where i is the output result order.

2.3. Risk Warning

Control chart is an analysis method based on the principle of hypothesis testing and is
often used to detect whether a production process is in the control state. The control chart
in this study was used to analyze the coal mine risk data to intuitively and effectively judge
whether the safety situation is under control. The control chart includes the center line (CL
= µ), the upper control line (UCL = µ + 3σ), and the lower control line (LCL = µ − 3σ), as
well as the sample statistics and point tracing curves extracted in chronological order.

Because the upper control line is relatively fixed, false positives may be found in the
process of practical application. Therefore, this paper optimized the UCL to reduce false
alarms, as shown in Equations (5)–(7). The correction coefficient is calculated according to
the trend of data to reduce the fluctuation of the UCL. If the mean value of the data (d) to
be analyzed is greater than that of the reference data (µ), the UCL will decrease with the
change range (ω). On the contrary, the UCL will increase with the change range.

ω =
|Dmax − Dmin|

Dmin
(5)
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where ω is the correction coefficient; Dmax is the maximum value of the risk data to be
analyzed; Dmin is the minimum value of the risk data to be analyzed.

UCL = [1 + (−1)sgndω](µ + 3σ) (6)

sgnd =

{
0 d < µ

1 d ≥ µ
(7)

where d is the mean value of the risk data to be analyzed.
In the process of coal mine safety production, the risk prediction and early warn-

ing mechanism is an important part to control and manage the focus of coal mine risk
control. This paper combined the coal mine hierarchical control mechanism, the data
analysis method, and the prediction and early warning model to build a new coal mine
risk prediction model, as shown in Figure 3.
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Based on the new prediction model, we obtained the data for the last three years from
the risk information database, and calculated the CL, UCL, and LCL. The historical data
was divided into training samples and test samples, and the training samples were used to
train the optimized ANFIS algorithm. After convergence, the test samples were used to test
the model. If the resulting error was reasonable, prediction could be performed; otherwise,
the model was retrained. Then, the UCL, CL, and LCL were calculated. If the predicted
data exceeded the controllable range, an early warning would be given.

Since Python can provide efficient high-level data structures, rich standard libraries,
and simple and effective object-oriented programming [56], it was used to implement the
text analysis and risk prediction models built in this paper. In addition, it also allows the
development of Web applications. Therefore, this paper used Python to implement the
application platform development of the process, as shown in Figure 3.

2.4. Data Sources

Luxi Coal Mine, located in Yanzhou City, is a new modern mine approved by the State
Planning Commission of China. It was completed and put into operation in May 2004. The
mine area is 59.6 km2, the geological reserves of the mine are 324 million tons, the industrial
reserves are 108 million tons, and the production capacity is 1.5 million tons/year. The
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data for this study came from the Luxi Coal Mine, which had generated a large amount
of mine safety risk data since the implementation of the mine safety risk management
system in 2014, and this paper selected a total of 92,937 risk data generated from May
2017 to June 2021 as data support. It is worth noting that risk data are mainly related to
workers’ violations, as shown in Figure 4. This paper predicts behavioral risk from a macro
perspective. Based on the rule that the number of violations changes with time, the number
of violations of work areas or coal mining enterprises in a certain period of time in the
future was analyzed and predicted.
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Figure 4. Risk data (partial data).

During the selection of variables, 6 different types of variables were selected to explain
the associations between hidden risks. Due to the large amount of data and the number of
valid correlations that exist. In this paper, the hidden risk level was used as the analysis
target, and other hidden risk occurrence sectors, times, locations and months were used
as the underlying variables for the analysis. The overall situation of potential risks in coal
mines is shown in Table 1.

Table 1. Combined statistics on hidden risks in coal mines.

Variable Abbreviation Data Type Category

Risk department De Discrete

Tunneling department, coal mining department,
electrical and mechanical department, ventilation
department, transportation department, safety
supervision department, other departments

Time of hidden danger Ti Discrete Day shift (8:00–16:00), middle shift (16:00–24:00),
evening shift (00:00–8:00)

Location of hidden danger Lo Discrete

16,104 working face, −300 m horizontal track main
lane, 3111 working face, 3 upper 112 working face, 3
upper 116 face, 3 lower A05 working face, −405 tape
downhill, etc.

Hidden danger level Rlub Discrete A = low risk; B = medium risk; C = high risk

Month of hidden danger Mn Discrete January, February, April, May, June, July, August,
September, October, November, December

Risk type Type Discrete

Comprehensive dust prevention, roof, anchor rod and
support, ventilation, gas management, electrical
management, civilized production, blasting
management, traffic risks

Risk description Des Discrete

Pre-tightening force, layer separation instrument,
certificated induction, material disorder, safety helmet,
shift, mutual insurance card, unsigned, improper
position, blocking stick, etc.
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According to the steps shown in Figure 3, the specific risk descriptions and risk types
in Table 1 were extracted to form a text data set of one line and one sentence. The word
vector model was analyzed using python, after word segmentation. The word vector
model included word similarity information expressed by cosine values. The word with
the highest similarity with the corresponding hidden danger type was regarded as the
characteristic word of the type of safety risk. Feature words contain rich basic information,
which helps managers understand the overall situation of security risks. The main feature
words (Table 2) closely related to safety risks were extracted and analyzed according to
the word vector model. “Roof”, “signature”, “life”, “clear”, “responsibility”, “operation
log”, “shift”, “shift leader” and “non flooded” did not mean risk, but were just words
that appeared in daily risk management. In other words, the appearance of these words
meant that the corresponding statement may be the content describing risks. The text
information was input into the word vector model, and these feature words were extracted
and processed by the model. The processing flow is the word vector part shown in Figure 2.

Table 2. Analysis results of main characteristic words of potential safety risks.

Risk Type Feature Words

Comprehensive dust prevention Coal dust, purified water curtain, air tunnel, flushing, dust net, atomization

Hidden roof risks
Roof, rising, broken roof, leaking stone, measuring cylinder, sinking, moving
frame with machine, leaking, roof falling, missed grinding, falling, wide panel
width, high pressure, periodic pressure, delaminator, roof management

Anchor rod and support Anchor rod, exposed, over length, failure and pretension, anchor cable, socket
head, channel steel, protection, extra long

Ventilation Air duct, patch, reverse side, air leakage, ‘1’ type air duct, quick connector, broken,
unpressed, uneven, compressed air pipe, turning, telescopic, butt, tight, interface

Civilized production
Extremely poor, construction site, signature, construction progress, life, fill in
content, electrification, self-inspection, clear, responsibility, scribbling, operation
log, shift, shift leader, disorderly placement, shift group

Gas risks Cover, kit, gas sensor, drilling, gas alarm, drainage hole, air leakage, sealing hole,
gas drainage manifold, power interrupter, return air flow

Electrical risks Cable, hanging, hanging, tidiness, iron wire, substation, decoupling, switch, signal,
button, power supply

Blasting risks Blasting, busbar, breach, water curtain, blast hole, blasting

Traffic risks
Not flooded, front track, car stopper, loose rope, road head, lack of iron wedge,
switch, track, track, transport team, road splint, rail end, sharp road, cannot hold,
switch, split, do not rope wheel, off the rope

3. Results
3.1. Data Preprocessing

According to the characteristic words of safety hazards, managers can quickly form
an intuitive understanding of safety hazards, further clarify the information flow of hidden
danger characteristics of different hidden danger subjects and grasp the details of hidden
dangers. A Sankey chart is a specific type of flow chart. The width of the extended branches
in the chart corresponds to the size of the data flow. The sum of the widths of all the
main branches should be equal to the sum of the widths of all the distributed branches.
It maintains the energy balance and is very suitable for visual analysis of data flow and
other data. In the experiment, the amount of information flow was positively related to the
co-occurrence frequency and similarity of different words.

Because displaying a large amount of data at the same time may affect the data
visualization effect, more representative hidden danger types, operation units, and hidden
danger locations were selected to draw the Sankey chart. Taking the hidden danger of coal
dust and support as an example, the safety hazard characteristics of different work units
and different hidden danger positions were obtained. The Sankey chart of safety hidden
danger is shown in Figure 5.
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The trend of lines in the Sankey chart indicate the trend of the data flow, which can
help analyze the change in the data flow. The change in the width of the lines is inducive to
understand the data change. On this basis, different nodes were compared. Figure 5a shows
the safety risk Sankey chart of the operating units, and Figure 5b shows the safety risk
Sankey chart of the operating sites. In Figure 5, each branch represents an information flow,
and the width of the branch represents the information flow. The left side of each figure is
the analyzed security risk, the middle of the figure is the safety risk feature word extracted
in this experiment, and the right side of the figure represents the location of the potential
risk to be analyzed or the operation unit at the time of the potential risks. The width and
flow direction of the branches in Figure 5a present the frequency and characteristics of the
potential safety risks of different operating units, respectively. The width and flow direction
of the branches in Figure 5b represent the frequency and characteristics of potential safety
risks in different locations, respectively.

3.2. Predicted Results

According to the process shown in Figure 3, this paper encapsulates a prediction
model and used python for implementation. By inputting the information in the time and
risk category, the prediction results can be obtained. For example, the prediction data can
be obtained by inputting the 40 days of data concerning the above 38 types of risks in the
risk categories of gas, coal dust, roof fall, etc. (denoted by 1, 2, 3, etc.).

The optimized prediction algorithm was used to predict coal mine risks, and the
prediction results are shown in Figures 6–8.
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The optimized actual risk data is shown in Figure 6. Compared with the predicted data
(Figure 7), the changing trend was consistent, indicating that the optimized ANFIS did not
affect the change trend of the predicted risk. In order to demonstrate the convergence effect
of the optimized ANFIS, the error was calculated, as shown in Figure 8. From Figure 8,
the errors were all within 10 and were reduced by about 16%, indicating that adjusting the
learning rate improved the ANFIS convergence effect and reduced the errors.

The risk prediction data of ANFIS after the second optimization is shown in
Figures 9 and 10.
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The changing trend of the risk prediction data was the same as that of actual data,
indicating that the secondary optimization of ANFIS did not affect the changing trend of
the coal mine risk prediction. From Figure 10, the error was within 4, which was 66% lower
than the original error and 60% lower than the first optimization. The analysis of the results
of the two optimizations shows that the optimized ANFIS has good function approximation
characteristics, fast convergence speed, and high precision, and can automatically form
fuzzy reasoning rules and adjust learning parameters.

3.3. Early Warning Results

In this paper, the CL, UCL, and LCL of the control chart can be drawn in days with
reference to the number of hidden dangers and three-violations of coal mines within the
first three years of the prediction time point.

Three-violations refer to three types of violations made by coal mine workers, i.e.,
illegal command, illegal operation, and violation of labor discipline. The training samples
and predicted values were the changing trends of the number of three-violations, as shown
in Figure 11. The more three-violations, the higher the coal mine’s risk. From Figure 11,
although three-violations exist, the number was within the UCL, indicating that the risk
level of the coal mines in this period was within an acceptable range. In recent years, coal
mine safety management achieved good results with no major risks or accidents, thus the
coal mine safety is under control. In this paper, the statistical range of data was expanded
to further explain the runaway phenomenon of control charts.
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In Figure 11, the abscissa is the date, and the ordinate is the risk quantity. The forecast
data for 18 April 2021 and 18 June 2021 are the forecast violation data. Figure 11 shows
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both the actual number of three-violations and the predicted data. The three dashed lines
show the UCL, Cl, and LCL of the control diagram. The predicted data from 17 April to 18
May showed that the risk data exceeded the UCL twice. In fact, the number of risks on 29
April (point a in the figure) and 7 May (point b in the figure) were abnormal, exceeding the
upper limit of the control chart. This indicates that accidents may have occurred in coal
mining enterprises. However, the coal mining enterprises have strengthened their safety
supervision, found and solved the hidden dangers in time, and restored normal safety
production. The three-violations were within the controllable range from 18 May to 18
June and the behavior safety of the coal mine was in a normal state. Through comparative
analysis, it was found that the non-optimized control chart was misreported seven times
during this period, while the optimized control chart was misreported three times. The
error of the optimized control chart was reduced by about 57%.

4. The Software Platform of the Model
4.1. Overall System Design

The entire coal mine risk management and control process requires the transmission
and processing of large amounts of information, and is time-sensitive. Based on coal mine
risk management and control technology, the development of a coal mine risk management
and control data mining platform can take full advantage of data analysis to carry out coal
mine risk management and early warning work in a flexible, convenient and real-time
manner.

According to the implementation process and demand analysis of coal mine risk
control technology, this paper divides the platform into modules for data collection, data
analysis, integrity management, and safety training, with the specific functional structure
shown in Figure 12.

4.2. Design Implementation of the System

The data mining platform for coal mine risk control was fully functional, and this
section focuses on the data analysis module related to risk prediction and early warning.

(1) Database design

The system platform used MySQL as the database, which was a high-performance and
relatively simple database system that was less complex to set up and manage than some
larger systems. MySQL can be accessed interactively using several interfaces for entering
queries and viewing the results: a command-line client program, a Web browser, or an X
Window System client program. The software platform used interfaces such as “Select”,
“Update”, “Insert” and “Delete” to access the MySQL database, operation commands to
save and retrieve risk data.

The coal mine risk control data mining platform based on hierarchical model was
designed and developed to better analyze and apply the coal mine risk early warning
technology, and a coal mine risk control database was built using MySQL. Relevant codes
are shown in Appendix B.

(2) System design

The homepage of the system shows an overview of the system’s functional modules,
including data collection, data analysis, integrity management, safety training, and other
modules. As shown in Figure 12, the left side of the homepage shows the shortcut entrance
of all functions, and the middle part shows the results of data analysis in the form of a
histogram, pie chart, and line graph.
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The data analysis module of the control chart was based on the risk prediction model 
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the database and calculated the LCL, UCL, and CL according to the requirements of the 
control chart analysis. The data prediction interface is shown in Figure 13. 
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The data analysis module of the control chart was based on the risk prediction model
to predict the risk change trend of different levels. It read the corresponding data from the
database and calculated the LCL, UCL, and CL according to the requirements of the control
chart analysis. The data prediction interface is shown in Figure 13.
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5. Discussion
5.1. Comparative Analysis of Prediction Models

BP and GA-BP are commonly used in data prediction. This paper compared and
analyzed the error in 12 months of risk prediction using different prediction models (BP,
GA-BP, ANFIS, primarily optimized ANFIS, and secondarily optimized ANFIS) to verify
the effectiveness of the proposed prediction model in this paper, as shown in Figure 14.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 13. Coal mine risk management platform. 

5. Discussion 
5.1. Comparative Analysis of Prediction Models 

BP and GA-BP are commonly used in data prediction. This paper compared and an-
alyzed the error in 12 months of risk prediction using different prediction models (BP, 
GA-BP, ANFIS, primarily optimized ANFIS, and secondarily optimized ANFIS) to verify 
the effectiveness of the proposed prediction model in this paper, as shown in Figure 14. 

 
Figure 14. Comparative analysis of prediction error rate. 

The analysis results showed that based on data mining, the twice-optimized ANFIS 
provides very accurate and reliable results and minimize the error rate in a short time 
when using a large amount of complex data. 

Figure 14. Comparative analysis of prediction error rate.

The analysis results showed that based on data mining, the twice-optimized ANFIS
provides very accurate and reliable results and minimize the error rate in a short time when
using a large amount of complex data.
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5.2. Comparative Analysis of Early Warning

This paper compared and analyzed the error rate of the control chart and the optimized
control chart to discuss the advantages and disadvantages of the optimized control chart
for early warning, as shown in Figure 15.
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The results of the comparative analysis showed that the optimized control chart can
dynamically calculate the UCL of the control chart, reduce the early warning error, realize
the prevention, early warning, pre-control coal mine accidents, and improve coal mine
safety production management.

5.3. Application Effect of Software Platform

After the design, programming implementation and software testing the coal mine
risk management and control data analysis platform was developed and applied in the Luxi
Coal Mine. The platform monitored the risk data (employees’ violations) and provided
prediction and early warning results back to safety supervisors. The data and analysis
results could provide a management basis and a decision-making tool for safety supervisors.
According to the prediction results, safety supervisors could track the progression of the
violators’ rectification, thus improving the safety awareness of employees and promoting a
reduction in the number of violations.

Figure 16 shows a significant reduction in the number of risks after using the software
platform (2019 and 2020) compared with before its use (2017 and 2018). A closer look
shows that the number of risks decreased year by year after applying the software platform
compared to the same period before its implementation.

Using this software platform, the employees of Luxi Coal Mine were able to receive
risk warning alert information in time to rectify the situation and prevent accidents, which
improved their safety awareness and effectively reduced the accident rate.

5.4. Limitations of the Study

In this paper, an early warning system for coal mine risks was proposed. The system
could not only analyze the association rules of coal mine risks but also predict the number
of risk occurrences. Although the ANFIS architecture model improved the efficiency and
reliability of the proposed system and reduced false alarms, the current prediction data
was mainly based on the data recorded by the information system. Further improvements
can be made by future research on the sophisticated and lightweight sensors to provide
more accurate signals, and could even predict the location of potential hazards.
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6. Conclusions

This paper combined the optimized ANFIS with the control chart to predict the number
of risks and improve the coal mine risk management and control technology. The coal mine
risk control data analysis platform was developed and successfully applied in the Luxi
Coal Mine. The main conclusions are as follows.

(1) According to the characteristics of coal mine risk information, useful risk data were
extracted from a large amount of text information to provide raw data for prediction
and early warning models.

(2) By optimizing the ANFIS twice in succession, the coal mine risk prediction model
was constructed. The results of the comparative analysis showed that the optimized
model can effectively reduce the error of coal mine risk prediction. Combined with
this model, a coal mine risk early warning model based on the control chart was
proposed.

(3) The coal mine risk control data analysis platform was developed based on the coal
mine risk control technology and applied to the Luxi Coal Mine, and achieved good
results.

Overall, the coal mine risk control technology and platform studied in this paper
provides a scientific, effective, standardized, and convenient way for coal mine risk control,
greatly improving the efficiency and quality of coal mine safety production.
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Appendix A

Table A1. Raw data of hidden danger information in Luxi coal mine.

Time Unit Shift Place and Content

2020.11.03 Tunneling area 1 Middle shift

The support at the working face has liquid leakage at
many places, the working face is partially broken, and
the scraper bolts at many places are loose. The bolts of
the tail slip reducer are loose. The bolts at the oil
discharge port of the shearer rocker arm are seriously
worn. The chain wheels of scraper and transfer
machine are seriously worn. Strengthen equipment
management and carry out special rectification.

2020.11.03 Tunneling area 2 Middle shift

The risk identification of the withdrawal measures for
the installation of the auxiliary belt down the mountain
is too simple, the support is inverted, the switch is
turned over and the adhesion is not managed
according to the major risk, various lifting appliances
and wire ropes are not selected and calculated, and the
equipment accessories are not marked with the
detailed weight.

2020.11.03 Fully mechanized
mining area Middle shift

The anchor rod, anchor plate and plate of the backup
support material for the auxiliary belt down the
mountain stockyard are not consistent with the real
object, and the specification and model of the anchor
agent are not filled in.

2020.11.03 Coal mining team Middle shift Temporary support materials are thrown at the head,
and the back road is blocked.

2020.11.03 Electromechanical
work area Middle shift The road cleat and belt rack pipe at the downhill of the

auxiliary track shall be thrown at random.

2020.11.03 Electromechanical
work area Middle shift The fixing screws of the sliding tail reducer of the

working face are loose.

2020.11.03 Electromechanical
work area Middle shift The coupling clearance of 3 # pump in −300 horizontal

central pump house is small.

2020.11.03 Fully mechanized
mining area Morning shift

In the third mining area, there is a lot of gangue
accumulated in the roadway after the belt goes down
the hill, and the two sides are not high enough.

Table A2. Classification experiment results.

Index

Type Classification

Equipment
Manage-

ment

Site Man-
agement

Civilized
production

Comprehensive
Dust-Proof Roof Local

Ventilation
Label Man-

agement
Belt

Conveyor

Accuracy rate 0.92 0.96 0.9 0.96 0.97 0.94 0.87 0.98

Recall rate 0.89 0.91 0.86 0.91 0.95 0.88 0.96 0.91

Overall
accuracy rate 0.92

Appendix B

Class.forName(“com.mysql.jdbc.Driver”);
Connection conn=DriverManager.getConnection(“jdbc:mysql://127.0.0.1:3306/mine?
useUnicode=true&amp;characterEncoding=utf-8”, “root”, “root”);
Statement st=conn.createStatement();
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#——————-
ResultSet rs=st.executeQuery(“select * from t_s_user_view”);
#——————–
def remove_punctuation(line):
line = str(line)
if line.strip()==“:
return “
rule = re.compile(u”[ˆa-zA-Z0-9\u4E00-\u9FA5]”)
line = rule.sub(“,line)
return line
#——————–
def stopwordslist(filepath):
stopwords = [line.strip() for line in open(filepath, ‘r’, encoding=‘utf-8’).readlines()]
return stopwords
#——————–
stopwords = stopwordslist(“./CNStopWords.txt”)
#——————–
df[‘cut_content’] = df[‘clean_content’].apply(lambda x: “ ”.join([w for w in list(jb.cut(x))

if w not in stopwords]))
df.head()
MAX_NB_WORDS = 50000
MAX_SEQUENCE_LENGTH = 250
EMBEDDING_DIM = 100
#——————–
jieba_list = []
jieba.load_userdict(‘./data/dict4in1.txt’)
from wordcloud import WordCloud
import matplotlib
import matplotlib.pyplot as plt
matplotlib.rcParams[‘figure.figsize’] = (10.0, 5.0)
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