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Abstract: In this paper, a new structure of an applied model of thermostat is defined using the
generalized ψ-operators with three-point boundary conditions. Some useful properties of the relevant
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defining mild solutions for such an extended system, the existence and non-existence conditions
are discussed.
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1. Introduction

Inequalities in their various forms play a vital role in mathematics. In particular,
their effective operation can be seen in ordinary and partial differential equations (ODEs
and PDEs) that lead to various standard formulas in different applications. In this direc-
tion, in recent years, mathematicians have introduced many important inequalities by
considering various assumptions on the given functions and using operators with singular
and non-singular kernels. One of the most famous of these inequalities is the Lyapunov
inequality. To investigate the spectral properties of ODEs, the inequality of the Lyapuov
type is a helpful tool [1–3]. Moreover, eigenvalue problems, disconjugacy, and oscillation
theory are other fields in which this type of inequality is useful [4].

As a starting point in this area, Lyapunov [5] formulated the Lyapunov inequality for
a second-order boundary value problem (BVP) for the first time. In fact, by assuming the
existence of a non-trivial solution for the following linear BVP,v′′(s) + ψ(s)v(s) = 0, s ∈ (m, n),

v(m) = v(n) = 0,
(1)

Lyapunov derived an inequality as∫ n

m
|ψ(q)|dq >

4
n−m

, m, n ∈ R,

so that ψ is a continuous function on [m, n] with real values. After that, some researchers
such as Yang et al. [6] and Agarwal et al. [7] extended this inequality to higher-order
systems. The investigation of Lyapunov inequalities was initiated in the context of standard
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integer-order ODEs, and then other generalized versions of it were introduced by defining
fractional operators. One can consider the first conducted research on the fractional type of
the Lyapunov inequality in a paper from Ferreira [8]. In fact, Ferreira extended the linear
BVP (1) to a fractional BVP with the Riemann–Liouville derivative given byDp

mv(s) + ψ(s)v(s) = 0, s ∈ (m, n),

v(m) = v(n) = 0,
(2)

with 1 < p ≤ 2 and established the following inequality:∫ n

m
|ψ(q)|dq > Γ(p)

[ 4
n−m

]p−1
, m, n ∈ R,

where Γ(s) =
∫ ∞

0
ts−1e−tdt is the Gamma function.

One year later, Ferreira [9], in another research, conducted a similar analysis with the
Caputo fractional derivative and obtained the following inequality:∫ n

m
|ψ(q)|dq >

ppΓ(p)

(p− 1)p−1(n−m)p−1 , m, n ∈ R.

Due to the importance of such inequalities in different applied areas, various versions
of Lyapunov-type inequalities have been obtained by some other researchers. For instance,
Jleli et al. [10] studied the corresponding inequality with the help of q-difference operators.
Additionally, Ma and Han [11] implemented a similar study with q-operators on the
Schrodinger equation with Woods–Saxon potential. In 2018, Pathak [12] generalized
Lyapunov-type inequality when the derivative of the given BVP is of the Hilfer type.
For more details, see [13–16].

By developing practical concepts in the theory of fractional calculus, mathematicians
became eager to design various mathematical models with the help of various mathematical
tools such as mathematical operators with singular or non-singular kernels. The power of
simulation and analysis of fractional and fractal-fractional operators compared to classical
operators has caused us to see the publication of various articles in the field of modeling
phenomena every day. For instances about the analytical and numerical studies, the read-
ers can find new advanced models via fractional and fractal-fractional operators, such
as [17–29].

In 2006, a second-order model of thermostat was formulated by Infante and Webb [30],
which is insulated at s = 0 under the controller at s = 1, and it has the following formulation:−v′′(s) = ϕ(s, v(s)), (s ∈ I := [0, 1]),

v′(0) = 0, v(p) + µv′(1) = 0,
(3)

with the real constant p ∈ I and parameter µ > 0, and continuous nonlinear function
ϕ : I×R→ R. By the structure of such a second-order model, the addition or discharging
of heat under the performance of a thermostat depends on the temperature assessed by the
sensor at s = p. From the mathematical point of view, Infante and his colleague continued
their study on the existence results using fixed-point index theory in the context of integral
Hammerstein equations. Further, Nieto and his colleague Pimentel [31] discussed and
turned to analysis on the properties of existence for solutions of the fractional version
of BVP (3) by substituting fractional derivatives of order q instead of classical derivative,
in which q ∈ (1, 2] stands for the order of the Caputo fractional derivative. Some years later,
Cabrera, Rocha and Sadarangani [32] presented some new structures of Lyapunov-type
inequalities in relation to the aforemantioned fractional thermostat BVP under nonlocal
boundary conditions.
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In this paper, we focus on this target in which a Lyapunov-type inequality is obtained
for a generalized fractional model of thermostat control involving generalized ψ-operators
given by −

cDψ;qv(s) = K(s, v(s)), (s ∈ I := [a1, a2], a1, a2 ∈ R),

cDψ;1v(a1) = 0, v(p) + µcDψ;q−1v(a2) = 0,
(4)

with some hypotheses such as q ∈ (1, 2], p ∈ (a1, a2), µ > 0, and cDψ;1 = 1
ψ′(s)

d
ds , which

is the same generalized ψ-Caputo derivative of order one. Along with these, the given
function K : I × R → R is continuous, and cDψ;γ denotes the generalized ψ-Caputo
fractional derivative of order γ ∈ {1, q, q− 1}. It is natural that by assuming ψ(s) = s and
q = 2 and [a1, a2] = [0, 1], the fractional ψ-model of thermostat control (4) reduces to the
standard second-order model (3) of thermostat control.

In the present study, we concentrate on the establishment of the Lyapunov-type in-
equality for a new extended ψ-model of thermostat with generalized ψ-operators. As far as
we know, the Lyapunov-type inequality for this version of thermostat ψ-model has seldom
been studied up to now. Additionally, some required conditions guaranteeing the existence
and non-existence of solutions are investigated in the sequel via some established properties
of the relevant Green’s function. The insights of the present manuscript can be specified
as follows. First, we provide several properties of fractional ψ-integrals and derivatives
(Section 2). Then, we obtain the Green’s function and investigate some important properties
of it (Section 3). By considering the concavity and increasing properties of some functions,
the Lyapunov-type inequality is constructed for the ψ-thermostat model (4) (Section 4).
After that, non-existence and existence theorems are stated for our applied ψ-model of
thermostat (Section 5). Finally, the conclusion section is provided (Section 6).

2. Basic Notions

In this section, we state and recall some basic and fundamental notations and def-
initions, which will be used later. Let [a1, a2] (0 < a1 < a2 < ∞) be an interval and
ψ : [a1, a2] → R be a function such that ψ′(s) > 0 for every s ∈ [a1, a2]. Now, by these
assumptions, we provide some properties from ψ-fractional calculus.

Definition 1 ([33]). Let q > 0. The ψ-RL-fractional integral (Riemann–Liouville) of order q for
an integrable function v : [a1, a2]→ R with respect to the function ψ : [a1, a2]→ R is defined by

Iψ;q
a+1

v(s) =
1

Γ(q)

∫ s

a1

ψ′(r)(ψ(s)− ψ(r))q−1v(r)dr, (5)

with Γ(·) as the Gamma function given by

Γ(q) =
∫ +∞

0
e−rrq−1dr, q > 0.

Definition 2 ([34]). Let n ∈ N and ψ, v ∈ Cn([a1, a2],R), where ψ is introduced above. The ψ-
Caputo fractional derivative of order q for the function v is defined by

cDψ;q
a+1

v(s) = Iψ;n−q
a+1

(
1

ψ′(s)
d
ds

)n
v(s),

with n = [q] + 1 for q /∈ N and n = q for q ∈ N, where [q] denotes the largest integer less than or
equal to q.

To simplify in writing, the abbreviated symbol

v[n]ψ (s) =
(

1
ψ′(s)

d
ds

)n
v(s), (6)
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can be used. By definition,

cDψ;q
a+1

v(s) =


∫ s

a1

ψ′(r)(ψ(s)− ψ(r))n−q−1

Γ(n− q)
v[n]ψ (r)dr , q /∈ N,

v[n]ψ (s) , q = n ∈ N.

(7)

This extension (7) gives the Caputo fractional derivative if ψ(s) = s. For ψ(s) = ln s,
the Caputo–Hadamard fractional derivative is obtained.

Next, we provide a property in relation to the composition of the generalzied fractional
ψ-derivatives with ψ-integrals.

Lemma 1 ([35]). Let n ∈ N, n − 1 < q < n, and v ∈ Cn([a1, a2],R). Then, the following
relation holds:

Iψ;q
a+1

cDψ;q
a+1

v(s) = v(s)−
n−1

∑
j=0

v[j]ψ (a1)

j!
[ψ(s)− ψ(a1)]

j,

for all s ∈ [a1, a2]. Furthermore, for m ∈ N and v ∈ Cn+m([a1, a2],R), we have(
1

ψ′(s)
d
ds

)m
cDψ;q

a+1
v(s) = cDψ;q+m

a+1
v(s) +

m−1

∑
j=0

[ψ(s)− ψ(a1)]
j+n−q−m

Γ(j + n− q−m + 1)
v[j+n]

ψ (a1).

Lemma 2 ([33,35]). Let q, p > 0, and v ∈ C([a1, a2],R). Then, for each s ∈ [a1, a2], we have

1. Iψ;q
a+1

Iψ;p
a+1

v(s) = Iψ;q+p
a+1

v(s),

2. cDψ;q
a+1

Iψ;q
a+1

v(s) = v(s),

3. Iψ;q
a+1

(ψ(s)− ψ(a1))
p−1 = Γ(p)

Γ(p+q) (ψ(s)− ψ(a1))
p+q−1,

4. cDψ;q
a+1

(ψ(s)− ψ(a1))
p−1 = Γ(p)

Γ(p−q) (ψ(s)− ψ(a1))
p−q−1,

5. cDψ;q
a+1

(ψ(s)− ψ(a1))
j = 0, j ∈ {0, . . . , n− 1}, n ∈ N, n− 1 < q < n.

Lemma 3 ([36]). (Jensen’s inequality) Assume that µ is a positive measure and B is a measurable
set such that µ(B) = 1. If K ∈ L1(µ) is a real-valued function and for each x ∈ B, a < K(x) < b,
and φ is a real-valued convex function on (a, b), then

φ

(∫
B

Kdµ

)
≤
∫
B
(φ ◦ K)dµ. (8)

For K with the concavity property on (a, b), (8) is satisfied with ≥ instead of ≤.

3. Green’s Function

Green’s function plays a fundamental role in the theory of integral equations [37–39].
Here, we discuss some properties of the relevant Green’s function in the thermostat
ψ-model.

Proposition 1. Let q ∈ (1, 2], p ∈ (a1, a2), µ > 0 and A ∈ CR(I), where CR(I) denotes the
family of all continuous real-valued functions on the interval I. A function v ∈ CR(I) is a solution
for the linear thermostat ψ-model−

cDψ;qv(s) = A(s), (s ∈ I := [a1, a2]),

cDψ;1v(a1) = 0, v(p) + µcDψ;q−1v(a2) = 0,
(9)
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which is given by the integral equation

v(s) = −
∫ s

a1

ψ′(r)(ψ(s)− ψ(r))q−1

Γ(q)
A(r)dr

+
∫ p

a1

ψ′(r)(ψ(p)− ψ(r))q−1

Γ(q)
A(r)dr + µ

∫ a2

a1

ψ′(r)A(r)dr. (10)

Proof. If v satisfies the linear ψ-thermostat Equation (9), then cDψ;qv(s) = −A(s). As
1 < q ≤ 2, by integrating, it becomes

v(s) = − 1
Γ(q)

∫ s

a1

ψ′(r)(ψ(s)− ψ(r))q−1A(r)dr + c0 + c1(ψ(s)− ψ(a1)), (11)

where we need to find values of the coefficients c0, c1 ∈ R. Moreover, the properties of the
ψ-Caputo fractional derivative give

cDψ;1v(s) = − 1
Γ(q− 1)

∫ s

a1

ψ′(r)(ψ(s)− ψ(r))q−2A(r)dr + c1, (12)

and for 0 < q− 1 ≤ 1, we obtain

cDψ;q−1v(s) = −
∫ s

a1

ψ′(r)A(r)dr + c1
(ψ(s)− ψ(a1))

2−q

Γ(3− q)
. (13)

By the condition cDψ;1v(a1) = 0 and (12), we obtain c1 = 0. Moreover, the Equations (11)
and (13) and the condition v(p) + µcDψ;q−1v(a2) = 0 imply that

− 1
Γ(q)

∫ p

a1

ψ′(r)(ψ(p)− ψ(r))q−1A(r)dr + c0 − µ
∫ a2

a1

ψ′(r)A(r)dr = 0,

and thus, we have

c0 =
1

Γ(q)

∫ p

a1

ψ′(r)(ψ(p)− ψ(r))q−1A(r)dr + µ
∫ a2

a1

ψ′(r)A(r)dr.

Finally, if we substitute the obtained coefficients c0 and c1 in (11), then the proof
is completed.

Remark 1. Note that one can rewrite (10) by means of Green’s function as

v(s) =
∫ a2

a1

Gψ(s, r)ψ′(r)A(r)dr, (14)

where

Gψ(s, r) =



− (ψ(s)−ψ(r))q−1

Γ(q) + (ψ(p)−ψ(r))q−1

Γ(q) + µ, a1 ≤ r ≤ min{p, s}

(ψ(p)−ψ(r))q−1

Γ(q) + µ, a1 ≤ s ≤ r ≤ p,

− (ψ(s)−ψ(r))q−1

Γ(q) + µ, p ≤ r ≤ s ≤ a2,

µ, max{p, s} ≤ r ≤ a2.

(15)

Proposition 2. For Green’s function given by (15), we have

(i) mina1≤r,s≤a2 Gψ(s, r) = − (ψ(a2)−ψ(p))q−1

Γ(q) + µ.

(ii) maxa1≤r,s≤a2 Gψ(s, r) = µ + (ψ(p)−ψ(a1))
q−1

Γ(q) .
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Proof. We have

∂Gψ(s, r)
∂s

−
(q−1)ψ′(s)(ψ(s)−ψ(r))q−2

Γ(q) , a1 ≤ r ≤ s ≤ a2,

0, a1 ≤ s ≤ r ≤ a2.

This shows that Gψ(s, r) is a non-increasing function with respect to the first variable s.
(i). From the above result, we deduce that

min
a1≤s≤a2

Gψ(s, r) =

Gψ(a2, r) =

−
(ψ(a2)−ψ(r))q−1

Γ(q) + (ψ(p)−ψ(r))q−1

Γ(q) + µ, for a1 ≤ r ≤ p

− (ψ(a2)−ψ(r))q−1

Γ(q) + µ, for p ≤ r ≤ a2.
(16)

Using the fact that ax − bx ≤ (a− b)x for any a ≥ b ≥ 0 and x ∈ (0, 1], we have

0 ≤ (ψ(a2)− ψ(r))q−1 − (ψ(p)− ψ(r))q−1 ≤ (ψ(a2)− ψ(p))q−1,

for each a1 ≤ r ≤ p. This leads to

Gψ(a2, r) = − (ψ(a2)− ψ(r))q−1

Γ(q)
+

(ψ(p)− ψ(r))q−1

Γ(q)
+ µ

≥ − (ψ(a2)− ψ(p))q−1

Γ(q)
+ µ,

for each a1 ≤ r ≤ p. On the other hand, we can easily see that

min
p≤r≤a2

Gψ(a2, r) = Gψ(a2, p) = − (ψ(a2)− ψ(p))q−1

Γ(q)
+ µ.

Combining two last inequalities yield that

min
a1≤r≤a2

Gψ(a2, r) = − (ψ(a2)− ψ(p))q−1

Γ(q)
+ µ.

Using (16) and the latter inequality, we obtain

min
a1≤r,s≤a2

Gψ(s, r) = − (ψ(a2)− ψ(p))q−1

Γ(q)
+ µ.

(ii). We have

max
a1≤s≤a2

Gψ(s, r) = Gψ(a1, r) =


(ψ(p)−ψ(r))q−1

Γ(q) + µ, for a1 ≤ r ≤ p,

µ, for p ≤ r ≤ a2.
(17)

It is obvious that

max
a1≤r≤p

Gψ(a1, r) = Gψ(a1, a1) =
(ψ(p)− ψ(a1))

q−1

Γ(q)
+ µ > µ.

Combining the latter inequality and (17), we obtain

max
a1≤r,s≤a2

Gψ(s, r) =
(ψ(p)− ψ(a1))

q−1

Γ(q)
+ µ.

The proof of Proposition 2 is completed.
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Remark 2. Since ψ is a non-decreasing function, from Proposition 2, we have

max
a1≤r,s≤a2

|Gψ(s, r)| = max

{
µΓ(q) + (ψ(p)− ψ(a1))

q−1

Γ(q)
,

∣∣(ψ(a2)− ψ(p))q−1 − µΓ(q)
∣∣

Γ(q)

}
.

Moreover, if µ ≥ (ψ(a2)− ψ(p))q−1

Γ(q)
, then

max
a1≤r,s≤a2

|Gψ(s, r)| = µΓ(q) + (ψ(p)− ψ(a1))
q−1

Γ(q)
.

Proposition 3. For Green’s function given by (15), the following inequality holds:∫ a2

a1

|Gψ(s, r)|ψ′(r)dr

≤ max
{
(ψ(p)− ψ(a1))

q

Γ(q + 1)
+ µ(ψ(a2)− ψ(a1)),

(ψ(a2)− ψ(p))q

Γ(q + 1)
− µ(ψ(a2)− ψ(a1))

}
,

for each s ∈ [a1, a2].

Proof. Using and by direct computations, we reach the desired result of the Proposition.

4. Lyapunov-Type Inequality

In this section, we obtain a Lyapunov-type inequality for the proposed thermostat
control ψ-model. We consider the following assumption:

• Assumption (A1): There exist κ : [a1, a2] → R and a positive, concave and non-
decreasing function g : R→ R such that

|K(s, v)| ≤ |κ(s)||g(v)|,

for each s ∈ [a1, a2] and v ∈ R.

Using the proposed assumption and above notations, we state the main result of this
section as follows. Here, we define ‖v‖ = maxa1≤s≤a2 |v(s)|.

Theorem 1. Assume that Assumption (A1) holds. If ψ′(·)κ(·) ∈ L1[a, b], and the fractional
ψ-model of thermostat control (4) has a non-trivial solution, v ∈ C[a1, a2], then

∫ a2

a1

ψ′(r)|κ(r)|dr ≥ min

{
Γ(q)

µΓ(q) + (ψ(p)− ψ(a1))q−1 ,
Γ(q)∣∣(ψ(a2)− ψ(p))q−1 − µΓ(q)

∣∣
}
‖v‖

g(‖v‖) .

If µ ≥ (ψ(a2)−ψ(p))q−1

Γ(q) , then

∫ a2

a1

ψ′(r)|κ(r)|dr ≥ Γ(q)‖v‖(
µΓ(q) + (ψ(p)− ψ(a1))q−1

)
g(‖v‖)

.

Proof. If v ∈ C[a1, a2] is a non-trivial solution of the fractional ψ-model of thermostat
control (4), we find from (14) that

v(s) =
∫ a2

a1

Gψ(s, r)ψ′(r)K(r, v(r))dr. (18)

For each s ∈ [a1, a2], by using Jensen’s inequality, and from (18), we have

|v(s)| ≤
∫ a2

a1

|Gψ(s, r)ψ′(r)K(r, v(r))|dr
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≤ max
a1≤s,r≤a2

|Gψ(s, r)|
∫ a2

a1

ψ′(r)|κ(r)||g(v(r))|dr

≤ max
a1≤s,r≤a2

|Gψ(s, r)|‖ψ′(·)κ(·)‖L1[a,b]

∫ a2

a1

ψ′(r)|κ(r)|
‖ψ′‖‖κ‖L1[a,b]

|g(v(r))|dr

≤ max
a1≤s,r≤a2

|Gψ(s, r)|‖ψ′(·)κ(·)‖L1[a,b]g

(∫ a2

a1

ψ′(r)|κ(r)|
‖ψ′‖‖κ‖L1[a,b]

|v(r)|dr

)
≤ max

a1≤s,r≤a2
|Gψ(s, r)|‖ψ′(·)κ(·)‖L1[a,b]g(‖u‖).

It follows from Proposition 2 that

‖ψ′(·)κ(·)‖L1[a,b] ≥
1

maxa1≤s,r≤a2 |Gψ(s, r)|
‖u‖

g(‖u‖)

= min

{
Γ(q)

µΓ(q) + (ψ(p)− ψ(a1))q−1 ,
Γ(q)∣∣(ψ(a2)− ψ(p))q−1 − µΓ(q)

∣∣
}
‖v‖

g(‖v‖) .

This completes the proof.

Corollary 1. For K(s, v(s)) = κ(s)v(s), ψ(s) = s and µ ≥ (a2−p)q−1

Γ(q) , we have

∫ a2

a1

|κ(r)|dr ≥ Γ(q)
µΓ(q) + (p− a1)q−1 .

The result coincides with the one in [32].

Proof. Apply Theorem 1 for ψ(s) = s and g(v) = v.

5. Some Existence and Non-Existence Results

In this section, we investigate the existence and non-existence of a mild solution for
the thermostat control ψ-model (4). We begin with the definition of mild solutions.

Definition 3. The function v ∈ C[a1, a2] is called a mild solution of the thermostat control
model (4) if it satisfies the following integral equation:

v(s) =
∫ a2

a1

Gψ(s, r)ψ′(r)K(r, v(r))dr. (19)

To study the existence of a mild solution for our problem, the following assumption
will be considered:

• Assumption (A2): There exists κ : [a1, a2]→ [0,+∞) such that

|K(s, v)− K(s, w)| ≤ κ(s)|v− w|,

for each (s, v), (s, w) ∈ [a1, a2]×R.

Continuously, from now on, for ϕ ∈ C[a1, a2], we denote ‖ϕ‖ = maxa1≤s≤a2 |ϕ(s)|.
Based on the above assumption and definition, we can state and prove the existence and
uniqueness result for our ψ-model.

Theorem 2. Suppose that K is a continuous function which satisfies Assumption (A2). If
ψ ∈ C1[a1, a2], κ ∈ L1[a1, a2], and

‖κ‖L1[a1,a2]
<

1
‖ψ′‖ min

{
Γ(q)

µΓ(q) + (ψ(p)− ψ(a1))q−1 ,
Γ(q)∣∣(ψ(a2)− ψ(p))q−1 − µΓ(q)

∣∣
}

,
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then the ψ-model (4) of the thermostat has a unique mild solution.

Proof. Let us consider the operator Q : C[a1, a2]→ C[a1, a2] defined by

Qv(s) =
∫ a2

a1

Gψ(s, r)ψ′(r)K(r, v(r))dr.

Note that it is well-defined in virtue of the continuity of the functions ψ′, Gψ and K.
Then

|Qv(s)−Qw(s)| ≤ ‖ψ′‖ max
a1≤s,r≤a2

|Gψ(s, r)|
∫ a2

a1

|K(r, v(r))− K(r, w(r))|dr

≤ ‖ψ′‖ max
a1≤s,r≤a2

|Gψ(s, r)|
∫ a2

a1

κ(s)|v(r)− w(r)|dr

≤ ‖ψ′‖ max
a1≤s,r≤a2

|Gψ(s, r)|‖κ‖L1[a1,a2]
‖v− w‖.

It follows

‖Qv−Qw‖ ≤ ‖ψ′‖ max
a1≤s,r≤a2

|Gψ(s, r)|‖κ‖L1[a1,a2]
‖v− w‖. (20)

Note that

‖κ‖L1[a1,a2]
<

1
‖ψ′‖ min

{
Γ(q)

µΓ(q) + (ψ(p)− ψ(a1))q−1 ,
Γ(q)∣∣(ψ(a2)− ψ(p))q−1 − µΓ(q)

∣∣
}

=

(
‖ψ′‖ max

a1≤s,r≤a2
|Gψ(s, r)|

)−1
.

Thus, we conclude from (20) that Q is contraction in C[a1, a2]. Hence, Q has a unique
fixed point in C[a1, a2], which is a mild solution of the thermostat control ψ-model (4). The
proof of Theorem 2 is completed.

To complete this section, we give a non-existence result for our problem. Herein, we
use the following assumption:

• Assumption (A3): There exists a constant LK > 0 such that

|K(s, v)| ≤ LK|v|,

for each (s, v) ∈ [a1, a2]×R.

Theorem 3. Suppose that Assumption (A3) holds. If LKCψ < 1 with

Cψ = max
{
(ψ(p)− ψ(a1))

q

Γ(q + 1)
+ µ(ψ(a2)− ψ(a1)),

(ψ(a2)− ψ(p))q

Γ(q + 1)
− µ(ψ(a2)− ψ(a1))

}
,

then the thermostat control ψ-model (4) has no non-trival mild solution.

Proof. We prove by contradiction that the thermostat control ψ-model (4) has a mild
solution. Then, from (19), we have

‖v‖ = max
a1≤s≤a2

∣∣∣∣∫ a2

a1

Gψ(s, r)ψ′(r)K(r, v(r))dr
∣∣∣∣

≤ max
a1≤s≤a2

∫ a2

a1

|Gψ(s, r)|ψ′(r)|K(r, v(r))|dr

≤ LK‖v‖ max
a1≤s≤a2

∫ a2

a1

|Gψ(s, r)|ψ′(r)dr
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≤ LKCψ‖v‖
< ‖v‖,

due to Proposition 3. This is a contradiction. The proof of Theorem 3 is completed.

6. Conclusions

In the present reaserch study, we considered a new applied model of thermostat
control by defining the relevant differential equation and boundary value conditions
with the help of ψ-operators in which ψ is a non-decreasing function. This model covers
all previous fractional BVPs of thermostat control. To follow the study, a mathematical
structure of Green’s function was obtained, and then maximum and minimum values
of it over the given interval were calculated. By using some estimates and the Jensen’s
inequality, the Lyapunov-type inequality was proved under the supposed conditions
for the generalized ψ-model of the thermostat. Moreover, based on functional analysis
techniques, the non-existence and existence of mild solutions for such a generalized ψ-
system were established. Due to the importance of real models of processes, we can
continue such studies for other forms of applied mathematical models via the newly
defined mathematical operators.
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