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Abstract: This research manifesto has a comprehensive discussion of the global dynamics of an
achievable discrete-time two predators and one prey Lotka–Volterra model in three dimensions,
i.e., in the space R3. In some assertive parametric circumstances, the discrete-time model has eight
equilibrium points among which one is a special or unique positive equilibrium point. We have also
investigated the local and global behavior of equilibrium points of an achievable three-dimensional
discrete-time two predators and one prey Lotka–Volterra model. The conversion of a continuous-type
model into its discrete counterpart model has been completed by adopting a dynamically consistent
nonstandard difference scheme with the end goal that the equilibrium points are conserved in
twin cases. The difficulty lies in how to find all fixed points O, P, Q, R, S, T, U, V and the Jacobian
matrix and its characteristic polynomial at the unique positive fixed point. For that purpose, we
use Mathematica software to find the equilibrium points and all of the Jacobian matrices at those
equilibrium points. Moreover, we discuss boundedness conditions for every solution and prove the
existence of a unique positive equilibrium point. We discuss the local stability of the obtained system
about all of its equilibrium points. The discrete Lotka–Volterra model in three dimensions is given
by system (3), where parameters α, β, γ, δ, ζ, η, µ, ε, υ, ρ, σ, ω ∈ R+ and initial conditions x0, y0, z0 are
positive real numbers. Additionally, the rate of convergence of a solution that converges to a unique
positive equilibrium point is discussed. To represent theoretical perceptions, some numerical debates
are introduced, including phase portraits.

Keywords: fixed points; stability; predator-prey system; rate of convergence; global stability; bound-
edness; Lotka–Volterra model; three-species model

MSC: 39A10; 39A113; 39A40; 39A30

1. Introduction

The present research article has a detailed discussion on the global behavior of a
possible three-dimensional Lotka–Volterra model in discrete form. Discrete Lotka–Volterra
models have many applications in applied sciences. As an example, mathematical biology
was the first field to utilize models, and then, other fields followed [1–4]. Various variations
of the Lotka–Volterra predator–prey model have been proposed that provide more realistic
descriptions of population interactions. There may be considerations, which led to the
development of the logistic equation if the rabbit population is always higher than the
fox population. A sufficient number of rabbits may interfere with each other’s quest for
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food and space if they become too numerous. A more complicated system can be used to
describe this effect mathematically.

An important role is played by ordinary differential equations when it comes to
analyzing the dynamics of real-life situations such as cell signaling pathways, population
growth, and enzymatic inhibitor reactions. Although differential equations are an excellent
tool for understanding the dynamic behavior of such systems, most biological models have
memory or aftereffects. Often, such effects are overlooked in systems. Fractional-order
differential equations play an important role in understanding and identifying these effects.
The idea of fractional differential equations and their applications in nonlinear biochemical
reaction models has been studied in [5,6].

A discrete dynamical system may be a suitable alternative model if foxes can survive
on an alternative resource, although rabbits are their natural prey. Discrete-time models
described by difference equations are well known to be more suitable than continuous-time
models [7–12]. There is a great deal of importance in applications for nonlinear difference
equations of order greater than one. In biology, ecology, physiology, physics, engineering,
and economics, such equations naturally appear as discrete analogs and numerical solutions
of differential and delay differential equations. Rational difference equations are special
cases of nonlinear dynamical systems. For a basic understanding of difference equations
and rational difference equations, see [13,14]. Recently, many authors have discussed the
dynamics of rational difference equations [2,15]. J. Alebraheem and Y. Abu-Hasan [16]
examined the dynamical associations of a three-animal type evolved way of life model,
where two predators are competing for one prey. The rates of growth of two predators and
one prey are depicted by a law of logistics in which the carrying capacity of predators relies
upon an accessible measure of prey. The functional response Holling type-I I is utilized to
portray taking care of the two predators y and z one prey x. The model can be composed in
continuous form as:

dx
dt

= rx(1− x
k
)− ξxy

1+u1ξx−
ηxz

1 + u2ηx
dy
dt

=−py + N1y(1− y
ky

)− c1yz (1)

dz
dt

=−qz + N2z(1− z
kz
)− c2yz

The system has preliminary conditions: x(0) = x0, y(0) = y0, z(0) = z0. The intrinsic
growth rate of prey is shown by r, where ξ and η decide the efficiency of the seeking and
the catching of predators y and z individually. u1 and u2 represent the handling rate and
digestion rate of predators. In the absence of prey x, constants p and q are showing the rate
of deaths of predators y and z individually.

N1 =
ξxe1

1 + u1ξx

N2 =
ηxe2

1 + u2ηz

N1 and N2 represent numerical reactions of the predators y and z separately, which portray
changes in the number of inhabitants in predators by prey utilization. e1 and e2 represent
the proficiency of changing over devoured prey into predator births. Leslie [17] initially
suggested that the carrying capacities ky = α1x, kz = α2x are proportional to the number
of preys available. c1 and c2 measure inter-specific competition factors that represent
the interference competition of the predator z on predator y and contrariwise. Values
of preliminary conditions and all parameters of the model are considered to be positive.
The preliminary conditions of the system are x(0) = x0, y(0) = y0 and z(0) = z0.

To minimize the number of parameters, the model can be written in non-dimensional
form. We write
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t = rt, x =
x
k

, y =
y

a1k
, z =

z
a2k

, ξ =
ka1ξ

r
, η =

kα2η

r
, e1 =

e1

a
, e2 =

e2

a2
, p =

p
r

, q =
q
r

,

u1 =
ru1

a1
, u2 =

ru2

a2
, c1 =

a2kc1

r
, c2 =

a1kc2

r
.

The system will take a new shape when we remove bars from all parameters as follows:

dx
dt

=x(1− x)−
(

ξ

1 + u1ξx

)
xy−

(
η

1 + u2ηx

)
xz

dy
dt

=(−p)y−
(

e1ξ

1 + u1ξx

)
xy−

(
e1ξ

1 + u1ξx

)
y2−c1yz (2)

dz
dt

=(−q)z−
(

e1η

1 + u2ηx

)
xz−

(
e2η

1 + u1ηx

)
z2−c2yz

Numerous authors explored ecological systems of inter-species competition repre-
sented by differential equations such as Lotka–Volterra-type models, as mentioned above.
A range of fascinating outcomes associated with the global character as well as asymp-
totic stability have been obtained. Effectively, numerous creators have contended that the
discrete-time systems administered by difference equations are to a greater extent more
suitable than the continuous one when the population is a non-overlapping generation.
It demonstrates exceptional local and global stability along with the presence of a non-
negative point of equilibrium. The above mentioned discrete-time framework possesses
numerous applications in applied sciences. There is a similar framework that is entrenched
in bio-mathematics, and later, their use was extended to other fields. Numerous variants
of the Lotka–Volterra predator–prey framework have been proposed that provide more
realistic representations of population interactions. If bunnies have a larger population than
foxes, then considering the logistic equation that was developed may become perhaps the
most significant factor. Despite the fact that the quantity of bunnies is sufficiently incredible,
the hares might be tangled up with one another as they search for food and locations. A sci-
entific way to depict this expectation is to replace the first framework with the second. Most
predators consume a wide variety of foods. Although the nearness of their normal prey
(hares) favors development for the foxes, the discrete dynamical framework is a potential
elective asset. A discrete dynamical system describes a system whose state evolves over
state space in discrete time steps. Different equations describe the particular frameworks.
As a matter of fact, difference equations existed before differential conditions and have
played a significant role in their development. Since the 1950s, difference equations have
been gaining attention from both mathematicians and clients of mathematics because of
their internal mathematical excellence and relevance to almost every division of modern
science. Bionomics, population development, queuing problems, statistics, stochastic time
series, number theory, geometry, neuron networks, quintain diffusion, hereditary problems
in anthropology, finance, psychology, social anthropology, physics, engineering, economics,
combinatorial analysis, probability theory, electrical networks, and resource management
are some examples [18].

Evaluating the action of solutions of nonlinear difference equations of higher order is
very important and has attracted many researchers in a short period of time. The meaning
of the behavior of a solution involves analyzing the equilibrium point; the boundedness,
persistence, existence and uniqueness of a positive equilibrium point; local and global
stability; and the periodicity nature of such difference equations or systems of difference
equations [19–25].

Motivated by the above discussion, in this paper, we study the conduct of the accom-
panying discrete time Lotka–Volterra system, which is obtained by the discretization of a
continuous model (2) trailed by Euler’s technique. With the help of Euler’s scheme [26],
continuous model (2) takes the accompanying structure
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xn+1 − xn

h
= xn − xnxn+1−

(
α

1 + h1αxn

)
xnyn−

(
β

1 + h2βxn

)
xnzn

xn+1+hxnxn+1 = hxn+xn−
(

α

1 + h1αxn

)
xnyn−

(
β

1 + h2βxn

)
xnzn

After some calculation, one can obtain

xn+1=
A′xn − B

′
xnyn − C

′
xnzn

1 + D′xn

and
yn+1 − yn

k
= (−u)yn+

(
e1α

1 + h1αxn

)
xnyn−

(
e1α

1 + h1αxn

)
ynyn+1−c1ynzn

yn+1−yn = (−ku)yn+

(
ke1α

1 + h1αxn

)
xnyn−

(
ke1α

1 + h1αxn

)
ynyn+1−kc1ynzn

with some simplification

yn+1=
E
′
yn + F

′
xnyn − G

′
ynzn

1 + H′yn

Moreover,

zn+1 − zn

l
=(−w)zn+

(
e2β

1 + h2βxn

)
xnzn−

(
e2β

1 + h2βxn

)
znzn+1−c2ynzn

zn+1−zn=(−lw)zn+

(
le2β

1 + h2βxn

)
xnzn−

(
le2β

1 + h2βxn

)
znzn+1−lc2ynzn

by simplifying

zn+1=
I
′
zn + J

′
xnzn − K

′
ynzn

1 + L′zn

For the sake of convenience, we replace parameters by Greeks letters and obtain the
discrete counterpart as:

xn+1 =
αxn − βxnyn − γxnzn

1 + δxn

yn+1 =
ζyn + ηxnyn − µynzn

1 + εyn
(3)

zn+1 =
υzn + ρxnzn − σynzn

1 + ωzn

While on the contrary, all parameters are real numbers and preliminary conditions
x0, y0 and z0 belong to R+. Frameworks of the discrete type portrayed aside difference
equations are more appropriate than the continuous frameworks. A large number of
scholars have researched the dynamical analysis of these types of models [18,27–33]. This
research article is arranged as follows: In Section 2, we learn the steadiness of equilibrium
points of the obtained discrete type model. In Section 3, we discuss major conclusions
related to the point of equilibrium and find a positive equilibrium point which is unique.
In Section 4, we discuss the global aspects of the unique positive equilibrium point. In
Section 5, we discuss the rate of convergence of equilibria of the obtained discrete model.
Section 6 deals with the numerical debate which authenticates the achieved theoretical
results. In the last section, an abrupt conclusion is declared.
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2. Linearization and Stability

Let us consider a three-dimensional discrete dynamical system of the form

xn+1 = ∆(xn, yn, zn)

yn+1 = Γ(xn, yn, zn) (4)

zn+1 = Φ(xn, yn, zn)

where n = 0, 1, . . . and I, J, K are some intervals of real numbers and ∆ : I × J × K → I,
Γ : I × J × K → J and Φ : I × J × K → K are continuously differentiable functions defined
on the given intervals. Furthermore, a solution {(xn, yn, zn)}∞

n=0 of the system (4) is
uniquely determined by initial conditions (x0, y0, z0) ∈ I × J × K. An equilibrium point
of (4) is a point (x, y, z) that satisfies

x = ∆(x, y, z), y = Γ(x, y, z), z = Φ(x, y, z).

Definition 1. Suppose (x̄, ȳ, z̄) is a point of equilibrium of the system (4).
(i) An equilibrium point (x̄, ȳ, z̄) is said to be stable if for every ε > 0, there exist δ > 0 such that
for every initial condition (x0, y0, z0), if ‖(x0, y0, z0)− (x̄, ȳ, z̄)‖ < δ implies that

‖(xn, yn, zn)− (x̄, ȳ, z̄)‖ < ε for all n > 0, where ‖.‖ is the usual Euclidean norm in R3.
(ii) An equilibrium point (x̄, ȳ, z̄) is supposed to be unstable if it is not stable.
(iii) An equilibrium point (x̄, ȳ, z̄) is supposed to be asymptotically stable if there exists r > 0

such that (xn, yn, zn) → (x̄, ȳ, z̄) as n → ∞ for all (x0, y0, z0) that satisfy ‖(x0, y0, z0)−
(x̄, ȳ, z̄)‖ < r.

(iv) An equilibrium point (x̄, ȳ, z̄) is supposed to be global attractor if (xn, yn, zn) →
(x̄, ȳ, z̄) as n→ ∞.

(v) An equilibrium point (x̄, ȳ, z̄) is called an asymptotic global attractor if it is a global
attractor and stable otherwise.

Definition 2. Suppose (x, y, z) is an equilibrium point of the map

F(x, y, z) = (∆(x, y, z), Γ(x, y, z), Φ(x, y, z))

where ∆, Γ and Φ are continuously differentiable functions at (x, y, z). Then, linearization for the
system (4) about the EP (x, y, z) is given by:

Xn+1 = F(Xn)

= FJ Xn

where

Xn =

 xn
yn
zn


and FJ is a Jacobian matrix for the system (4) about the point of equilibria (x, y, z).

Assume that (x, y, z) is a point of equilibrium of the system (3), later

x =
αx− βxy− γxz

1 + δx
, y =

ζy + ηxy− µyz
1 + εyn

, z =
υz + ρxz− σyz

1 + ωz

Accordingly,

O = (0, 0, 0), P = (
α− 1

δ
, 0, 0), Q = (0,

ζ − 1
ε

, 0), R = (0, 0,
υ− 1

ω
),
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S =

(
ηβ(1− ζ) + εη(α− 1)

η(ηβ + εζ)
,

η(α− 1) + δ(ζ − 1)
(ηβ + εζ)

, 0
)

,

T =

(
0,

µ(ν− 1)−ω(ζ − 1)
σµ−ωε

,
σµ(ζ − 1)− εµ(ν− 1)

µ(σµ−ωε)

)
,

U =

(
(α− 1)ωδ− γδ(ν− 1)

δ(ωδ + ργ)
, 0,

ρ(α− 1) + δ(ν− 1)
(ωδ + ργ)

)
and

V =


−ζβω + ζγσ + αεω− αµσ + βµυ− εγυ− βµ + βω + εγ− εω− γσ + µσ

βηω− βµρ + δεω− δµσ + εγρ− ηγσ
,

−ζδω + ζγρ + αηω− αµρ− δµυ− ηγυ + δµ− δω + ηγ− ηω− γρ + µρ

βηω− βµρ + δεω− δµσ + εγρ− ηγσ
,

−ζβρ + ζδσ + αερ− αησ− βηυ− δευ− βη − βρ + δε− δσ + εσ− ησ

βηω− βµρ + δεω− δµσ + εγρ− ηγσ


are points of equilibria of the system (3). Clearly, then, V is a special non-negative point of equilibria
of the system (3) if α > 1, ζ > 1, υ > 1.

The Jacobian of system (3) about the fixed point (x, y, z) is given by:

∆(x, y, z) =
αx− βxy− γxz

1 + δx
, Γ(x, y, z) =

ζy + ηxy− µyz
1 + εy

, Φ(x, y, z) =
υz + ρxz− σyz

1 + ωz

∂∆
∂x

=
α− βy− γz
(1 + δx)2 ,

∂∆
∂y

=
−βx

(1 + δx)
,

∂∆
∂z

=
−γx

(1 + δx)
∂Γ
∂x

=
ηy

1 + εy
,

∂Γ
∂y

=
ζ + ηx− µz
(1 + εy)2 ,

∂Γ
∂z

=
−µy

1 + εy
∂Φ
∂x

=
ρz

1 + ωz
,

∂Φ
∂y

=
−σz

1 + ωz
,

∂Φ
∂z

=
υ + ρx− σy
(1 + ωz)2

JF(x, y, z) =


α−βy−γz
(1+δx)2

−βx
(1+δx)

−γx
(1+δx)

ηy
1+εy

ζ+ηx−µz
(1+εy)2

−µy
1+εy

ρz
1+ωz

−σz
1+ωz

υ+ρx−σy
(1+ωz)2


Theorem 1 ([26]). Let Xn+1 = F(Xn), where n = 0, 1, . . . , is a system of difference equations
such that X is a fixed point of F. If all eigenvalues of the Jacobian matrix JF about X lie inside the
open unit disk |λ| < 1, then X is locally asymptotically stable. If one of them has a modulus greater
than one, then X is unstable.

3. Main Results

Theorem 2. Assume that α < 1, ζ < 1, υ < 1; then, the following statements are true:

(i) The fixed point O = (0, 0, 0) is locally asymptotically stable.

(ii) The fixed point P = (
α− 1

δ
, 0, 0) is not a stable point.

(iii) The fixed point Q = (0,
ζ − 1

ε
, 0) is not a stable point.

(iv) The fixed point R = (0, 0,
υ− 1

ω
) is not a stable point.

Proof. (i) About the fixed point (0, 0, 0), the Jacobian matrix of the framework, (3) is
obtained as:
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JF(0, 0, 0) =

 α 0 0
0 ζ 0
0 0 υ


Furthermore, eigenvalues of the Jacobian matrix JF(0, 0, 0) at (0, 0, 0) are α, ζ and υ

where α < 1, ζ < 1, υ < 1. Therefore, the equilibrium point (0, 0, 0) is locally asymptoti-
cally stable.

(ii) The Jacobian matrix of the linearized system (3) about the equilibrium point(
α−1

δ , 0, 0
)

is obtained as:

JF( α−1
δ , 0, 0) =


1
α

β(1−α)
αδ

γ(1−α)
αδ

0 ζ + η
(

α−1
δ

)
0

0 0 υ + ρ
(

α−1
δ

)


Furthermore, the eigenvalues of the Jacobian matrix J
F

(
α− 1

δ
, 0, 0

) about
(

α− 1
δ

, 0, 0
)

are 1
α ,

δζ − η − αη

δ
and

αρ− ρ + δυ

δ
where α < 1, ζ < 1, υ < 1. Using the above theorem,

the equilibrium point P = (
α− 1

δ
, 0, 0) is unstable.

(iii) The Jacobian matrix of the linearized system (3) about the fixed point (0,
ζ − 1

ε
, 0) is

given as:

J
F(0,

ζ − 1
ε

, 0)
=


α− β( ζ−1

ε ) 0 0
η( ζ−1

ε )
ζ

1
ζ

−µ( ζ−1
ε )

ζ

0 0 υ− σ( ζ−1
ε )


Furthermore, the eigenvalues of the Jacobian matrix J

F(0,
ζ − 1

ε
, 0)

at (0,
ζ − 1

ε
, 0) are

1
ζ ,

αε− βζ + β

ε
and

σ− ζσ + ευ

ε
where α < 1, ζ < 1, υ < 1. Using the above theorem, the

equilibrium point Q = (0,
ζ − 1

ε
, 0) is unstable.

(iv) The Jacobian of the framework (3) at the fixed point (0, 0,
υ− 1

ω
) is given by

JF(0, 0, υ−1
ω ) =

 α− γ( υ−1
ω ) 0 0

0 ζ − µ( υ−1
ω ) 0

ρ( υ−1
ω )
υ

−σ( υ−1
ω )

υ
1
υ


Furthermore, the eigenvalues of the Jacobian matrix J

F(0, 0,
υ− 1

ω
)

about (0, 0, υ−1
ω ) are

1
υ > 1,

αω− γυ + γ

ω
and

ζω− µυ + µ

ω
where α < 1, ζ < 1, υ < 1. Using the above

theorem equilibrium point, R = (0, 0,
υ− 1

ω
) is unstable.

Theorem 3. Accept that α > 1, ζ > 1, υ > 1; then, the unique equilibrium point is asymptotically
stable if ψ > 0, π > 0, and φ > 0 where

ψ = (αδµσ− αδεω + βδξω− βδµυ− γδξσ + γδευ + βδµ

−βδω− βηω + βµρ− γδε + γδσ + γησ− γερ)
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π = (αηεω− µερ + γζερ− γηευ + δζεω− δµευ

+βηω− βµρ + γηε− γησ + δµε− δµσ− ηεω + µερ)

φ = (αησω− αερω + βζρω− βηυω + δζσω− δευω

+βµρ− βρω + γησ− γερ + δµσ− δσω− ησω + ερω)

Proof. We have

JF(x,y,z) =

 ∆x ∆y ∆z
Γx Γy Γz
Φx Φy Φz



JF(x,y,z) =


α−βy−γz
(1+δx)2

−βx
(1+δx)

−γ
(1+δx)

ηy
1+εy

ζ+ηx−µz
(1+εy)2

−µy
1+εy

ρz
1+ωz

−σz
1+ωz

υ+ρx−σy
(1+ωz)2


Now, we will find value of the Jacobian matrix at the obtained unique equilibrium

point. After putting V = (x, y, z) in JF(x,y,z), we will obtain

JF(x,y,z) =

 Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33


where

Q11 =
−(βηω− βµρ− γησ + γερ− δµσ + δεω)

(αδµσ− αδεω + βδξω− βδµυ− γδξσ + γδευ + βδµ− βδω− βηω + βµρ− γδε + γδσ + γησ− γερ)

Q12 =
−(αµσ− αεω + βeω− βµi− γeσ + γευ + βµ− βω− γε + γσ− µσ + εω)β

(αδµσ− αδεω + βδξω− βδµυ− γδξσ + γδευ + βδµ− βδω− βηω + βµρ− γδε + γδσ + γησ− γερ)

Q13 =
−(αµσ− αεω + βeω− βµi− γeσ + γευ + βµ− βω− γε + γσ− µσ + εω)γ

(αδµσ− αδεω + βδξω− βδµυ− γδξσ + γδευ + βδµ− βδω− βηω + βµρ− γδε + γδσ + γησ− γερ)

Q21 =
(αηω− αµρ + γζρ− γηυ + δζω− δµυ + γη − γρ + δµ− δω− ηω + µρ)η

(αηεω− µερ + γζερ− γηευ + δζεω− δµευ + βηω− βµρ + γηε− γησ + δµε− δµσ− ηεω + µερ)

Q22 =
βηω− βµρ− γησ + γερ− δµσ + δεω

(αηεω− µερ + γζερ− γηευ + δζεω− δµευ + βηω− βµρ + γηε− γησ + δµε− δµσ− ηεω + µερ)

Q23 =
−(αηω− αµρ + γζρ− γηυ + δζω− δµυ + γη − γρ + δµ− δω− ηω + µρ)µ

(αηεω− µερ + γζερ− γηευ + δζεω− δµευ + βηω− βµρ + γηε− γησ + δµε− δµσ− ηεω + µερ)

Q31 =
(αησ− αερ + βζρ− βηυ + δζσ− δευ + βη − βρ + δε− δσ− ησ + ερ)ρ

(αησω− αερω + βζρω− βηυω + δζσω− δευω + βµρ− βρω + γησ− γερ + δµσ− δσω− ησω + ερω)

Q32 =
−(αησ− αερ + βζρ− βηυ + δζσ− δευ + βη − βρ + δε− δσ− ησ + ερ)σ

(αησω− αερω + βζρω− βηυω + δζσω− δευω + βµρ− βρω + γησ− γερ + δµσ− δσω− ησω + ερω)

Q33 =
−(βηω− βµρ− γησ + γερ− δµσ + δεω)

(αησω− αερω + βζρω− βηυω + δζσω− δευω + βµρ− βρω + γησ− γερ + δµσ− δσω− ησω + ερω)

After this, we want to find the characteristic polynomial. For the sake of convenience,
we will assume some terms of the matrix are equal to some new parameter as the terms of
the matrix are so large.

So, the simplified form of the matrix is:

JF(x,y,z) =

 −
κ
ψ − χβ

ψ − χγ
ψ

θη
π

κ
π − θµ

π
τρ
φ − τσ

φ − κ
φ


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λ3 + κ(πφ+πψ−φψ)
φψπ λ2 + (πχγρτ+βχηφθ−µψστθ+πκ2−κ2φ−κ2ψ)

φψπ λ

+ (βχηκθ−βχµρτθ−χηγστθ−χγκρτ−κµστθ−κ3)
πψφ = 0.

where

ψ = (αδµσ− αδεω + βδξω− βδµυ− γδξσ + γδευ

+βδµ− βδω− βηω + βµρ− γδε + γδσ + γησ− γερ)

π = (αηεω− µερ + γζερ− γηευ + δζεω− δµευ

+βηω− βµρ + γηε− γησ + δµε− δµσ− ηεω + µερ)

φ = (αησω− αερω + βζρω− βηυω + δζσω− δευω

+βµρ− βρω + γησ− γερ + δµσ− δσω− ησω + ερω)

κ = (βηω− βµρ− γησ + γερ− δµσ + δεω)

θ = (αηω− αµρ + γζρ− γηυ + δζω− δµυ + γη − γρ + δµ− δω− ηω + µρ)

τ = (αησ− αερ + βζρ− βηυ + δζσ− δευ + βη − βρ + δε− δσ− ησ + ερ)

χ = (αµσ− αεω + βeω− βµi− γeσ + γευ + βµ− βω− γε + γσ− µσ + εω)

By using conditions of Routh–Hurwitz criteria [9], we can say α1 = 1, α2 > 0, α4 >
0 and α2α3 > α4, where α1, α2, α3 are coefficients of λ3, λ2, and λ, respectively, and α4 rep-
resents a constant term. As all conditions of Routh–Hurwitz criteria are satisfied, therefore,
the unique positive equilibrium point V is locally asymptotically stable.

Theorem 4 ((Brouwer fixed point) [30]). For any continuous function f mapping a compact
convex set to itself, there is a point c with the end goal that f (c) = c.

4. Global Stability

Theorem 5. Let L = [a, b], M = [c, d] and N = [e, f ] be real intervals, and let ∆ = L ×
M × N → L, Γ = L × M × N → M and Φ = L × M × N → N be continuous functions.
Consider the system (4) with initial conditions (x0, y0, z0) ∈ L×M× N. Based on the following
assumptions, let us assume

(i) ∆(x, y, z) is non-decreasing in x and non-increasing in y and z.

(ii) Γ(x, y, z) is non-decreasing in x, y and non-increasing in z.

(iii) Φ(x, y, z) is non-decreasing in x, z and non-increasing in y.

(iv) If (m1, M1, m2, M2, m3, M3) ∈ L3 ×M3 × N3 is a solution of system

M1= ∆(M1, m2, m3), M2= Γ(M1, M2, m3), M3= Φ(M1, m2, M3)

m1= ∆(m1, M2, M3), m2= Γ(m1, m2, M3), m3= Φ(m1, M2, m3)

such that
m1 = M1 , m2 = M2, and m3 = M3

then there exists exactly one equilibrium point (x, y, z) of the system (4) such that

lim
n→∞

(xn, yn, zn) = (x, y, z).
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Proof. According to the Brouwer fixed point theorem, the function z : L × M × N →
L×M× N defined by z(x, y, z) = z(∆(x, y, z), Γ(x, y, z), Φ(x, y, z)) has equilibrium
point (x, y, z) that is the fixed point of the system (4).

Assume that m0
1 = a, M0

1 = b, m0
2 = c, M0

2 = d, m0
3 = e, M0

3 = g such that

Mi+1
1 = ∆(Mi

1, mi
2, mi

3) ; Mi+1
2 = Γ(Mi

1, Mi
2, mi

3) ; Mi+1
3 = Φ(Mi

1, mi
2, Mi

3)

and
mi+1

1 = ∆(mi
1, Mi

2, Mi
3) ; mi+1

2 = Γ(mi
1, mi

2, Mi
3) ; mi+1

3 = Φ(mi
1, Mi

2, mi
3)

then
m0

1= a ≤ ∆(m0
1, M0

2, M0
3) ≤ ∆(M0

1, m0
2, m0

3) ≤ b = M0
1

m0
2= c ≤ Π(m0

1, m0
2, M0

3) ≤ Π(M0
1, M0

2, m0
3) ≤ d = M0

2

m0
3= e ≤ ∆(m0

1, M0
2, m0

3) ≤ ∆(M0
1, m0

2, M0
3) ≤ g = M0

3

Moreover,
m0

1≤ m1
1≤ M1

1≤ M0
1

m0
2≤ m1

2≤ M1
2≤ M0

2

m0
3≤ m1

3≤ M1
3≤ M0

3

Similarly, we have

m1
1= ∆(m0

1, M0
2, M0

3) ≤ ∆(m1
1, M1

2, M1
3) ≤ ∆(M1

1, m1
2, m1

3) ≤ ∆(M0
1, m0

2, m0
3) ≤ M1

1

m1
2= Γ(m0

1, m0
2, M0

3) ≤ Γ(m1
1, m1

2, M1
3) ≤ Γ(M1

1, M1
2, m1

3) ≤ Γ(M0
1, M0

2, m0
3) ≤ M1

2

and

m1
3= Φ(m0

1, M0
2, m0

3) ≤ Φ(m1
1, M1

2, m1
3) ≤ Φ(M1

1, m1
2, M1

3) ≤ Φ(M0
1, m0

2, M0
3) ≤ M1

3

Now, observe that for each i ≥ 0

a = m0
1≤ m1

1≤ · · · ≤ mi
1≤ Mi

1≤ Mi−1
1 ≤ · · · ≤ M0

1= b

c = m0
2≤ m1

2≤ · · · ≤ mi
2≤ Mi

2≤ Mi−1
2 ≤ · · · ≤ M0

2= d

and
e = m0

3≤ m1
3≤ · · · ≤ mi

3≤ Mi
3≤ Mi−1

3 ≤ · · · ≤ M0
3= g.

Hence,
mi

1≤ xn≤ Mi
1,

mi
2≤ yn≤ Mi

2,

and
mi

3≤ zn≤ Mi
3,

for n ≥ 2i + 1.
Let

m1 = lim
n→∞

mi
1, M1 = lim

n→∞
Mi

1,

m2= lim
n→∞

mi
2, M2= lim

n→∞
Mi

2,

and
m3= lim

n→∞
mi

3, M3= lim
n→∞

Mi
3.
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Then,
a ≤ m1≤ M1≤ b,

c ≤ m2≤ M2≤ d,

e ≤ m3≤ M3≤ f g.

By the continuity of ∆, Γ and Φ, we can say

M1= ∆(M1, m2, m3), M2 = Γ(M1, M2, m3) M3= Φ(M1, m2, M3),

m1= ∆(m1, M2, M3), m2= Γ(m1, m2, M3), m3= Φ(m1, M2, m3).

Hence, m1 = M1, m2 = M2 and m3 = M3.

Theorem 6. Assume that (εδ− βη)(ωβ + σγ)−(ρβ + σδ)(εγ + βµ) 6= 0, or
(ρβ + σδ)(εγ + βµ)−(εδ− βη)(ωβ + σγ) 6= 0, or (δε− ηβ)(δω− ργ) − (δσ + ρβ)

(δµ + ηγ) 6= 0; then, the unique positive equilibrium point V of the system (3) is a global at-
tractor

Proof. Consider
∆(x, y, z) =

αx− βxy− γxz
1 + δx

Γ(x, y, z) =
ζy + ηxy− µyz

1 + εy

Φ(x, y, z) =
υz + ρxz− σyz

1 + ωz

It is not hard to see then that ∆(x, y, z) is non-decreasing in x and non-increasing in
y and z. Γ(x, y, z) is non-decreasing in x, y and non-increasing in z. Moreover, Φ(x, y, z)
is non-decreasing in x, z and non-increasing in y. Let (m1, M1, m2, M2, m3, M3) be a
non-negative solution of the system

M1= ∆(M1, m2, m3), M2= Γ(M1, M2, m3), M3= Φ(M1, m2, M3)

m1= ∆(m1, M2, M3), m2= Γ(m1, m2, M3), m3= Φ(m1, M2, m3)

then, one has

m1=
αm1 − βm1M2 − γm1M3

1 + δm1
, M1=

αM1 − βM1m2 − γM1m3

1 + δM1
(5)

m2=
ζm2 + ηm1m2 − µm2M3

1 + εm2
, M2=

ζM2 + ηM1M2 − µM2m3

1 + εM2
(6)

m3=
υm3 + ρm1m3 − σM2m3

1 + ωm3
, M3=

υM3 + ρM1M3 − σm2M3

1 + ωM3
(7)

From Equations (6) and (7), one has

1 + δm1= α− βM2−γM3 , 1 + δM1= α− βm2−γm3 (8)

1 + εm2= ζ + ηm1−µM3 , 1 + εM2= ζ + ηM1−µm3 (9)

1 + ωm3= υ + ρm1−σM2 , 1 + ωM3= υ + ρM1−σm2 (10)

on subtracting Equation (8)

δ(m1−M1) = β(m2−M2) + γ(m3−M3) (11)
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on subtracting Equation (9)

ε(m1−M1) = η(m2−M2) + µ(m3−M3) (12)

on subtracting Equation (10)

ω(m1−M1) = ρ(m2−M2) + σ(m3−M3) (13)

from Equation (11)

m2−M2=
δ

β
(m1 −M1)−

γ

β
(m3 −M3) (14)

Using (14) in (12), we will have(
εδ

β
− η

)
(m1 −M1)=

(
εγ

β
+ µ

)
(m3 −M3) (15)

Using (14) in (13), we will have(
σγ

β
+ ω

)
(m3 −M3)=

(
σδ

β
+ ρ

)
(m1 −M1) (16)

Comparing (15) and (16), one has(
εδ
β − η

)
(

εγ
β + µ

) (m1 −M1)=

(
σδ
β + ρ

)
(

σγ
β + ω

) (m1 −M1)

[(
εδ

β
− η

)(
σγ

β
+ ω

)
−
(

εγ

β
+ µ

)(
σδ

β
+ ρ

)]
(m1 −M1) = 0

=⇒
[(εδ− βη)(ωβ + σγ)− (ρβ + σδ)(εγ + βµ)](m1 −M1) = 0

=⇒
(εδ− βη)(ωβ + σγ)−(ρβ + σδ)(εγ + βµ) 6= 0

so
(m1 −M1) = 0

m1 = M1

In addition, (
εγ
β + µ

)
(

εδ
β − η

) (m3 −M3) =

(
σγ
β + ω

)
(

σδ
β + ρ

) (m3 −M3)

=⇒ [(
εγ

β
+ µ

)(
σδ

β
+ ρ

)
−
(

σγ
β + ω

)( εδ

β
− η

)]
(m3 −M3) = 0

=⇒
[(ρβ + σδ)(εγ + βµ)− (εδ− βη)(ωβ + σγ)](m3 −M3) = 0

(ρβ + σδ)(εγ + βµ)− (εδ− βη)(ωβ + σγ) 6= 0

m3 −M3 = 0

m3 = M3

and from Equation (11)

m1−M1=
β

δ
(m2−M2)+

γ

δ
(m3−M3) (17)
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using (17) in (12), we will obtain

ε(m2−M2) = η

[
β

δ
(m2 −M2) +

γ

δ
(m3 −M3)

]
+µ(m3−M3)

(
ε− ηβ

δ

)
(
µ + ηγ

δ

) (m2 −M2)= m3−M3 (18)

using (17) in (13), we will obtain

ω(m3−M3) = ρ
[

β
δ (m2 −M2) +

γ

δ
(m3 −M3)

]
+σ(m2−M2)(

σ + ρβ
δ

)
(
ω− ργ

δ

) (m2 −M2)= m3−M3 (19)

Comparing (18) and (19), one has(
ε− ηβ

δ

)
(
µ + ηγ

δ

) (m2 −M2) =

(
σ + ρβ

δ

)
(
ω− ργ

δ

) (m2 −M2)

=⇒ [(
ε− ηβ

δ

)(
ω− ργ

δ

)
−
(

σ + ρβ
δ

)(
µ +

ηγ

δ

)]
(m2 −M2)= 0

=⇒
[(δε− ηβ)(δω− ργ)− (δσ + ρβ)(δµ + ηγ)](m2−M2) = 0

(δε− ηβ)(δω− ργ)−(δσ + ρβ)(δµ + ηγ) 6= 0

(m2−M2) = 0

m2 = M2.

So, by Theorem (5), the equilibrium point

V =


−ζβω+ζγσ+αεω−αµσ+βµυ−εγυ−βµ+βω+εγ−εω−γσ+µσ

βηω−βµρ+δεω−δµσ+εγρ−ηγσ ,
−ζδω+ζγρ+αηω−αµρ−δµυ−ηγυ+δµ−δω+ηγ−ηω−γρ+µρ

βηω−βµρ+δεω−δµσ+εγρ−ηγσ ,
−ζβρ+ζδσ+αερ−αησ−βηυ−δευ−βη−βρ+δε−δσ+εσ−ησ

βηω−βµρ+δεω−δµσ+εγρ−ηγσ

 of system (3) is a global at-

tractor.

5. Rate of Convergence

In this section [34], we determine the rate of convergence of a solution that converges
to the unique positive equilibrium point of the system (3). The following result gives the
rate of convergence of solutions of a system of difference equations:

Xn+1 = (G + H(n))Xn (20)

where G ∈ Cm×m is a constant matrix, Xn is an m-dimensional vector and H : Z+ → Cm×m

is a matrix function which satisfies the following:

‖H(n)‖ → 0 as n→ ∞ (21)

where operation ‖.‖ locally refers to any matrix norm which is correlated with the norm of
the vector

‖(x, y, z)‖ =
√

x2 + y2 + z2 (22)
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Proposition 1 (Perron’s Theorem [35]). Suppose that condition (21) holds. If Xn is a solution of
(20), then either Xn = 0 for all large n or

ρ = Lim
n→∞

n
√
‖Xn‖ (23)

holds and is equal to the modulus of one of the eigenvalues of matrix A.

Proposition 2 ([35]). Suppose that condition (21) holds. If Xn is a solution of system (20), then
either Xn = 0 for all large n or

ρ = Lim
n→∞

‖Xn+1‖
‖Xn‖

(24)

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Theorem 7. Assume that a solution {(xn, yn, zn)} of system (3) converges to fixed point (x, y, z),
which is globally asymptotically stable. The error vector

$n =

 $1
n

$2
n

$3
n

 =

 xn − x
yn − y
zn − z


of every solution to the asymptotic relationships below:

lim
n→∞

n
√
‖$n‖ = |λi(JF(x̄, ȳ, z̄))| f or i = 1, 2, 3

lim
n→∞

‖$n+1‖
‖$n‖

= |λi(JF(x̄, ȳ, z̄))| f or i = 1, 2, 3

where |λ1,2,3(JF(x̄, ȳ, z̄))| is equal to the modulus of one the eigenvalues of the Jacobian matrix
evaluated at the equilibrium point JF(x̄, ȳ, z̄).

Proof. First, we will find a system satisfied by the error terms. To find the error terms, one
has from the system (3)

xn+1 − x =
αxn − βxnyn − γxnzn

1 + δxn
− αx− βxy− γxz

1 + δx

=
(αxn − βxnyn − γxnzn)(1 + δx)− (αx− βxy− γxz)(1 + δxn)

(1 + δxn)(1 + δx)

=
α(xn − x)− βδxnx(yn − y)− γδxnx(zn − z)− βxnyn + βxy− γxnzn + γxz

(1 + δxn)(1 + δx)

=
α(xn − x)− βδxn x(yn − y)− γδxn x(zn − z)− βxnyn + βxy− γxnzn + γxz + βxyn − βxyn + γxzn − γxz

(1 + δxn)(1 + δx)

=
(xn − x)(α− βyn − γzn)− (yn − y)(βδxnx + βx)− (zn − z)(γδxnx + γx)

(1 + δxn)(1 + δx)

=

[
(α− βyn − γzn)

(1 + δxn)(1 + δx)

]
(xn − x)−

[
(βδxnx + βx)

(1 + δxn)(1 + δx)

]
(yn − y)−

[
(γδxnx + γx)

(1 + δxn)(1 + δx)

]
(zn − z)

=

[
(α− βyn − γzn)

(1 + δxn)(1 + δx)

]
(xn − x)−

[
βx

(1 + δx)

]
(yn − y)−

[
γx

(1 + δx)

]
(zn − z)

and
yn+1 − y =

ζyn + ηxnyn − µynzn

1 + εyn
− ζy + ηxy− µyz

1 + εy

=
(ζyn + ηxnyn − µynzn)(1 + εy)− (ζy + ηxy− µyz)(1 + εyn)

(1 + εyn)(1 + εy)
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=
ζ(yn − y) + ηεyny(xn − x)− µεyny(zn − z) + ηxnyn − µynzn − ηxy + µyz

(1 + εyn)(1 + εy)

=
ζ(yn − y) + ηεyny(xn − x)− µεyny(zn − z) + ηxnyn − µynzn − ηxy + µyz + ηxny− ηxny + µzny− µzny

(1 + εyn)(1 + εy)

=
(xn − x)(ηµyny + ηy) + (yn − y)(ζ + ηxn − µzn)− (zn − z)(µεyny + µy)

(1 + εyn)(1 + εy)

=

[
(ηµyny + ηy)

(1 + εyn)(1 + εy)

]
(xn − x) +

[
(ζ + ηxn − µzn)

(1 + εyn)(1 + εy)

]
(yn − y)−

[
(µεyny + µy)

(1 + εyn)(1 + εy)

]
(zn − z)

=

[
ηy

(1 + εy)

]
(xn − x) +

[
(ζ + ηxn − µzn)

(1 + εyn)(1 + εy)

]
(yn − y)−

[
µy

(1 + εy)

]
(zn − z)

Now
zn+1 − z =

υzn + ρxnzn − σynzn

1 + ωzn
− υz + ρxz− σyz

1 + ωz

=
(υzn + ρxnzn − σynzn)(1 + ωz)− (υz + ρxz− σyz)(1 + ωzn)

(1 + ωzn)(1 + ωz)

=
υ(zn − z) + ρωznz(xn − x)− σωznz(yn − y) + ρxnzn − ρxz− σynzn + σyz

(1 + ωzn)(1 + ωz)

=
υ(zn − z) + ρωznz(xn − x)− σωznz(yn − y) + ρxnzn − ρxz− σynzn + σyz + ρxnz− ρxnz + σynz− σynz

(1 + ωzn)(1 + ωz)

=

[
ρσznz + υz

(1 + ωzn)(1 + ωz)

]
(xn − x)−

[
σωznz + σz

(1 + ωzn)(1 + ωz)

]
(yn − y) +

[
υ + ρxn − σyn

(1 + ωzn)(1 + ωz)

]
(zn − z)

=

[
υz

(1 + ωz)

]
(xn − x)−

[
σz

(1 + ωz)

]
(yn − y) +

[
υ + ρxn − σyn

(1 + ωzn)(1 + ωz)

]
(zn − z)

Let
$1

n = xn − x

$2
n = yn − y

$3
n = zn − z

then, one can have
$1

n+1 = an$1
n + bn$2

n + cn$3
n

$2
n+1 = dn$1

n + en$2
n + fn$3

n

$3
n+1 = gn$1

n + hn$2
n + in$3

n

where

an =
(α− βyn − γzn)

(1 + δxn)(1 + δx)
; bn = − βx

(1 + δx)
; cn = − γx

(1 + δx)

dn =
ηy

(1 + εy)
; en =

(ζ + ηxn − µzn)

(1 + εyn)(1 + εy)
; fn = − µy

(1 + εy)

gn =
υz

(1 + ωz)
; hn =

−σz
(1 + ωz)

; in =
υ + ρxn − σyn

(1 + ωzn)(1 + ωz)

Moreover,

lim
n→∞

an =
(α− βyn − γzn)

(1 + δxn)(1 + δx)

lim
n→∞

bn =
−βx

(1 + δx)

lim
n→∞

cn =
−γx

(1 + δx)
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lim
n→∞

dn =
ηy

(1 + εy)

lim
n→∞

en =
(ζ + ηxn − µzn)

(1 + εyn)(1 + εy)

lim
n→∞

fn = − µy
(1 + εy)

lim
n→∞

gn =
υz

(1 + ωz)

lim
n→∞

hn =
−σz

(1 + ωz)

lim
n→∞

in =
υ + ρxn − σyn

(1 + ωzn)(1 + ωz)

That is

an =
(α− βyn − γzn)

(1 + δxn)(1 + δx)
+ αn

bn =
−βx

(1 + δx)
+ βn

cn =
−γx

(1 + δx)
+ γn

dn =
ηy

(1 + εy)
+ δn

en =
(ζ + ηxn − µzn)

(1 + εyn)(1 + εy)
+ ζn

fn = − µy
(1 + εy)

+ ηn

gn =
υz

(1 + ωz)
+ ∆n

hn =
−σz

(1 + ωz)
+ εn

in =
υ + ρxn − σyn

(1 + ωzn)(1 + ωz)
+ Ωn

Now, we have a system of the form

$n+1 = (A + B(n))$n

where

A =


α−βy−γz
(1+δx)2

−βx
(1+δx)

−γx
(1+δx)

ηy
1+εy

ζ+ηx−µz
(1+εy)2

−µy
1+εy

υz
1+ωz

−σz
1+ωz

υ+ρx−σy
(1+ωz)2

 and B(n) =

 αn βn γn
δn ζn ηn
∆n εn Ωn


and

‖B(n)‖ → 0 as n→ ∞
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Now, the limiting system of error terms can be written as:

 $1
n+1

$2
n+1

$3
n+1

 =


α−βy−γz
(1+δx)2

−βx
(1+δx)

−γ
(1+δx)

ηy
1+εy

ζ+ηx−µz
(1+εy)2

−µy
1+εy

ρz
1+ωz

−σz
1+ωz

υ+ρx−σy
(1+ωz)2


 $1

n
$2

n
$3

n


which is similar to the linearized system of (3), about the equilibrium point V(x, y, z). At
the end, by using propositions (1) and (2), one has the following result.

Theorem 8. Assume that (xn, yn, zn) is a positive solution of the system (3) such that lim
n→∞

xn = x̄,
lim

n→∞
yn = ȳ and lim

n→∞
zn = z̄ where

(x̄, ȳ, z̄) =


−ζβω+ζγσ+αεω−αµσ+βµυ−εγυ−βµ+βω+εγ−εω−γσ+µσ

βηω−βµρ+δεω−δµσ+εγρ−ηγσ ,
−ζδω+ζγρ+αηω−αµρ−δµυ−ηγυ+δµ−δω+ηγ−ηω−γρ+µρ

βηω−βµρ+δεω−δµσ+εγρ−ηγσ ,
−ζβρ+ζδσ+αερ−αησ−βηυ−δευ−βη−βρ+δε−δσ+εσ−ησ

βηω−βµρ+δεω−δµσ+εγρ−ηγσ



then, the error vector $n =

 $1
n

$2
n

$3
n

 of every solution of (3) satisfies both of the following

asymptotic relations:

lim
n→∞

n
√
‖$n‖ = |λ1,2,3(JF(x̄, ȳ, z̄))|

lim
n→∞

‖$n+1‖
‖$n‖

= |λ1,2,3(JF(x̄, ȳ, z̄))|

6. Numerical Debate

In the current work, we have investigated the global character of a three-dimensional
system of non-linear difference equations deduced from its continuous counterpart through
the non-standard scheme. We have found that the system (3) have eight fixed points of
which one is a special one under specific conditions on positive parameters. All other
equilibrium points have different behavior on different parametric values. The unique
fixed point V is asymptotically stable when α > 1, ζ > 1, υ > 1 and ψ > 0, π > 0 and
φ > 0 where

ψ = (αδµσ− αδεω + βδξω− βδµυ

−γδξσ + γδευ + βδµ− βδω− βηω + βµρ− γδε + γδσ + γησ− γερ)

π = (αηεω− µερ + γζερ− γηευ

+δζεω− δµευ + βηω− βµρ + γηε− γησ

+δµε− δµσ− ηεω + µερ)

φ = (αησω− αερω + βζρω− βηυω

+δζσω− δευω + βµρ− βρω + γησ− γερ

+δµσ− δσω− ησω + ερω)

The unique fixed point is also a global attractor when (εδ− βη)(ωβ + σγ)− (ρβ + σδ)
(εγ + βµ) 6= 0 or (ρβ + σδ)(εγ + βµ)− (εδ− βη)(ωβ + σγ) 6= 0 or (δε− ηβ)(δω− ργ)−
(δσ + ρβ)(δµ + ηγ) 6= 0. Whenever α < 1, ζ < 1, υ < 1, then the equilibrium point
O = (0, 0, 0) is locally asymptotically stable. The fixed point P = ( α−1

δ , 0, 0) is not
stable. The fixed point Q = (0, ζ−1

ε , 0) is unstable and the equilibrium point R =

(0, 0, υ−1
ω ) is also unstable. In addition, we have explored that the unique fixed point

is globally asymptotically stable when α > 1, ζ > 1, υ > 1 and βηω − βµρ + δεω −
δµσ + εγρ − ηγσ 6= 0. Furthermore, we have explored the existence of a unique fixed
point of system (3). We investigated the convergence of positive solutions of system
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(3). Finally, the numerical simulations are run to support the theoretical findings, and
examples are given in graphs. These examples constitute distinct varieties of qualita-
tive conduct of a system of nonlinear difference equations solutions to the system (3).
For instance, if α = 167, β = 0.01, γ = 0.03, δ = 0.4, ζ = 155, η = 0.05, µ = 0.05, ε = 0.3,
υ = 144, ρ = 0.03, σ = 0.08, ω = 0.2 with initial conditions x0 = 10.0, y0 = 20.0
and z0 = 25.0. Then, from Figures 1–4, the positive fixed point (332.1, 440.714285711429,
594.583333333333) of system (3) is stable, and its corresponding attractor in different forms
is represented in Figures 5–7. Now, if α = 2.5, β = 0.5, γ = 0.7,
δ = 0.6, ζ = 3.5,η = 0.05, µ = 0.01, ε = 0.09, υ = 4.1, ρ = 0.02, σ = 0.04, ω = 0.06 with pre-
liminary conditions x0 = 0.1, y0 = 0.02 and z0 = 0.04, then from Figures 8–11, the positive
fixed point (0.23226415094, 0.06430458716, 0.15476226415) of system (3) is a global at-
tractor and its corresponding attractor in different form is represented in Figures 12–14.
If α = 0.5, β = 1.7, γ = 1.6, δ = 0.3, ζ = 0.7, η = 1.6, µ = 2.7, ε = 0.8, υ = 0.6,
ρ = 3.10, σ = 1.11, ω = 0.2 with initial values x0 = 0.002, y0 = 0.0084 and z0 = 0.0003.
Then, from Figures 15–18, the positive fixed point (0.00074652308, 0.00327782, 0.000149219)
of system (3) is locally asymptotically stable, and its corresponding attractor in different
form is represented in Figures 19–21. If α = 0.00001, β = 2.0, γ = 3.0, δ = 4.0,
ζ = 0.00005, η = 6.0, µ = 7.0, ε = 8.0, υ = 0.00009, ρ = 10.0, σ = 11.0, ω = 12.0 with
starting values x0 = 1.0, y0 = 2.0 and z0 = 3.0, then from Figures 22–25, the fixed point
(−2.599998, −1.7647, −0.97296567568) of system (3) is unstable, and its corresponding
attractor in different forms is represented in Figures 26–28. All plots in this segment are
drawn using MATHEMATICA and MATLAB.

20 40 60 80 100
n

100

200

300

400

500

600

700

x[n]

X component

Figure 1. Graph of xn for α = 167, β = 0.01, γ = 0.03, δ = 0.4, ζ = 155, η = 0.05, µ = 0.05, ε = 0.3,
υ = 144, ρ = 0.03, σ = 0.08, ω = 0.2. with initial conditions x0 = 10.0, y0 = 20.0 and z0 = 25.0.
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Figure 2. Graph of yn for α = 167, β = 0.01, γ = 0.03, δ = 0.4, ζ = 155, η = 0.05, µ = 0.05, ε = 0.3,
υ = 144, ρ = 0.03, σ = 0.08, ω = 0.2. with initial conditions x0 = 10.0, y0 = 20.0 and z0 = 25.0.
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Z component

Figure 3. Graph of zn for α = 167, β = 0.01, γ = 0.03, δ = 0.4, ζ = 155, η = 0.05, µ = 0.05, ε = 0.3,
υ = 144, ρ = 0.03, σ = 0.08, ω = 0.2. with initial conditions x0 = 10.0, y0 = 20.0 and z0 = 25.0.

20 40 60 80 100
n

100

200

300

400

500

600

700

x[n]

X,Y,Z solutions

Figure 4. Combined Graph red line shows behavior of xn, blue line shows behavior
of yn and black line shows behavior of zn for α = 167, β = 0.01, γ = 0.03, δ = 0.4, ζ = 155,
η = 0.05, µ = 0.05, ε = 0.3, υ = 144, ρ = 0.03, σ = 0.08, ω = 0.2. with initial conditions x0 = 10.0,
y0 = 20.0 and z0 = 25.0.
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Figure 5. Attractor of xn, yn and zn for α = 167, β = 0.01, γ = 0.03, δ = 0.4, ζ = 155,
η = 0.05, µ = 0.05, ε = 0.3, υ = 144, ρ = 0.03, σ = 0.08, ω = 0.2. with initial conditions x0 = 10.0,
y0 = 20.0 and z0 = 25.0.

Figure 6. Attractor of xn, yn and zn as dot graph for α = 167, β = 0.01, γ = 0.03, δ = 0.4, ζ = 155,
η = 0.05, µ = 0.05, ε = 0.3, υ = 144, ρ = 0.03, σ = 0.08, ω = 0.2. with initial conditions x0 = 10.0,
y0 = 20.0 and z0 = 25.0.
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Figure 7. Combined attractor of xnyn(shown in blue line) ynzn(shown in red line) and znxn (shown in
green line) for α = 167, β = 0.01, γ = 0.03, δ = 0.4, ζ = 155, η = 0.05, µ = 0.05, ε = 0.3, υ = 144,
ρ = 0.03, σ = 0.08, ω = 0.2. with initial conditions x0 = 10.0, y0 = 20.0 and z0 = 25.0.
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Figure 8. Graph of xn for α = 2.5, β = 0.05, γ = 0.7, δ = 0.6, ζ = 3.5, η = 0.05, µ = 0.01, ε = 4.1,
υ = 0.09, ρ = 0.02, σ = 0.04, ω = 0.06. with initial conditions x0 = 0.1, y0 = 0.02 and z0 = 0.04.
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Figure 9. Graph of yn for α = 2.5, β = 0.05, γ = 0.7, δ = 0.6, ζ = 3.5, η = 0.05, µ = 0.01, ε = 4.1,
υ = 0.09, ρ = 0.02, σ = 0.04, ω = 0.06. with initial conditions x0 = 0.1, y0 = 0.02 and z0 = 0.04.
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Figure 10. Graph of zn for α = 2.5, β = 0.05, γ = 0.7, δ = 0.6, ζ = 3.5, η = 0.05, µ = 0.01, ε = 4.1,
υ = 0.09, ρ = 0.02, σ = 0.04, ω = 0.06. with initial conditions x0 = 0.1, y0 = 0.02 and z0 = 0.04.
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Figure 11. Combined graph of xn,(shown in red line) yn(shown in blue line) and zn(shown in black
line) for α = 2.5, β = 0.05, γ = 0.7, δ = 0.6, ζ = 3.5, η = 0.05, µ = 0.01, ε = 4.1, υ = 0.09, ρ = 0.02,
σ = 0.04, ω = 0.06. with initial conditions x0 = 0.1, y0 = 0.02 and z0 = 0.04.

Figure 12. Graph of attractors xnynzn in 3D for α = 2.5, β = 0.05, γ = 0.7, δ = 0.6, ζ = 3.5,
η = 0.05, µ = 0.01, ε = 4.1, υ = 0.09, ρ = 0.02, σ = 0.04, ω = 0.06. with initial conditions x0 = 0.1,
y0 = 0.02 and z0 = 0.04.
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Figure 13. Graph of attractors xnynzn in 3D for α = 2.5, β = 0.05, γ = 0.7, δ = 0.6, ζ = 3.5,
η = 0.05, µ = 0.01, ε = 4.1, υ = 0.09, ρ = 0.02, σ = 0.04, ω = 0.06. with initial conditions x0 = 0.1,
y0 = 0.02 and z0 = 0.04.
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Figure 14. Graph of attractors xnyn(shown in blue line) ynzn,(shown in green line) znyn(shown in
red line) in 2D for α = 2.5, β = 0.05, γ = 0.7, δ = 0.6, ζ = 3.5, η = 0.05, µ = 0.01, ε = 4.1, υ = 0.09,
ρ = 0.02, σ = 0.04, ω = 0.06. with initial conditions x0 = 0.1, y0 = 0.02 and z0 = 0.04.
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Figure 15. Graph of xn for α = 0.5, β = 1.7, γ = 1.6, δ = 0.3, ζ = 0.7, η = 1.6, µ = 2.7, ε = 0.6,
υ = 0.8, ρ = 1.11, σ = 1.11, ω = 0.2. with initial conditions x0 = 0.002, y0 = 0.0084 and z0 = 0.0003.
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Figure 16. Graph of yn for α = 0.5, β = 1.7, γ = 1.6, δ = 0.3, ζ = 0.7, η = 1.6, µ = 2.7, ε = 0.6,
υ = 0.8, ρ = 1.11, σ = 1.11, ω = 0.2. with initial conditions x0 = 0.002, y0 = 0.0084 and z0 = 0.0003.
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Figure 17. Graph of zn for α = 0.5, β = 1.7, γ = 1.6, δ = 0.3, ζ = 0.7, η = 1.6, µ = 2.7, ε = 0.6,
υ = 0.8, ρ = 1.11, σ = 1.11, ω = 0.2. with initial conditions x0 = 0.002, y0 = 0.0084 and z0 = 0.0003.
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Figure 18. Combined graph of solution behavior of xn is shown in red line, and for yn is
shown in blue line, for zn is shown in black line when α = 0.5, β = 1.7, γ = 1.6, δ = 0.3, ζ = 0.7,
η = 1.6, µ = 2.7, ε = 0.6, υ = 0.8, ρ = 1.11, σ = 1.11, ω = 0.2. with initial conditions x0 = 0.002,
y0 = 0.0084 and z0 = 0.0003.
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Figure 19. Attractor of system (3) when α = 0.5, β = 1.7, γ = 1.6, δ = 0.3, ζ = 0.7,
η = 1.6, µ = 2.7, ε = 0.6, υ = 0.8, ρ = 1.11, σ = 1.11, ω = 0.2. with initial conditions x0 = 0.002,
y0 = 0.0084 and z0 = 0.0003.

Figure 20. Attractor of system (3) in 3D when α = 0.5, β = 1.7, γ = 1.6, δ = 0.3, ζ = 0.7,
η = 1.6, µ = 2.7, ε = 0.6, υ = 0.8, ρ = 1.11, σ = 1.11, ω = 0.2. with initial conditions x0 = 0.002,
y0 = 0.0084 and z0 = 0.0003.
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Figure 21. Attractors of system (3) xnyn(shown in blue line) ynzn(shown in green line) znyn(shown
in red line) in 2D when α = 0.5, β = 1.7, γ = 1.6, δ = 0.3, ζ = 0.7, η = 1.6, µ = 2.7, ε = 0.6, υ = 0.8,
ρ = 1.11, σ = 1.11, ω = 0.2. with initial conditions x0 = 0.002, y0 = 0.0084 and z0 = 0.0003.
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Figure 22. Graph of xn for α = 0.00001, β = 2.0, γ = 3.0, δ = 4.0, ζ = 0.00005,
η = 6.0, µ = 7.0, ε = 0.00009, υ = 8.0, ρ = 10.0, σ = 11.0, ω = 12.0. with initial conditions
x0 = 1.0, y0 = 2.0 and z0 = 3.0.
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Figure 23. Graph of yn for α = 0.00001, β = 2.0, γ = 3.0, δ = 4.0, ζ = 0.00005,
η = 6.0, µ = 7.0, ε = 0.00009, υ = 8.0, ρ = 10.0, σ = 11.0, ω = 12.0. with initial conditions
x0 = 1.0, y0 = 2.0 and z0 = 3.0.
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Figure 24. Graph of zn for α = 0.00001, β = 2.0, γ = 3.0, δ = 4.0, ζ = 0.00005, η = 6.0,
µ = 7.0, ε = 0.00009, υ = 8.0, ρ = 10.0, σ = 11.0, ω = 12.0. with initial conditions x0 = 1.0, y0 = 2.0
and z0 = 3.0.



Mathematics 2022, 10, 4015 27 of 30

20 40 60 80 100
n

- 200

- 100

100

200

x[n]

X,Y,Z solutions

Figure 25. Combined Graph of behavior of solution of xn(shown in red line) yn(shown in blue line)
and zn(shown in black line) for α = 0.00001, β = 2.0, γ = 3.0, δ = 4.0, ζ = 0.00005, η = 6.0, µ = 7.0,
ε = 0.00009, υ = 8.0, ρ = 10.0, σ = 11.0, ω = 12.0. with initial conditions x0 = 1.0, y0 = 2.0 and
z0 = 3.0.

Figure 26. 3D attractor of xn, yn, zn for α = 0.00001, β = 2.0, γ = 3.0, δ = 4.0, ζ = 0.00005, η = 6.0,
µ = 7.0, ε = 0.00009, υ = 8.0, ρ = 10.0, σ = 11.0, ω = 12.0. with initial conditions x0 = 1.0, y0 =

2.0 and z0 = 3.0.
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Figure 27. 3D attractor dot plot of xn, yn, zn for α = 0.00001, β = 2.0, γ = 3.0, δ = 4.0, ζ = 0.00005,
η = 6.0, µ = 7.0, ε = 0.00009, υ = 8.0, ρ = 10.0, σ = 11.0, ω = 12.0. with initial conditions
x0 = 1.0, y0 = 2.0 and z0 = 3.0.
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Figure 28. Combined attractors xnyn(shown in blue line) ynzn(shown in green line)
znyn(shown in red line) of system(3) in 2D for α = 0.00001, β = 2.0, γ = 3.0, δ = 4.0, ζ = 0.00005,
η = 6.0, µ = 7.0, ε = 0.00009, υ = 8.0, ρ = 10.0, σ = 11.0, ω = 12.0. with initial conditions x0 = 1.0,
y0 = 2.0 and z0 = 3.0.

7. Conclusions

This research work is associated to the qualitative conduct of a possible discrete-time
Lotka–Volterra model. The continuous form of this model is given by:

dx
dt

= rx(1− x
k
)− ξxy

1 + u1ξx
− ηxz

1 + u2ηx
dy
dt

= −py + N1y(1− y
ky

)− c1yz

dz
dt

= −qz + N2z(1− z
kz
)− c2yz

The rate of intrinsic growth of prey is r where ζ and η measure the efficiency of the
looking and the catch of predators yand z separately. u1 and u2 represent the handling
and digestion rates of predators. Without prey x constants, p and q are the death rates of
predators y, z individually. The discrete-time LV model (3) is obtained by Euler’s method
and the nonstandard finite difference scheme, such that the fixed points in both cases have
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been preserved. With the help of linear stability analysis, a three-dimensional discrete-
time system can be analyzed in terms of its dynamics of positive equilibrium. We have
proven that the system (3) has eight equilibrium points, from which one of them is unique
and other in certain parametric conditions is stable locally and asymptotically. A major
contribution to this research is proving that the unique positive equilibrium point

V =


−ζβω+ζγσ+αεω−αµσ+βµυ−εγυ−βµ+βω+εγ−εω−γσ+µσ

βηω−βµρ+δεω−δµσ+εγρ−ηγσ ,
−ζδω+ζγρ+αηω−αµρ−δµυ−ηγυ+δµ−δω+ηγ−ηω−γρ+µρ

βηω−βµρ+δεω−δµσ+εγρ−ηγσ ,
−ζβρ+ζδσ+αερ−αησ−βηυ−δευ−βη−βρ+δε−δσ+εσ−ησ

βηω−βµρ+δεω−δµσ+εγρ−ηγσ


of the system (3) exists and is globally asymptotically stable. In addition, the rate at which
the solution converges to the unique positive equilibrium point of the system (3) was also
studied. Dynamical systems theory aims to predict the global behavior of a system based
on its current state. It is possible to determine the long-term behaviors of the system by
determining which parametric conditions lead to these long-term behaviors. Nonlinear
dynamical systems must be discussed in terms of their global behavior. Additionally,
we found the rate of convergence of a solution that converges to the unique positive
equilibrium point of system (3). Finally, a couple of illustrative numerical examples are
outfitted to help our theoretical conversation in the Numerical Debate section. The obtained
results can further be useful to find the bifurcation parameter and maximum Lyapunov
exponent (MLE).

8. Future Work

In our future work, we will study some more qualitative properties such as bifurcation
analysis, chaos control, and the maximum Lyapunov exponent of the obtained discrete
model. It will be interesting to find the bifurcation parameter among so many other
parameters. Some interesting numerical simulations with the help of MATHEMATICA
presenting bifurcation and chaos control will also be part of our future goals.
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