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Abstract: Count data containing both excess zeros and ones occur in many fields, and the zero-and-
one inflated distribution is suitable for analyzing them. Herein, we construct confidence intervals (CIs)
for the parameters of the zero-and-one inflated cosine geometric (ZOICG) distribution constructed
by using five methods: a Wald CI based on the maximum likelihood estimate, equal-tailed Bayesian
CIs based on the uniform or Jeffreys prior, and the highest posterior density intervals based on the
uniform or Jeffreys prior. Their efficiencies were compared in terms of their coverage probabilities
and average lengths via a simulation study. The results show that the highest posterior density
intervals based on the uniform prior performed the best in most cases. The number of new daily
COVID-19-related deaths in Luxembourg in 2020 involving data with a high proportion of zeros and
ones were analyzed. It was found that the ZOICG model was appropriate for this scenario.

Keywords: zero-and-one inflated cosine geometric distribution; Bayesian estimation;
Metropolis–Hasting algorithm; confidence intervals
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1. Introduction

Overdispersed count data with excess zeros frequently occur in various fields such as
natural science (e.g., the number of torrential rainfall incidences at the Daegu and Busan
rain gauge stations in South Korea [1]), medical science (e.g., the DMFT (decayed, missing,
and filled teeth) index in dentistry [2], the number of falls by people with Parkinson’s
disease [3], and the number of daily COVID-19 deaths in Thailand [4]), and insurance (e.g.,
the frequency of health insurance claims [5]). Although the Poisson model is widely used to
analyze such discrete data, the strong assumption of the equality of the mean and variance
implies that it is inadequate for modeling data where the variance is larger than the mean,
which is termed “overdispersion” [6] and can arise in various ways.

One common source of overdispersion is when the observed counts contain excess
zeros, which has motivated the creation of modified count models such as the zero-inflated
(ZI) and hurdle models. These two classes can be considered finite mixture models of two
subpopulations (components): (1) the observations contain zeros with a probability ω,
and (2) the observations occur with a probability 1−ω from the baseline distribution of a
ZI model and the zero-truncated probability mass function (pmf) (the nonzero part) of a
hurdle model. One of the most popular ZI models is the ZI Poisson (ZIP) model, where the
Poisson distribution is the baseline distribution [7].

However, overdispersion arises when large numbers of zeros and ones occur simulta-
neously. Since the ZI model is not an appropriate for model such data, it has been extended
to the zero-and-one-inflated (ZOI) model combined with several other distributions to
produce the ZOI Poisson (ZOIP), ZOI geometric, ZOI negative binomial-beta exponential
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(ZOINB-BE), and ZOIP-Lindley mixed distributions. Zhang et al. [8] explored the ZOIP dis-
tribution extended from the ZIP distribution [9]. Five equivalent stochastic representations
for a ZOIP random variable were presented, and their important distributional properties
were derived. Tang et al. [10] provided a ZOIP model and analyzed two real datasets of Le-
gionnaires’ disease cases in Singapore and accidental deaths in Detroit, USA, both of which
contained high proportions of zeros and ones. They used the data augmentation method
to obtain the maximum likelihood estimators (MLEs) via the EM algorithm and Bayesian
estimations via Gibbs sampling. By obtaining the lowest Akaike information criterion
(AIC), deviance information criterion (DIC), and widely applicable information criterion
(WAIC) values for the ZOIP, they reported that it was more appropriate for these datasets
than the ZIP model. Liu et al. [11] analyzed two real datasets of Legionnaires’ disease cases
in Singapore and accidental deaths in Detroit, USA by using the ZOIP model with both the
maximum likelihood and Bayesian estimation. They found that the ZOIP model was more
appropriate than the ZIP model for analyzing these two real datasets. Liu et al. [12] studied
the number of daily accidental deaths in 1994, which were available from the NMMAPS
database, by using a ZOIP regression model and investigated the maximum likelihood and
Bayesian estimation, the expectation maximization algorithm, the generalized expectation
maximization algorithm, and Gibbs’ sampling to estimate its parameters. They found
that the ZOIP regression model was more appropriate than the ZIP model for analyzing
this accidental deaths dataset, as it attained lower AIC, Bayesian information criterion
(BIC), DIC, and WAIC values. Xiao et al. [13] constructed a ZOI geometric distribution
regression model and introduced Pólya-gamma latent variables in the Bayesian inference,
and they found that it was more suitable for analyzing a doctoral dissertation dataset than
the ZOIP regression model. Jornsatian and Bodhisuwan [14] presented a ZOI negative
binomial-beta exponential (ZOINB-BE) distribution, investigated some of its important
properties, and analyzed three real datasets: the number of visits to the doctor in Germany
in 1998 (the COUNT package in the R programming suite), the number of accidental in-
juries in the US in 2001 [15,16], and the number of monthly crimes in Greece from 1982
to 1993 [17,18]. They found that the ZOINB-BE distribution was most appropriate to fit
these data by attaining the lowest log-likelihood, AIC, mean absolute error, and root mean
squared error values. Tajuddin et al. [19] introduced the ZOIP–Lindley distribution and
developed MLEs and method-of-moment estimators for its parameters. They found that
it was the most appropriate for analyzing two datasets: the number of criminal acts [20]
and the number of stillbirths in New Zealand white rabbits [21]. Mohammadi et al. [22]
introduced a zero-and-one inflated INAR(1) process with a Poisson–Lindley distribution
and analyzed the number of abortions of animals reported monthly, which contained large
proportions of zeros and ones. They found that the proposed model had the best fit based
on the AIC, BIC, log-likelihood, and root mean square differences between the observation
and prediction (RMS) criteria.

Aside from these mixed distributions, another one is the two-parameter discrete cosine
geometric (CG) distribution, which was proposed by Chesneau [23]. This belongs to the
family of weighted geometric distributions, with its pmf given by

P(X = k | p, θ) = Cp,θ pk[cos(kθ)]2, k ∈ N, (1)

where θ ∈ [0, π
2 ]

Cp,θ =
2(1− p)(1− 2p cos(2θ) + p2)

2 + p((p− 3) cos(2θ) + p− 1)
. (2)

If θ = 0, then we can obtain Cp,θ = 1− p, and X is a standard geometric distribution.
A weighted geometric distribution makes the CG distribution more flexible than the
standard geometric distribution. The former is better for analyzing overdispersed data
than the Poisson, geometric, negative binomial (NB), and weighted NB distributions.
Junnumtuam et al. [24] extended it and proposed the ZICG distribution (with CG as the
baseline distribution), and they reported that it is appropriate for fitting overdispersed
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count data containing excess zeros, such as the number of daily positive COVID-19 cases at
the Tokyo 2020 Olympic Games.

Since studies on ZOI count data have gained much research interest, and the CG
distribution is appropriate for overdispersed data, we can extend it to the novel, four-
parameter, discrete ZOICG distribution and derive some of its statistical properties such
as the pmf, moment-generating function (mgf), mean, variance, and Fisher information.
Moreover, its parameters are estimated by deriving their confidence intervals (CIs). There
are several examples of applying CIs to analyze ZI and ZOI count data. Liu et al. [11]
considered both point and interval estimation for the parameters of a ZOIP model and
compared Bayesian estimation using either the Jeffreys or reference prior with the MLE
method via Monte Carlo simulation. The results indicated that the Bayesian estimates
performed slightly better when the sample size was small or moderate. Tian et el. [25]
proposed CIs for the mean of a zero-and-one inflated population by using the jackknife
empirical likelihood and adjusted jackknife empirical likelihood methods. Wald CIs were
constructed for the parameters in the Bernoulli component of the ZIP and hurdle models
in [26] and for the ZIP mean in [27].

This motivated us to study the confidence intervals for the parameters of the ZOICG
distribution to estimate the overdispersed data, which contain a large proportion of zeros
and ones with a high index of dispersion, by using five methods: a Wald CI based on
the MLE, equal-tailed Bayesian CIs based on the uniform or Jeffreys prior, and highest
posterior density (HPD) intervals based on the uniform or Jeffreys prior. Furthermore,
real data containing excess zeros and ones (the number of new daily COVID-19 deaths in
Luxembourg in 2020) were used to investigate their efficacies.

2. The ZOICG Distribution

A random variable Y in a ZOICG model can be derived as follows:

Y = (1 + Z)η + ZX, (3)

where Z is a Bernoulli random variable with a success probability (1 − (ω1 + ω2)), η
is a Bernoulli random variable with a success probability ω2/(ω1 + ω2), X follows a
CG distribution with parameters p and θ, and Z, η, and X are mutually independent.
Hence, the relationship between Y and (Z, η, X) becomes

Y = (1− Z)η + ZX =

{
η, with probability ω1 + ω2

X, with probability 1− (ω1 + ω2)
, (4)

which follows a ZOICG distribution with parameters ω1, ω2, p, and θ. This can be verified by

Pr(Y = 0) =(ω1 + ω2)(1− (
ω2

(ω1 + ω2)
)) + (1− (ω1 + ω2))P(X = 0 | p, θ)

=ω1 + (1−ω1−ω2)Cp,θ ,

Pr(Y = 1) =(ω1 + ω2)(
ω2

(ω1 + ω2)
)) + (1− (ω1 + ω2))P(X = 1 | p, θ)

=ω2 + (1−ω1−ω2)Cp,θ p(cos θ)2,

Pr(Y = k) =(1−ω1−ω2)P(X = k | p, θ); k ≥ 2

=(1−ω1−ω2)Cp,θ pk(cos(kθ))2.

(5)

Hence, the pmf of the nonnegative integer-valued random variable Y is

P(Y = k | ω1, ω2, p, θ) =


ω1 + (1−ω1 −ω2)Cp,θ ; k = 0
ω2 + (1−ω1−ω2)Cp,θ p(cos θ)2 ; k = 1
(1−ω1−ω2)Cp,θ pk(cos(kθ))2 ; k ≥ 2

, (6)
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where ω1, ω2 ∈ (0, 1), p ∈ (0, 1), and θ ∈ [0, π
2 ].

2.1. Moment-Generating Function

The moment-generating function of Y ∼ ZOICG(ω1, ω2, p, θ) can be derived by using
E(W1) = E[E(W1 |W2)] [8] as follows:

MY(t) =E[exp(tY)]

=E{exp[t(1− Z)η + tZX]}
=E{E{exp[t(1− Z)η + tZX] | Z}}
=E[Mη(t(1− Z)) ·MX(tZ)]

=E
[
[1− φ + φ exp(t(1− Z))] ·

Cp,θ

2

[
1

1− petZ +
1− petZ cos(2θ)

1− 2petZ cos(2θ) + (petZ)2

]]
=ψ(1− φ + φ exp(t)) + (1− ψ)

Cp,θ

2

[
1

1− pet +
1− pet cos(2θ)

1− 2pet cos(2θ) + (pet)2

]
,

(7)

M′Y(t) = ψφet + (1− ψ)
Cp,θ

2
pet
[

1
(1− pet)2 +

cos(2θ)(p2e2t + 1)− 2pet

(1− 2pet cos(2θ) + p2e2t)2

]
, (8)

M′Y(t = 0) = E(Y) = ψφ + (1− ψ)
Cp,θ

2
p
[

1
(1− p)2 +

cos(2θ)(p2 + 1)− 2p
(1− 2p cos(2θ) + p2)2

]
, (9)

M′′Y(t) = ψφet + (1− ψ)
Cp,θ

2
pet

 pet + 1
(1− pet)3 +

cos(2θ)(p4e4t − 1) + p3e3t(cos(4θ)− 3)
+ pet(3− cos(4θ))

(1− 2pet cos(2θ) + p2e2t)3

, (10)

M′′Y(t = 0) =E(Y2)

=ψφ + (1− ψ)
Cp,θ

2
p

 p + 1
(1− p)3 +

cos(2θ)(p4 − 1) + p3(cos(4θ)− 3)
+ p(3− cos(4θ))

(1− 2p cos(2θ) + p2)3

,
(11)

where φ = ω2/(ω1 + ω2) and ψ = ω1 + ω2. Thus

E(Y) = ω2 + (1− (ω1 + ω2))
Cp,θ

2
p
[

1
(1− p)2 +

cos(2θ)(p2 + 1)− 2p
(1− 2p cos(2θ) + p2)2

]
, (12)

E(Y2) = ω2 + (1− (ω1 + ω2))
Cp,θ

2
p

 p + 1
(1− p)3 +

cos(2θ)(p4 − 1) + p3(cos(4θ)− 3)
+ p(3− cos(4θ))

(1− 2p cos(2θ) + p2)3

. (13)

2.2. Maximum Likelihood Estimation

Alternatively, we can develop the second form of the ZOICG model by using the follow-
ing transformation of the first form with a similar method to that in [11].
The respective probabilities of Y being zeros and ones are

q0 =ω1 + (1−ω1 −ω2)Cp,θ

q1 =ω2 + (1−ω1 −ω2)Cp,θ p(cos θ)2.
(14)
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Hence, the pmf from Equation (6) becomes

P(Y = k | q0, q1, p, θ) =


q0 ; k = 0
q1 ; k = 1

1−q0−q1
1−Cp,θ−Cp,θ p(cos θ)2 Cp,θ pk(cos(kθ))2 ; k ≥ 2

, (15)

where q0 ≥ 0, q1 ≥ 0, q0 + q1 ≤ 1, p ∈ (0, 1), and θ ∈ [0, π
2 ].

Based on a random sample Y = (Y1, ..., Yn) of a size n from the ZOICG model in
Equation (15), we define the likelihood function L = L(q0, q1, p, θ, | Y) as follows:

L(q0, q1, p, θ, | Y) =
qS0

0 qS1
1 (1− q0 − q1)

n−S0−S1 Cn−S0−S1
p,θ pS ∏Yi≥2(cos(Yiθ))

2

(1− Cp,θ − Cp,θ p(cos θ)2)n−S0−S1
, (16)

where S0 = S0(Y) = ∑n
i=1 I(Yi = 0), S1 = S1(Y) = ∑n

i=1 I(Yi = 1), and S = S(Y) =

∑Yi≥2 Yi. The mean and variance of Y are respectively given by

E(Y) =q1 +

(
1− q0 − q1

1− Cp,θ − Cp,θ p(cos θ)2

)
×(

p
Cp,θ

2

[
1

(1− p)2 +
cos(2θ)(1 + p2)− 2p
(1− 2p cos(2θ) + p2)2

]
− Cp,θ p(cos θ)2

)
,

(17)

V(Y) = q1 +

(
1− q0 − q1

1− Cp,θ − Cp,θ p(cos θ)2

)
×(

p
Cp,θ

2

[
1 + p

(1− p)3 −
cos(2θ)(p4 − 1) + p3(cos(4θ − 3)) + p(3− cos(4θ))

(1− 2p cos(2θ) + p2)3 − Cp,θ p(cos θ)2
])

−
[

q1 +

(
1− q0 − q1

1− Cp,θ − Cp,θ p(cos θ)2

)
×

(
p

Cp,θ

2

[
1

(1− p)2 +
cos(2θ)(1 + p2)− 2p
(1− 2p cos(2θ) + p2)2

]
− Cp,θ p(cos θ)2

)]2

.

(18)

According to the likelihood function in Equation (16), the log-likelihood function
l = ln L is given by

ln L =S0 ln q0 + S1 ln q1 + (n− S0 − S1) ln (1− q0 − q1) + S ln p

+ 2 ∑
Yi≥2

ln cos(Yiθ)− (n− S0 − S1) ln (C−1
p,θ − 1− p(cos θ)2). (19)

Hence, the MLEs of q0 and q1 are

q̂i =
Si
n

, i = 0, 1, (20)

In addition, the MLEs of p and θ as well as p̂ and θ̂ are the respective solutions to the
following equations:

S(C−1
p,θ − 1− p(cos θ)2)− p(n− S0 − S1)

(
∂C−1

p,θ

∂p
− (cos θ)2

)
= 0, (21)

− 2 ∑
Yi≥2

tan(Yiθ)Yi(C−1
p,θ − 1− p(cos θ)2)− (n− S0 − S1)

(
∂C−1

p,θ

∂θ
+ 2p cos θ sin θ

)
= 0, (22)
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which can be solved numerically according to the Newton-type algorithm using the nlm
function in [28]. Furthermore, parameters ω1 and ω2 in the ZOICG model in Equation (6)
can be expressed by using (q0, q1, p, θ). Based on the one-to-one transformation in Equation (14),
the MLEs of ω1 and ω2 are respectively given by

ω1 = q0 −
(1− q0 − q1)Cp,θ

1− Cp,θ − Cp,θ p(cos θ)2 , (23)

ω2 = q1 −
(1− q0 − q1)Cp,θ p(cos θ)2

1− Cp,θ − Cp,θ p(cos θ)2 . (24)

2.3. The Fisher Information Matrix

The observed data log-likelihood function of the ZOICG model in Equation (15) can be
expressed as

l1(q0, q1, p, θ, | Y) =
n

∑
i=1
{[log q0]I(yi = 0) + [log q1]I(yi = 1) + [log(1− q0 − q1)

+yi log p + 2 log(cos(yiθ))− log(C−1
p,θ − 1− p(cos θ)2)

]
I(yi ≥ 2)

}
.

(25)

The score vector is denoted by

U(q0, q1, p, θ) =

(
∂l1
∂q0

,
∂l1
∂q1

,
∂l1
∂p

,
∂l1
∂θ

)>
,

where

∂l1
∂q0

=
n

∑
i=1

[
1
q0

I(yi = 0)− 1
(1− q0 − q1)

I(yi ≥ 2)
]

,

∂l1
∂q1

=
n

∑
i=1

[
1
q1

I(yi = 1)− 1
(1− q0 − q1)

I(yi ≥ 2)
]

,

∂l1
∂p

=
n

∑
i=1

[(
yi
p
−

∂
∂p (C

−1
p,θ )− (cos θ)2

C−1
p,θ − 1− p(cos θ)2

)
I(yi ≥ 2)

]
,

∂l1
∂θ

=
n

∑
i=1


−2 sin(yiθ)yi

cos(yiθ)
−

∂(C−1
p,θ )

∂θ + 2p cos(θ) sin(θ)

C−1
p,θ − 1− p(cos θ)2

I(yi ≥ 2)

.

The second derivatives are given by

∂2l1
∂q2

0
=

n

∑
i=1

[
− 1

q2
0

I(yi = 0)− 1
(1− q0 − q1)2 I(yi ≥ 2)

]
,

∂2l1
∂q2

1
=

n

∑
i=1

[
− 1

q2
1

I(yi = 1)− 1
(1− q0 − q1)2 I(yi ≥ 2)

]
,

∂2l1
∂p2 =

n

∑
i=1



−
yi
p2 −

(C−1
p,θ − 1− p(cos θ)2)( ∂2

∂p2 (C
−1
p,θ ))

− ( ∂
∂p (C

−1
p,θ )− (cos θ)2)( ∂

∂p (C
−1
p,θ )− (cos θ)2))

(C−1
p,θ − 1− p(cos θ)2)2

I(yi ≥ 2)

,
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∂2l1
∂θ2 =

n

∑
i=1




−2 sec2(yiθ)y2

i −

(C−1
p,θ − 1− p(cos θ)2)(

∂2(C−1
p,θ )

∂θ2 + ∂(2p cos θ sin θ)
∂θ )

− (
∂(C−1

p,θ )

∂θ + 2p cos θ sin θ)(
∂(C−1

p,θ )

∂θ + 2p cos θ sin θ)

(C−1
p,θ − 1− p(cos θ)2)2


I(yi ≥ 2)


,

∂2l1
∂q0∂q1

=
n

∑
i=1

[
− 1
(1− q0 − q1)2 I(yi ≥ 2)

]
,

∂2l1
∂p∂θ

=
n

∑
i=1


−

(C−1
p,θ − 1− p(cos θ)2)( ∂

∂θ (
∂(C−1

p,θ−(cos θ)2)

∂p ))

− (
∂(C−1

p,θ−(cos θ)2))

∂p (
∂(C−1

p,θ )−(cos θ)2)

∂θ )

(C−1
p,θ − 1− p(cos θ)2)2

I(yi ≥ 2)


,

∂2l1
∂q0∂p

= 0,
∂2l1

∂q0∂θ
= 0,

∂2l1
∂q1∂p

= 0,
∂2l1

∂q1∂θ
= 0.

Since

E[I(yi = 0)] = q0, E[I(yi = 1)] =q1, E[I(yi ≥ 2)] = 1− q0 − q1.

Thus, the expected Fisher information matrix can be calculated as J(q0, q1, p, θ) =
(Jjj′), where

J11 =− E

(
∂2l1
∂q2

0

)
=

n(1− q1)

q0(1− q0 − q1)
,

J22 =− E

(
∂2l1
∂q2

1

)
=

n(1− q0)

q1(1− q0 − q1)
,

J33 =− E
(

∂2l1
∂p2

)
= n(1− q0 − q1)k(p),

J44 =− E
(

∂2l1
∂θ2

)
= n(1− q0 − q1)k(θ),

J12 =− E
(

∂2l1
∂q0∂q1

)
=

n
(1− q0 − q1)

,

J34 =− E
(

∂2l1
∂p∂θ

)
= n(1− q0 − q1)k(pθ),

J13 =− E
(

∂2l1
∂q0∂p

)
= 0, J14 = −E

(
∂2l1

∂q0∂θ

)
= 0,

J23 =− E
(

∂2l1
∂q1∂p

)
= 0, J24 = −E

(
∂2l1

∂q1∂θ

)
= 0.
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Moreover, we have

k(p) =

∂(C−1
p,θ )

∂p − (cos θ)2

(C−1
p,θ − 1− p(cos θ)2)p

+

 (C−1
p,θ − 1− p(cos θ)2)( ∂2

∂p2 (C
−1
p,θ ))

− ( ∂
∂p (C

−1
p,θ )− (cos θ)2)2


(C−1

p,θ − 1− p(cos θ)2)2
,

k(pθ) =
∂

∂θ

 ∂(C−1
p,θ )

∂p − (cos θ)2

C−1
p,θ − 1− p(cos θ)2

,

k(θ) = 2(C−1
p,θ − 1− p(cos θ)2)

(
p(1 + p)− p(1− p)3

(1− p)3

)
+ (C

−1
p,θ − 1− p(cos θ)2)(

∂2(C−1
p,θ )

∂θ2 + ∂(2p cos θ sin θ)
∂θ )

− (
∂(C−1

p,θ )

∂θ + 2p cos θ sin θ)2


(C−1

p,θ − 1− p(cos θ)2)2
.

Thus the expected Fisher information matrix of (q0, q1, p, θ) for one observation, when
using a similar method to that in [11], is

H(q0, q1, p, θ) =

(
h1 0
0 h2

)
, (26)

where

h1 =

 1−q1
q0(1−q0−q1)

1
(1−q0−q1)

1
(1−q0−q1)

1−q0
q1(1−q0−q1)

,

and

h2 =

(
(1− q0 − q1)k(p) (1− q0 − q1)k(pθ)
(1− q0 − q1)k(pθ) (1− q0 − q1)k(θ)

)
,

which implies that the two-group parameters (q0, q1) and (p, θ) are independent, and this
is useful information for applying the Bayesian inference in the next section.

3. Bayesian Inference

In this section, suitable priors for the ZOICG model in Equation (15) are derived by
using the Bayesian framework.

3.1. Jeffreys Prior

Since Jeffreys prior [29,30] is proportional to the square root of the determinant of the
Fisher information matrix, that for (q0, q1, p, θ) can be derived as follows:

πJ(q0, q1, p, θ) = q−1/2
0 q−1/2

1 (1− q0 − q1)
1/2(k(p)k(θ)− k(pθ)2)1/2, (27)

where 0 ≤ q0 ≤ 1, 0 ≤ q1 ≤ 1− q0, p ∈ (0, 1), and θ ∈ (0, π/2).

3.2. The Uniform Prior

The uniform prior on (0,1) is widely used as the prior distribution in Bayesian analysis,
and that for (q0, q1, p, θ) is given by

πU(q0, q1, p, θ) = 1. (28)
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3.3. The Posterior Distribution

The joint posterior distributions of (q0, q1, p, θ) using the Jeffreys and uniform priors
can be respectively expressed as

πJ(q0, q1, p, θ | Y) =qS0− 1
2

0 qS1− 1
2

1 (1− q0 − q1)
n−S0−S1+

1
2

pS ∏Yi≥2(cos(Yiθ))
2(k(p)k(θ)− (k(pθ))2) 1

2

(C−1
p,θ − 1− p(cos θ)2)n−S0−S1

,
(29)

πU(q0, q1, p, θ | Y) =qS0
0 qS1

1 (1− q0 − q1)
n−S0−S1

pS ∏Yi≥2(cos(Yiθ))
2

(C−1
p,θ − 1− p(cos θ)2)n−S0−S1

.
(30)

Bayesian inference is based on the posterior distribution of the parameter interest
obtained analytically or via Markov chain Monte Carlo methods. In particular, the 95%
Bayesian CI for the parameter interest is simply from the 2.5 percentile to the 97.5 percentile
of the posterior distribution. For an asymmetric posterior (the usual case), the HPD interval
is not the same as the Bayesian CI from the 2.5 percentile to the 97.5 percentile [31], and so in
practice, their efficiencies are compared via their coverage probabilities (CPs) and average
lengths (ALs). According to the joint posterior distribution of (q0, q1, p, θ) (Equations (29)
and (30)), the marginal posterior distribution of (q0, q1) using the Jeffreys and uniform
priors are respectively given by

πJ(q0, q1 | Y) = qS0− 1
2

0 qS1− 1
2

1 (1− q0 − q1)
n−S0−S1+

1
2 , (31)

and
πU(q0, q1 | Y) = qS0

0 qS1
1 (1− q0 − q1)

n−S0−S1 . (32)

These are Dirichlet distributions with shape parameters (S0 +
1
2 , S1 +

1
2 , n− S0 − S1 +

3
2 )

and (S0 + 1, S1 + 1, n− S0 − S1 + 1), respectively. The marginal posterior distribution of p
using the Jeffreys and uniform priors are respectively given by

πJ(p | θ, Y) ∝
pS(k(p)k(θ)− (k(pθ))2) 1

2

(C−1
p,θ − 1− p(cos θ)2)n−S0−S1

, (33)

and

πU(p | θ, Y) ∝
pS

(C−1
p,θ − 1− p(cos θ)2)n−S0−S1

. (34)

Similarly, the marginal posterior distribution of θ using the Jeffreys and uniform priors
are respectively given by

πJ(θ | p, Y) ∝
∏Yi≥2(cos(Yiθ))

2(k(p)k(θ)− (k(pθ))2) 1
2

(C−1
p,θ − 1− p(cos θ)2)n−S0−S1

, (35)

and

πU(θ | p, Y) ∝
∏Yi≥2(cos(Yiθ))

2

(C−1
p,θ − 1− p(cos θ)2)n−S0−S1

. (36)

Since it is evident that the closed forms of the marginal posterior distributions of
p and θ cannot be evaluated, various general-purpose simulation methods can be used
to evaluate Equations (33)–(36) without requiring the complete closed-form expression.
One popular method, the Metropolis–Hastings algorithm, was applied in the present
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study. It was used to generate a large sequence of sampled values from the posterior
distribution without fully specifying it, which then allowed us to estimate it [32].

The random walk Metropolis–Hastings algorithm is a special case of the Metropolis–
Hastings algorithm that can be used to simulate the proposal X∗j = Xj−1 + εj,j = 0, 1, ..., N,
where εj is a random perturbation of Xj−1 that is simulated from a chosen probability
distribution (e.g., a normal distribution with a mean of zero and a specified variance).
Proposal X∗j is taken to be the next value in the chain Xj with an acceptance probability that
depends on the prior and data distributions (i.e., the likelihood function). The acceptance
probability is the ratio of two posterior distributions, which can be calculated as follows:

R(Xj−1, X∗j ) = min

(
L(X∗j )π(X∗j )

L(Xj−1)π(Xj−1)
, 1

)
. (37)

If proposal X∗j is not taken, then Xj is set to Xj−1 as the next value in the chain.
This process is specified in Algorithm 1.

Algorithm 1 The random walk Metropolis–Hastings algorithm.

1. Choose the trial position X∗j = Xj−1 + εj, where εj is a random perturbation with a
distribution h, which is symmetric (e.g., normal).

2. Calculate R(Xj−1, X∗j ) = min
(

L(X∗j )π(X∗j )
L(Xj−1)π(Xj−1)

, 1
)

.

3. Generate Uj from Uni f orm[0, 1].
4. If Uj ≤ R(Xj−1, X∗j ), then accept the change and let Xj = X∗j ; otherwise, set Xj = Xj−1.

3.4. The Bayesian CIs

In Bayesian analysis, interval estimates are based on the quantiles of the posterior
distribution of a parameter. The interpretation of a credible interval is that it has a prob-
ability 1− α of containing the parameter because it is based on its posterior distribution.
The most popular type of credible interval is an equal-tailed interval that is limited by the
probabilities to the left of the lower limit (α/2) and the right of the upper limit (α/2). Thus,
(1− α)100% can be obtained as follows:

(g(α /2), g(1−α /2)), (38)

where g(α /2) and g(1−α /2) are the α/2 and 1− α/2 quantiles of the function g, respectively.
Equal-tailed intervals are relatively easier to calculate than other ones, and they per-

form best when the posterior distribution is fairly symmetric. Since the marginal posterior
distributions of p and θ are dependent, and their closed forms do not exist, the Metropolis–
Hastings steps within a Gibbs sampling algorithm can be used to estimate them [33].
Hence, it was applied to generate a large sequence of sampled values from the marginal
posterior distribution in Equations (33)–(36). The procedure to generate samples and con-
struct the Bayesian CIs for parameters p and θ is detailed in Algorithm 2.

3.5. The HPD Intervals

When the posterior is not symmetric, it is best to use the HPD interval calculated
by finding its lower and upper limits corresponding to the HPD region (i.e., the most
probable region). The resulting interval is generally the most narrow possible interval that
contains (1− α)100% of the posterior density. It can be obtained by using the Markov chain
Monte Carlo method [34] and only requires a sample generated from the marginal posterior
distributions of parameters p and θ. In the simulation and computation, the HPD intervals
were computed by using the HDInterval package version 0.2.2 [35] in the R programming
suite, as covered in Algorithm 3.
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Algorithm 2 Establishing the Bayesian CIs for parameters p and θ.

1. Take the initial values of p and θ (p0 and θ0, respectively).
2. Take the values pj and θj for p and θ at the jth step for j = 1, 2, ...N, and then perform

the following steps.
(a) Generate p∗j = pj−1 + εj, where εj ∼ N(0, σ2

a ).

(b) Calculate R(pj−1, p∗j ) = min(r, 1), where r =
L(p∗j ,θj−1)π(p∗j ,θj−1)

L(pj−1,θj−1)π(pj−1,θj−1)
.

(c) Generate Uj ∼ Uni f orm[0, 1].
(d) If Uj ≤ R(pj−1, p∗j ), then accept the change and let pj = p∗j ; otherwise, set

pj = pj−1.
(e) Generate θ∗j = θj−1 + εj, where εj ∼ N(0, σ2

b ).

(f) Calculate R(θj−1, θ∗j ) = min(r, 1), where r =
L(pj ,θ∗j )π(pj ,θ∗j )

L(pj ,θj−1)π(pj ,θj−1)
.

(g) Generate Uj ∼ Uni f orm[0, 1].
(h) If Uj ≤ R(θj−1, θ∗j ), then accept the change and let θj = θ∗j ; otherwise, set

θj = θj−1.

3. Repeat Step 2 N times.
4. For posterior analysis, perform the following steps.

(a) Calculate the Bayesian estimators of g(p, θ) by using 1
N−M ∑N

j=M+1 g( pj, θj),
where M is the number of burn-in samples.

(b) Calculate the 100(1 −α)% CI as (g(α /2), g(1−α /2)), where g(α /2) and g(1−α /2)
are the α

2 -th and 1− α
2 -th quantiles of g( pj, θj) for j = M + 1, . . . , N, respec-

tively.

Algorithm 3 Establishing the HPD interval.

1. Take the initial values of p and θ (p0 and θ0, respectively).
2. Take the values pj and θj for p and θ, respectively, at the jth step for j = 1, 2, ...N, and

then perform the following steps.
(a) Generate p∗j = pj−1 + εj, where εj ∼ N(0, σ2

a ).

(b) Calculate R(pj−1, p∗j ) = min(r, 1), where r =
L(p∗j ,θj−1)π(p∗j ,θj−1)

L(pj−1,θj−1)π(pj−1,θj−1)
.

(c) Generate Uj ∼ Uni f orm[0, 1].
(d) If Uj ≤ R(pj−1, p∗j ), then accept the change and let pj = p∗j ; otherwise, set

pj = pj−1.
(e) Generate θ∗j = θj−1 + εj, where εj ∼ N(0, σ2

b ).

(f) Calculate R(θj−1, θ∗j ) = min(r, 1), where r =
L(pj ,θ∗j )π(pj ,θ∗j )

L(pj ,θj−1)π(pj ,θj−1)
.

(g) Generate Uj ∼ Uni f orm[0, 1].
(h) If Uj ≤ R(θj−1, θ∗j ), then accept the change and let θj = θ∗j ; otherwise, set

θj = θj−1.

3. Repeat Step 2 N times.
4. For posterior analysis, perform the following analysis.

(a) Calculate the Bayesian estimators of g(p, θ) by using 1
N−M ∑N

j=M+1 g( pj, θj),
where M is the number of burn-in samples.

(b) Calculate the HPD intervals 100(1− α)% for each parameter by using the
HDInterval package in the R programming suite [28].

4. Simulation Study

The performance of the ZOICG model in Equation (15) was measured by using
Monte Carlo simulation. The sample size was set to n = 30, 50, or 100 with the proviso that
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n− n0− n1 > 0. The probability of real zeros (ω1) was set to 0.1 or 0.2. The probability of real
ones (ω2) was set to 0.1, 0.2, or 0.3 while p, θ was set to (0.5,0.7) or (0.9,1.5), and the nominal
confidence level α was set to 0.95. All of the simulations were run 3000 times, and the
samples were generated by using the Metropolis–Hastings algorithm with 10,000 samples
and 3000 burn-ins. The criteria for comparing the efficiencies of the CIs were their CPs and
ALs. For a particular scenario, the CI with a CP close to or greater than the nominal level
of 0.95 and the shortest AL performed the best.

The CP and AL results are reported in Tables 1 and 2, respectively. For the interval
estimation of the parameter q0, the CPs of all five methods were close to the nominal
level of 0.95, especially when the sample size was large. For the interval estimation of the
parameter q1, an equal-tailed, two-sided Bayesian CI based on the uniform prior provided
CPs equal to or more than 0.95 in almost all cases, but when the sample size was large
(n = 100), the CPs for all of the methods were similarly close to the nominal level of
0.95. For the interval estimation of parameter p, when (p, θ) was (0.5,0.7), only the equal-
tailed two-sided Bayesian CI and HPD interval based on the uniform prior performed
well (CP > 0.95), with the HPD interval based on the uniform prior having the shortest
AL. However, when (p, θ) was (0.9,1.5), all five methods performed similarly. For the
interval estimation of θ, when (p, θ) was (0.5,0.7), all four Bayesian methods performed well
(CP > 0.95), with the HPD interval based on the uniform prior providing the shortest AL.
When (p, θ) was (0.9,1.5), none of the methods produced CPs equal to or more than 0.95,
with the Wald CI providing the worst performance. In general, the ALs decreased when
the sample size was increased and when (p, θ) was increased from (0.5,0.7) to (0.9,1.5).

Table 1. Coverage probability of parameter estimation for model in Equation (15).

n p, θ ω1 ω2 Method q0 q1 p θ

30 0.5,0.7 0.1 0.1 Wald 0.9490 0.9163 0.8475 0.3908
B.uniform 0.9347 0.9490 0.9800 0.9993
HPD.uniform 0.9353 0.9533 0.9633 0.9983
B.Jeffreys 0.9347 0.9577 0.7947 0.9983
HPD.Jeffreys 0.9347 0.9173 0.6957 0.9983

0.2 Wald 0.9417 0.9030 0.8417 0.3846
B.uniform 0.9540 0.9497 0.9810 1.0000
HPD.uniform 0.9390 0.9493 0.9617 0.9993
B.Jeffreys 0.9313 0.9620 0.7613 0.9980
HPD.Jeffreys 0.9287 0.9157 0.6517 0.9977

0.3 Wald 0.9293 0.9383 0.8498 0.4368
B.uniform 0.9493 0.9570 0.9837 0.9997
HPD.uniform 0.9420 0.9377 0.9680 0.9993
B.Jeffreys 0.9370 0.9360 0.7353 0.9980
HPD.Jeffreys 0.9157 0.9190 0.6263 0.9983

0.2 0.1 Wald 0.9293 0.9327 0.8442 0.4166
B.uniform 0.9390 0.9670 0.9787 0.9990
HPD.uniform 0.9383 0.9357 0.9593 0.9983
B.Jeffreys 0.9390 0.9360 0.7647 0.9987
HPD.Jeffreys 0.9387 0.9367 0.6657 0.9963

0.2 Wald 0.9447 0.9330 0.8455 0.4271
B.uniform 0.9517 0.9637 0.9753 0.9997
HPD.uniform 0.9450 0.9327 0.9577 0.9997
B.Jeffreys 0.9303 0.9353 0.7267 0.9960
HPD.Jeffreys 0.9317 0.9353 0.6093 0.9963

0.3 Wald 0.9403 0.9360 0.8421 0.4467
B.uniform 0.9540 0.9417 0.9843 1.0000
HPD.uniform 0.9507 0.9397 0.9653 0.9993
B.Jeffreys 0.9493 0.9473 0.7020 0.9983
HPD.Jeffreys 0.9260 0.9427 0.5737 0.9983
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Table 1. Cont.

n p, θ ω1 ω2 Method q0 q1 p θ

30 0.9,1.5 0.1 0.1 Wald 0.9383 0.8193 0.9327 0.0137
B.uniform 0.9443 0.9637 0.9477 0.9167
HPD.uniform 0.9387 0.9240 0.9500 0.9033
B.Jeffreys 0.9383 0.9220 0.9460 0.9157
HPD.Jeffreys 0.9417 0.9440 0.9303 0.9110

0.2 Wald 0.9317 0.9500 0.9377 0.0153
B.uniform 0.9477 0.9613 0.9427 0.9017
HPD.uniform 0.9323 0.9313 0.9483 0.8927
B.Jeffreys 0.9497 0.9340 0.9473 0.9023
HPD.Jeffreys 0.9307 0.9460 0.9363 0.8973

0.3 Wald 0.8867 0.9050 0.9413 0.0183
B.uniform 0.9497 0.9580 0.9363 0.9010
HPD.uniform 0.9487 0.9577 0.9410 0.8990
B.Jeffreys 0.9503 0.9580 0.9480 0.8963
HPD.Jeffreys 0.9087 0.9127 0.9380 0.8923

0.2 0.1 Wald 0.9483 0.8070 0.9257 0.0207
B.uniform 0.9500 0.9753 0.9357 0.9017
HPD.uniform 0.9497 0.9323 0.9417 0.8953
B.Jeffreys 0.9497 0.9320 0.9430 0.9033
HPD.Jeffreys 0.9417 0.9453 0.9320 0.8927

0.2 Wald 0.9157 0.9473 0.9337 0.0180
B.uniform 0.9540 0.9657 0.9340 0.8970
HPD.uniform 0.9270 0.9343 0.9403 0.8963
B.Jeffreys 0.9423 0.9357 0.9440 0.8983
HPD.Jeffreys 0.9283 0.9443 0.9350 0.8950

0.3 Wald 0.9460 0.9120 0.9430 0.0200
B.uniform 0.9450 0.9567 0.9347 0.8690
HPD.uniform 0.9437 0.9563 0.9413 0.8763
B.Jeffreys 0.9460 0.9567 0.9463 0.8780
HPD.Jeffreys 0.9313 0.9210 0.9323 0.8803

50 0.5,0.7 0.1 0.1 Wald 0.9303 0.9243 0.8290 0.2558
B.uniform 0.9520 0.9473 0.9723 0.9953
HPD.uniform 0.9493 0.9487 0.9573 0.9910
B.Jeffreys 0.9480 0.9567 0.8747 0.9940
HPD.Jeffreys 0.9480 0.9303 0.8167 0.9930

0.2 Wald 0.9457 0.9450 0.8382 0.3144
B.uniform 0.9567 0.9633 0.9790 0.9973
HPD.uniform 0.9487 0.9443 0.9673 0.9950
B.Jeffreys 0.9587 0.9457 0.8607 0.9973
HPD.Jeffreys 0.9510 0.9457 0.7883 0.9973

0.3 Wald 0.9460 0.9627 0.8306 0.3353
B.uniform 0.9600 0.9620 0.9740 0.9967
HPD.uniform 0.9580 0.9507 0.9547 0.9957
B.Jeffreys 0.9583 0.9557 0.8270 0.9967
HPD.Jeffreys 0.9493 0.9373 0.7490 0.9977

0.2 0.1 Wald 0.9607 0.9303 0.8272 0.2866
B.uniform 0.9570 0.9623 0.9760 0.9973
HPD.uniform 0.9550 0.9607 0.9633 0.9933
B.Jeffreys 0.9487 0.9623 0.8610 0.9967
HPD.Jeffreys 0.9500 0.9353 0.7887 0.9957

0.2 Wald 0.9490 0.9447 0.8527 0.3584
B.uniform 0.9550 0.9573 0.9797 0.9980
HPD.uniform 0.9497 0.9417 0.9640 0.9980
B.Jeffreys 0.9403 0.9460 0.8450 0.9973
HPD.Jeffreys 0.9427 0.9453 0.7657 0.9963

0.3 Wald 0.9527 0.9530 0.8384 0.3670
B.uniform 0.9420 0.9500 0.9813 0.9983
HPD.uniform 0.9350 0.9350 0.9600 0.9983
B.Jeffreys 0.9407 0.9373 0.7993 0.9977
HPD.Jeffreys 0.9370 0.9203 0.7160 0.9967
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Table 1. Cont.

n p, θ ω1 ω2 Method q0 q1 p θ

50 0.9,1.5 0.1 0.1 Wald 0.9403 0.8810 0.9307 0.0310
B.uniform 0.9550 0.9573 0.9460 0.9307
HPD.uniform 0.9363 0.9410 0.9463 0.9160
B.Jeffreys 0.9413 0.9397 0.9443 0.9357
HPD.Jeffreys 0.9403 0.9553 0.9363 0.9220

0.2 Wald 0.9543 0.9353 0.9300 0.0317
B.uniform 0.9503 0.9477 0.9490 0.9273
HPD.uniform 0.9450 0.9357 0.9530 0.9120
B.Jeffreys 0.9527 0.9473 0.9490 0.9280
HPD.Jeffreys 0.9513 0.9353 0.9390 0.9220

0.3 Wald 0.9263 0.9340 0.9270 0.0257
B.uniform 0.9453 0.9513 0.9390 0.9247
HPD.uniform 0.9460 0.9367 0.9430 0.9177
B.Jeffreys 0.9510 0.9443 0.9443 0.9243
HPD.Jeffreys 0.9350 0.9440 0.9330 0.9127

0.2 0.1 Wald 0.9517 0.8690 0.9190 0.0263
B.uniform 0.9533 0.9677 0.9373 0.9237
HPD.uniform 0.9523 0.9403 0.9380 0.9137
B.Jeffreys 0.9553 0.9387 0.9400 0.9263
HPD.Jeffreys 0.9340 0.9497 0.9317 0.9097

0.2 Wald 0.9173 0.9270 0.9313 0.0284
B.uniform 0.9487 0.9407 0.9413 0.9287
HPD.uniform 0.9407 0.9263 0.9427 0.9170
B.Jeffreys 0.9470 0.9360 0.9423 0.9280
HPD.Jeffreys 0.9213 0.9267 0.9337 0.9150

0.3 Wald 0.9303 0.9417 0.9337 0.0280
B.uniform 0.9553 0.9603 0.9430 0.9050
HPD.uniform 0.9390 0.9453 0.9427 0.9010
B.Jeffreys 0.9427 0.9513 0.9447 0.9063
HPD.Jeffreys 0.9337 0.9520 0.9310 0.8987

100 0.5,0.7 0.1 0.1 Wald 0.9377 0.9527 0.7251 0.0807
B.uniform 0.9517 0.9587 0.9763 0.9777
HPD.uniform 0.9430 0.9543 0.9630 0.9733
B.Jeffreys 0.9510 0.9527 0.9417 0.9837
HPD.Jeffreys 0.9463 0.9503 0.9143 0.9823

0.2 Wald 0.9547 0.9607 0.7493 0.1100
B.uniform 0.9557 0.9593 0.9727 0.9837
HPD.uniform 0.9523 0.9557 0.9597 0.9787
B.Jeffreys 0.9520 0.9603 0.9290 0.9873
HPD.Jeffreys 0.9523 0.9493 0.8970 0.9857

0.3 Wald 0.9507 0.9483 0.7827 0.1440
B.uniform 0.9567 0.9533 0.9787 0.9867
HPD.uniform 0.9503 0.9503 0.9653 0.9833
B.Jeffreys 0.9470 0.9473 0.9230 0.9883
HPD.Jeffreys 0.9463 0.9473 0.8860 0.9867

0.2 0.1 Wald 0.9473 0.9333 0.7569 0.1027
B.uniform 0.9523 0.9530 0.9710 0.9780
HPD.uniform 0.9467 0.9537 0.9587 0.9767
B.Jeffreys 0.9513 0.9567 0.9363 0.9820
HPD.Jeffreys 0.9450 0.9443 0.9040 0.9813

0.2 Wald 0.9483 0.9567 0.7883 0.1517
B.uniform 0.9493 0.9463 0.9787 0.9827
HPD.uniform 0.9480 0.9460 0.9680 0.9803
B.Jeffreys 0.9493 0.9540 0.9277 0.9853
HPD.Jeffreys 0.9477 0.9420 0.8897 0.9837

0.3 Wald 0.9420 0.9440 0.8145 0.1952
B.uniform 0.9490 0.9497 0.9787 0.9897
HPD.uniform 0.9410 0.9447 0.9663 0.9873
B.Jeffreys 0.9373 0.9443 0.9163 0.9917
HPD.Jeffreys 0.9377 0.9437 0.8760 0.9897
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Table 1. Cont.

n p, θ ω1 ω2 Method q0 q1 p θ

100 0.9,1.5 0.1 0.1 Wald 0.9370 0.9343 0.9080 0.0627
B.uniform 0.9473 0.9543 0.9283 0.9080
HPD.uniform 0.9337 0.9587 0.9270 0.8853
B.Jeffreys 0.9370 0.9593 0.9287 0.9140
HPD.Jeffreys 0.9353 0.9297 0.9217 0.8963

0.2 Wald 0.9313 0.9293 0.9043 0.0597
B.uniform 0.9403 0.9487 0.9300 0.9100
HPD.uniform 0.9437 0.9480 0.9287 0.8957
B.Jeffreys 0.9493 0.9517 0.9367 0.9153
HPD.Jeffreys 0.9367 0.9327 0.9290 0.8980

0.3 Wald 0.9417 0.9527 0.9093 0.0490
B.uniform 0.9487 0.9530 0.9430 0.9223
HPD.uniform 0.9407 0.9527 0.9410 0.9050
B.Jeffreys 0.9490 0.9527 0.9407 0.9267
HPD.Jeffreys 0.9400 0.9430 0.9343 0.9083

0.2 0.1 Wald 0.9573 0.9477 0.9077 0.0564
B.uniform 0.9500 0.9563 0.9200 0.9097
HPD.uniform 0.9510 0.9630 0.9200 0.8920
B.Jeffreys 0.9573 0.9633 0.9267 0.9220
HPD.Jeffreys 0.9487 0.9393 0.9217 0.9083

0.2 Wald 0.9370 0.9343 0.9077 0.0427
B.uniform 0.9440 0.9583 0.9390 0.9203
HPD.uniform 0.9423 0.9523 0.9353 0.9023
B.Jeffreys 0.9487 0.9580 0.9393 0.9213
HPD.Jeffreys 0.9367 0.9377 0.9340 0.9057

0.3 Wald 0.9503 0.9517 0.9193 0.0424
B.uniform 0.9557 0.9523 0.9477 0.9380
HPD.uniform 0.9453 0.9487 0.9463 0.9183
B.Jeffreys 0.9490 0.9520 0.9430 0.9417
HPD.Jeffreys 0.9470 0.9420 0.9357 0.9237

Table 2. Average length of parameter estimation for model in Equation (15).

n p, θ ω1 ω2 Method q0 q1 p θ

30 0.5,0.7 0.1 0.1 Wald 0.3349 0.3084 0.8341 0.2746
B.uniform 0.3185 0.2904 0.6684 1.2500
HPD.uniform 0.3165 0.2867 0.6595 1.1740
B.Jeffreys 0.3216 0.2880 0.6609 1.2798
HPD.Jeffreys 0.3197 0.2839 0.5983 1.2230

0.2 Wald 0.3468 0.3324 0.8547 0.2753
B.uniform 0.3262 0.3103 0.6792 1.2850
HPD.uniform 0.3247 0.3079 0.6698 1.2162
B.Jeffreys 0.3292 0.3098 0.6479 1.3118
HPD.Jeffreys 0.3277 0.3071 0.5759 1.2614

0.3 Wald 0.3518 0.3472 0.9043 0.3797
B.uniform 0.3289 0.3235 0.6978 1.3176
HPD.uniform 0.3276 0.3219 0.6878 1.2556
B.Jeffreys 0.3310 0.3245 0.6431 1.3438
HPD.Jeffreys 0.3297 0.3228 0.5637 1.2985

0.2 0.1 Wald 0.3271 0.2985 0.8682 0.2811
B.uniform 0.3130 0.2824 0.6793 1.2818
HPD.uniform 0.3108 0.2782 0.6697 1.2125
B.Jeffreys 0.3164 0.2792 0.6510 1.3097
HPD.Jeffreys 0.3142 0.2745 0.5804 1.2561

0.2 Wald 0.3427 0.3262 0.8995 0.2862
B.uniform 0.3236 0.3052 0.6908 1.3139
HPD.uniform 0.3220 0.3025 0.6806 1.2497
B.Jeffreys 0.3266 0.3041 0.6364 1.3390
HPD.Jeffreys 0.3249 0.3012 0.5561 1.2929

0.3 Wald 0.3510 0.3445 0.9318 0.3425
B.uniform 0.3289 0.3210 0.7071 1.3428
HPD.uniform 0.3275 0.3192 0.6964 1.2888
B.Jeffreys 0.3312 0.3217 0.6271 1.3666
HPD.Jeffreys 0.3299 0.3198 0.5372 1.3280
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Table 2. Cont.

n p, θ ω1 ω2 Method q0 q1 p θ

30 0.9,1.5 0.1 0.1 Wald 0.3019 0.2035 0.0946 8.4846
B.uniform 0.2857 0.2093 0.0921 0.5622
HPD.uniform 0.2817 0.1992 0.0905 0.4801
B.Jeffreys 0.2828 0.1979 0.0894 0.5176
HPD.Jeffreys 0.2784 0.1867 0.0877 0.4461

0.2 Wald 0.2953 0.2784 0.1027 69.7431
B.uniform 0.2796 0.2659 0.1010 0.6884
HPD.uniform 0.2751 0.2605 0.0991 0.5893
B.Jeffreys 0.2761 0.2610 0.0975 0.6627
HPD.Jeffreys 0.2711 0.2550 0.0955 0.5653

0.3 Wald 0.2855 0.3208 0.1118 235.6500
B.uniform 0.2714 0.3006 0.1105 0.8728
HPD.uniform 0.2664 0.2976 0.1083 0.7526
B.Jeffreys 0.2672 0.2991 0.1062 0.8232
HPD.Jeffreys 0.2616 0.2957 0.1039 0.7242

0.2 0.1 Wald 0.3307 0.2008 0.1023 73.9848
B.uniform 0.3098 0.2076 0.1004 0.7126
HPD.uniform 0.3074 0.1974 0.0986 0.5966
B.Jeffreys 0.3091 0.1960 0.0970 0.6675
HPD.Jeffreys 0.3065 0.1845 0.0951 0.5749

0.2 Wald 0.3254 0.2784 0.1125 161.9909
B.uniform 0.3044 0.2657 0.1111 0.8977
HPD.uniform 0.3016 0.2604 0.1090 0.7746
B.Jeffreys 0.3033 0.2608 0.1067 0.8484
HPD.Jeffreys 0.3002 0.2547 0.1044 0.7316

0.3 Wald 0.3196 0.3218 0.1255 312.1138
B.uniform 0.2995 0.3013 0.1251 1.0833
HPD.uniform 0.2964 0.2983 0.1225 0.9495
B.Jeffreys 0.2979 0.3000 0.1193 1.0410
HPD.Jeffreys 0.2946 0.2967 0.1163 0.9198

50 0.5,0.7 0.1 0.1 Wald 0.2594 0.2406 0.6838 0.2925
B.uniform 0.2517 0.2317 0.6060 1.0605
HPD.uniform 0.2504 0.2297 0.5990 0.9636
B.Jeffreys 0.2534 0.2306 0.6564 1.0967
HPD.Jeffreys 0.2521 0.2285 0.6228 1.0169

0.2 Wald 0.2700 0.2605 0.7412 115.0792
B.uniform 0.2600 0.2495 0.6312 1.1346
HPD.uniform 0.2590 0.2481 0.6236 1.0460
B.Jeffreys 0.2615 0.2495 0.6682 1.1765
HPD.Jeffreys 0.2605 0.2480 0.6244 1.1024

0.3 Wald 0.2743 0.2710 0.7732 0.2561
B.uniform 0.2631 0.2593 0.6445 1.1893
HPD.uniform 0.2621 0.2582 0.6364 1.0999
B.Jeffreys 0.2643 0.2599 0.6646 1.2242
HPD.Jeffreys 0.2634 0.2588 0.6134 1.1535

0.2 0.1 Wald 0.2536 0.2344 0.7172 0.3026
B.uniform 0.2472 0.2262 0.6242 1.1240
HPD.uniform 0.2457 0.2240 0.6169 1.0287
B.Jeffreys 0.2489 0.2248 0.6630 1.1628
HPD.Jeffreys 0.2473 0.2225 0.6212 1.0832

0.2 Wald 0.2660 0.2554 0.7880 0.2916
B.uniform 0.2568 0.2447 0.6472 1.1873
HPD.uniform 0.2556 0.2431 0.6394 1.0995
B.Jeffreys 0.2584 0.2445 0.6718 1.2230
HPD.Jeffreys 0.2573 0.2429 0.6205 1.1520

0.3 Wald 0.2731 0.2686 0.8157 0.2645
B.uniform 0.2623 0.2568 0.6640 1.2355
HPD.uniform 0.2613 0.2557 0.6549 1.1573
B.Jeffreys 0.2635 0.2573 0.6669 1.2646
HPD.Jeffreys 0.2625 0.2561 0.6076 1.2048
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Table 2. Cont.

n p, θ ω1 ω2 Method q0 q1 p θ

50 0.9,1.5 0.1 0.1 Wald 0.2376 0.1622 0.0714 470.0039
B.uniform 0.2289 0.1639 0.0684 0.1848
HPD.uniform 0.2268 0.1586 0.0673 0.1589
B.Jeffreys 0.2276 0.1584 0.0672 0.1689
HPD.Jeffreys 0.2254 0.1527 0.0661 0.1522

0.2 Wald 0.2317 0.2178 0.0768 327.0361
B.uniform 0.2235 0.2113 0.0740 0.2479
HPD.uniform 0.2212 0.2084 0.0728 0.2125
B.Jeffreys 0.2221 0.2090 0.0724 0.2131
HPD.Jeffreys 0.2196 0.2060 0.0712 0.1884

0.3 Wald 0.2235 0.2514 0.0842 320.3098
B.uniform 0.2163 0.2412 0.0810 0.3379
HPD.uniform 0.2137 0.2395 0.0796 0.2865
B.Jeffreys 0.2143 0.2406 0.0788 0.3010
HPD.Jeffreys 0.2115 0.2388 0.0774 0.2598

0.2 0.1 Wald 0.2581 0.1604 0.0769 9.1145
B.uniform 0.2474 0.1625 0.0740 0.2402
HPD.uniform 0.2459 0.1571 0.0728 0.2140
B.Jeffreys 0.2472 0.1567 0.0723 0.2032
HPD.Jeffreys 0.2456 0.1509 0.0711 0.1787

0.2 Wald 0.2548 0.2180 0.0844 104.7380
B.uniform 0.2443 0.2116 0.0814 0.3295
HPD.uniform 0.2427 0.2087 0.0801 0.2791
B.Jeffreys 0.2439 0.2093 0.0792 0.3101
HPD.Jeffreys 0.2422 0.2063 0.0779 0.2660

0.3 Wald 0.2498 0.2511 0.0940 967.9396
B.uniform 0.2397 0.2409 0.0909 0.5202
HPD.uniform 0.2379 0.2392 0.0894 0.4362
B.Jeffreys 0.2391 0.2403 0.0883 0.4688
HPD.Jeffreys 0.2372 0.2385 0.0866 0.4011

100 0.5,0.7 0.1 0.1 Wald 0.1843 0.1715 0.4658 0.1680
B.uniform 0.1814 0.1681 0.4927 0.6192
HPD.uniform 0.1807 0.1670 0.4879 0.5403
B.Jeffreys 0.1821 0.1677 0.5554 0.6432
HPD.Jeffreys 0.1813 0.1667 0.5451 0.5618

0.2 Wald 0.1916 0.1851 0.5029 0.1803
B.uniform 0.1880 0.1809 0.5165 0.7212
HPD.uniform 0.1873 0.1801 0.5114 0.6294
B.Jeffreys 0.1886 0.1810 0.5843 0.7510
HPD.Jeffreys 0.1879 0.1802 0.5719 0.6608

0.3 Wald 0.1949 0.1927 0.5561 0.1967
B.uniform 0.1907 0.1883 0.5420 0.8150
HPD.uniform 0.1901 0.1876 0.5366 0.7153
B.Jeffreys 0.1913 0.1887 0.6119 0.8606
HPD.Jeffreys 0.1906 0.1880 0.5959 0.7668

0.2 0.1 Wald 0.1801 0.1672 0.5028 0.1798
B.uniform 0.1777 0.1641 0.5150 0.7007
HPD.uniform 0.1769 0.1630 0.5100 0.6115
B.Jeffreys 0.1783 0.1635 0.5840 0.7322
HPD.Jeffreys 0.1775 0.1624 0.5719 0.6394

0.2 Wald 0.1892 0.1824 0.5620 0.1971
B.uniform 0.1858 0.1784 0.5480 0.8221
HPD.uniform 0.1851 0.1776 0.5424 0.7248
B.Jeffreys 0.1864 0.1784 0.6165 0.8547
HPD.Jeffreys 0.1857 0.1775 0.5988 0.7657

0.3 Wald 0.1940 0.1913 0.6138 0.2557
B.uniform 0.1900 0.1869 0.5742 0.9390
HPD.uniform 0.1894 0.1862 0.5681 0.8384
B.Jeffreys 0.1905 0.1872 0.6395 0.9788
HPD.Jeffreys 0.1899 0.1865 0.6161 0.8862
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Table 2. Cont.

n p, θ ω1 ω2 Method q0 q1 p θ

100 0.9,1.5 0.1 0.1 Wald 0.1688 0.1166 0.0497 912.8982
B.uniform 0.1655 0.1170 0.0498 0.1298
HPD.uniform 0.1644 0.1148 0.0490 0.1144
B.Jeffreys 0.1650 0.1150 0.0500 0.1266
HPD.Jeffreys 0.1640 0.1128 0.0489 0.1135

0.2 Wald 0.1644 0.1558 0.0534 699.7486
B.uniform 0.1613 0.1532 0.0527 0.1400
HPD.uniform 0.1602 0.1519 0.0515 0.1246
B.Jeffreys 0.1609 0.1524 0.0512 0.1267
HPD.Jeffreys 0.1597 0.1512 0.0504 0.1135

0.3 Wald 0.1593 0.1788 0.0576 592.8977
B.uniform 0.1565 0.1749 0.0556 0.1255
HPD.uniform 0.1553 0.1740 0.0547 0.1104
B.Jeffreys 0.1558 0.1747 0.0543 0.1186
HPD.Jeffreys 0.1546 0.1738 0.0534 0.1045

0.2 0.1 Wald 0.1837 0.1163 0.0535 243.9278
B.uniform 0.1796 0.1167 0.0514 0.1326
HPD.uniform 0.1788 0.1145 0.0499 0.1149
B.Jeffreys 0.1796 0.1146 0.0512 0.1216
HPD.Jeffreys 0.1788 0.1124 0.0500 0.1145

0.2 Wald 0.1808 0.1559 0.0579 87.2649
B.uniform 0.1769 0.1534 0.0552 0.1219
HPD.uniform 0.1760 0.1522 0.0543 0.1094
B.Jeffreys 0.1767 0.1526 0.0549 0.1207
HPD.Jeffreys 0.1759 0.1512 0.0540 0.1088

0.3 Wald 0.1777 0.1786 0.0637 95.0276
B.uniform 0.1739 0.1748 0.0606 0.1391
HPD.uniform 0.1730 0.1739 0.0597 0.1253
B.Jeffreys 0.1737 0.1746 0.0597 0.1326
HPD.Jeffreys 0.1728 0.1737 0.0587 0.1226

5. The Efficacies of the Methods with Real Data

The number of new COVID-19 cases and deaths reported each day by country is
available from the European Centre for Disease Prevention and Control (ECDC; accessed
on 13 September 2022 https://www.ecdc.europa.eu/en/publications-data/data-daily-
new-cases-covid-19-eueea-country). In this empirical study, the number of new COVID-
19 deaths per day in Luxembourg from 24 February 2020 to 31 December 2020, which
contained 312 days, 167 days with 0 deaths, and 47 days with 1 death, are presented in
Table 3 and Figure 1. From the descriptive statistics for the dataset (Table 4), the mean and
variance were 1.6314 and 5.9570, respectively, which were used to calculate the index of
dispersion (the variance divided by the mean) to be 3.6514. Since the index of dispersion
was larger than one, this dataset was clearly overdispersed. The appropriate model was
checked by comparing the AIC and corrected AIC (AICc) values of nine distributions:
ZOICG, ZICG, CG, ZIP, ZIG, ZINB, Poisson, geometric, and NB (Table 5). Those of the
ZOICG were very similar (1038.372 and 1038.502) and the lowest, thereby inferring that it
provided the best fit for the data.

Table 3. The number of COVID-19 daily new deaths in Luxembourg in 2020.

The Number of Daily New
Deaths 0 1 2 3 4 5 6 7 8 9 10 11

Count 167 47 17 20 15 9 13 15 4 3 1 1

https://www.ecdc.europa.eu/en/publications-data/data-daily-new-cases-covid-19-eueea-country
https://www.ecdc.europa.eu/en/publications-data/data-daily-new-cases-covid-19-eueea-country
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Figure 1. The number of daily new deaths in Luxembourg for 2020.

Table 4. Descriptive statistics.

n Mean Variance SD Skewness Kurtosis ID

312 1.6314 5.9570 2.4407 1.5296 4.3743 3.6514

Table 5. The log likelihood, AIC, and AICc values of different models.

Model ZOICG ZICG CG ZIP ZIG ZINB Poisson Geometric NB

−l 515.186 517.120 545.206 545.900 519.611 519.200 725.088 545.206 523.379

AIC 1038.372 1040.239 1094.413 1095.753 1043.223 1044.302 1452.176 1092.413 1050.758

AICc 1038.502 1040.317 1094.452 1095.791 1043.261 1044.379 1452.189 1092.426 1050.797

The 95% CIs for the parameters of the ZOICG model obtained by using the five
methods are provided in Table 6. The lower and upper bounds for parameters q0 and q1
provided by all of the methods were similar, with the lower bound for the parameter p via
the Wald CI being slightly lower and the 95% Wald-based CI for the parameter θ being
much lower than the others.

Table 6. Estimation of the number of COVID-19 daily new deaths in Luxembourg in 2020.

Parameter Wald B.uniform HPD.uniform B.Jeffreys HPD.Jeffreys

q0 (0.4799,0.5906) (0.4781,0.5883) (0.4746,0.5845) (0.4771,0.5875) (0.4790, 0.5891)
0.1107 0.1103 0.1099 0.1105 0.1101

q1 (0.1110,0.1903) (0.1148,0.1950) (0.1148,0.1950) (0.1136,0.1936) (0.1137,0.1937)
0.0794 0.0802 0.0802 0.0800 0.0800

p (0.7643,0.8610) (0.8002,0.8636) (0.8023,0.8651) (0.8036,0.8658) (0.8040,0.8658)
0.0967 0.0634 0.0628 0.0621 0.0618

θ (0.0706,0.1004) (1.4800,1.5060) (1.4843,1.5061) (1.4794,1.5043) (1.4841,1.5047)
0.0298 0.0260 0.0218 0.0249 0.0207

6. Discussion

In this paper, a novel four-parameter discrete distribution called the ZOICG distribu-
tion is proposed, and its statistical properties are derived. As the model in Equation (6)
has a complex pmf, it is more difficult to calculate parameters ω1 and ω2 by using the
MLEs than by reparameterizing, and so the ZOICG model in Equation (15) is needed.
This model requires that parameters q0 and q1 are independent of parameters p and θ,
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which means that the proportion of data containing zeros and ones should be treated
separately from the rest for the convenience of estimation. From the simulation results, it is
clear that all of the methods could detect zeros and ones (q0 and q1) with coverage proba-
bilities close to the nominal level. The MLEs of parameters p and θ did not have a closed
form, so the Newton-type algorithm was applied to solve them numerically. However,
the application of this algorithm was not appropriate, especially for parameter θ. Hence,
Bayesian analysis was required in this study. However, the derivations of the Bayesian
estimates for parameters p and θ were still complex and difficult to estimate, since their
marginal posterior distributions did not have a closed form. Hence, the random walk
Metropolis–Hastings steps within a Gibbs sampling algorithm were applied to generate
samples for these two parameters.

The simulation results show that the Bayesian methods performed better than the
Wald CI based on the MLE. Moreover, the Bayesian method based on the uniform prior
was more efficient than the one based on the Jeffreys prior. Since the optimization method
is sometimes unsuitable for a model that is complex, the Wald-based CI provided the worst
estimates. The efficacy of the proposed ZOICG model for analyzing real data containing
excess zeros and ones (new daily COVID-19 deaths in Luxembourg in 2020) was excellent,
and so it is recommended in these circumstances. In future research, some characteris-
tics and properties of the ZOICG distribution and statistical methods for estimating the
parameters of this model should be further investigated.

7. Conclusions

The proposed ZOICG distribution with reparameterization is useful for analyzing
datasets with excess zeros and ones. It can detect the proportion of zeros and ones by using
five methods that provide CPs close to the nominal level. However, the other parameters of
the model (p and θ) are difficult to estimate, since their MLEs and their marginal posterior
distributions do not have closed forms. From the simulation results, the Wald CI provided
unsuitable CPs for the parameter θ under all scenarios tested. Hence, the Metropolis–
Hastings steps within a Gibbs sampling algorithm were used to estimate them. The results
show that the Bayesian method based on the uniform prior performed better than the
others in most situations, and so it is recommended for estimating the 95% CIs for the
parameters of the ZOICG model.

In the application study, we showed that the proposed ZOICG distribution is appro-
priate for analyzing datasets with excess zeros and ones, such as the number of new daily
COVID-19 deaths in Luxembourg in 2020. Thus, the ZOICG model is suitable for analyzing
overdispersed count data, especially those with a high index of dispersion. Furthermore,
the proposed model performed well with the Bayesian-derived CI based on a uniform
prior in estimating the parameters of the ZOICG model in both the simulation and ap-
plication studies. Other statistical parameters, such as the mean, will be investigated in
future research because they play an important role in statistical inference. There have
not been many research articles published on CIs for the mean of a zero-and-one inflated
population [25]. Therefore, we will investigate this in the near future.
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Abbreviations
The following abbreviations are used in this manuscript:

CI Confidence interval
CP Coverage probability
AL Average length
B.uniform The dual-tail Bayesian confidence interval with the uniform prior
B.Jeffreys The dual-tail Bayesian confidence interval with the Jeffreys prior
HPD.uniform The highest posterior density interval with the uniform prior
HPD.jeffreys The highest posterior density interval with the Jeffreys prior
ZICG Zero-inflated cosine geometric
ZOICG Zero-and-one inflated cosine geometric
ZIP Zero-inflated Poisson
ZIG Zero-inflated geometric
ZINB Zero-inflated negative binomial
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