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Abstract: In this paper, we consider a simple road intersection with traffic light control and suggest
a queueing model for the traffic flow in the intersection. The suggested model implements the
well-known queue with state-dependent departure rates. Using this model, we define optimal state-
dependent scheduling of the traffic lights in the intersection and consider its properties. Activity of
the model is illustrated by numerical simulations. It is demonstrated that in practical conditions the
suggested scheduling of the traffic lights allows the prevention of traffic jams in the intersection and
resolves vehicles queues with reasonable waiting times in the crossing lanes.
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1. Introduction

The queueing theory is one of the basic mathematical tools for analysis of both in-
terrupted and uninterrupted traffic flows. The studies of uninterrupted flows using this
theory can be tracked back to the 1950s (for historical notes see [1]). A classical paper [2]
suggests the widely accepted interpretation of the problems appearing in the studies of
traffic in the terms of queueing theory, and contemporary textbooks (see e.g., [3]) follow
this direction.

The studies of interrupted traffic flows consider both the flows interrupted by arbitrary
events, such as road accidents [4], and the flows interrupted by traffic control means, such
as stop signs and traffic lights [5]. Usually, the interrupted flows are modelled by the
M/M/1 queues and their extensions or considered as bulk service systems modelled by the
MX/MY/1 queues. In the analysis of controlled intersections, each lane is specified as an
independent queue, and the traffic lights govern an alternation between these queues [3,6,7].
For brief overview of the queueing models of the traffic flows see [8].

In addition to the usual queue’s attributes, traffic flows have certain characteristics,
such as startup delays and yellow utilization periods [9], which play an essential role in
the functionality of intersections and must be concerned in the models. These variable
parameters can be considered using the methods of the queues with varying rates [5].

Formally, the queues with varying rates are divided into several types: the queues
with time-dependent rates (see the seminal work [10] and its successors, e.g., [11,12]), the
queues with event-dependent rates (the queue with event-dependent arrival rate is studied
in [13]), and the queues with state-dependent rates [14–16] (see also chapter 2.9 in the
textbook [17]).

In the paper, we follow the last approach and suggest a new model for traffic flow in
the controlled intersection in the form of alternating M/Mn/1 queues with state-dependent
departure rates. Then, the traffic lights in the intersection are controlled using only the
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arrival rates in the lanes as inputs, without referring to additional external parameters that
provide direct adaptation of the scheduling to the traffic flow and queues at the entrance of
the intersection.

The presented model is the first attempt of applying the state-dependent queue to
intersection scheduling, and we use it to define an optimal schedule for traffic lights in
the simplest intersection. Activity of the intersection according to the suggested model is
verified by numerical simulations.

2. Problem Formulation

Consider a simple road intersection controlled by traffic lights, as shown in Figure 1.
The intersection includes two pairs of the lanes: from north to south and from south to
north, and from east to west and from west to east. The vehicles follow the directions
indicated by the arrows. Motion of the vehicles is regulated by four standard traffic lights
placed on the corners of the intersection.
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Figure 1. The road intersection with four lanes controlled by the standard red–yellow–green traffic
lights. Directions of the vehicles’ movements from north (N ) to south (S ) and backward, and from
east (E ) to west (W ) and backward are denoted by the arrows. While arriving to the intersection, the
vehicles may or may not stop before the stop lines
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at the entrances to the intersection.

The shown intersection represents the simplest situation, which allows intuitively
clear modelling. The vehicles arrive to the entrances of the intersection and if green lights
are switched on, they continue in their lanes via the intersection and then exit from it.
Certainly, if green lights are switched on in the lanes from north to south and from south to
north, then red lights in the lanes from west to east and from east to west must be switched
off, and vice versa. In addition, to avoid accidents caused by physical and psychological
reasons, between green and red lights switching on and off, in all lanes certain periods of
yellow lights switching on are used. Then, the complete transportation circle in each lane is
the following sequence of switches: green light, yellow light, red light, yellow light, and
then again green light and so on.

In the simple road intersection shown in Figure 1, the lanes from north to south and
from south to north act in parallel, so the switches of the traffic lights in these lanes are
equivalent. The lanes from west to east and from east to west also act in parallel, but the
switches in these lanes oppose the switches in the lanes from north to south and from south
to north. As a result, while the vehicles in the lanes from north to south and from south to
north follow through the intersection, the vehicles in the lanes from west to east and from
east to west wait in the queues and vice versa.
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The overall traffic in the intersection includes traffic flows in all the lanes with min-
imal waiting times that requires optimal alternating between the flows in the lanes. The
alternating between the traffic flows is defined by the traffic lights scheduling that must,
on one hand, provide maximal traffic in the intersection, and, on the other hand, prevent
accidents between the vehicles from the crossing flows. Therefore, the problem is to define
the scheduling which provides these results.

3. Suggested Model

The formulated problem consists of two parts: description of the traffic flows in the
lanes of the interchange, and specification of the alternating between crossing traffic flows.

3.1. The Queueing Model of the Controlled Traffic Flow in the Lane

Since all four lanes in the considered intersection are equivalent, we can model any
one of them and then distribute the results to the other. For example, let us consider the
east–west lane shown in Figure 2.
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The transportation circle in the lane is as follows [9,18]:

1. The green light switches on at time τ0. After the startup delay ∆1, the first vehicle
enters the intersection (crosses the stop line) at time τ1 = τ0 + ∆1.

2. The rate of moving through the intersection (through the section between entrance
to and exit from the intersection) increases approximately after the fourth vehicle
reaches its saturation regime.

3. At the saturation regime the vehicles move through the intersection with an approxi-
mately constant rate and the headways between them are approximately equal. The
flow in this regime is called saturation flow.

4. At time τ2 > τ1 green light switches off and yellow light switches on. Some vehicles
continue their movement and exit the intersection, and the other slow down and stop.

5. At time τ3 the last vehicle exits the intersection (passes the exit line). The period
∆3 = τ3 − τ2 is called the yellow utilization period.

6. Finally, at time τ4 > τ3 yellow light switches off and red light switches on, that ends
the flow through the intersection.

Certainly, in real scenarios the presented flow can be disturbed by traffic jams, un-
predictable behavior of the drivers, faults and disfunctions, and so on, but for ordinary
situation the presented description is acceptable.

Let us consider the moments of switching green light. Assume that green light is
switched off and that the arrival of the vehicles to the entrance of the intersection is
governed by the Poisson distribution [17]

Parr(n) =
λn

n!
e−λ, (1)

with the arrival rate λ, which cannot be controlled and is considered as an external factor.
The value Parr(n) is the probability that in the unit time interval the number of vehicles at
the entrance of the intersection is n.

After switching the green light on, the vehicles begin to move through the interchange
and cross the exit line with the departure rate µ1,k, which increases with the number k of
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vehicle up to a constant saturation value. By the conventional approach, we assume that
the departures of the vehicles are governed by exponential distribution [17]

Pdep(k) = µke−µkk, (2)

where Pdep(k) is the probability that in the unit time interval the number of vehicles passed
the exit line of the intersection is k.

To represent the dependence of the departure rate on the vehicle number j, j = 1, 2, . . . , k,
in the arriving flow, we define the departure rate µ1,j as

µ1,0 = const, µ1,1 = µ1,0 + ae−b, µ1,2 = µ1,1 + ae−b2, . . . , µ1,k = µ1,k−1 + ae−bk, (3)

or in the close form as

µ1,k = µ1,0 + a ∑k
j=1 e−bj = µ1,0 + a

e−bk
(

ebk − 1
)

eb − 1
, (4)

where a, b > 0 are parameters representing specific physical conditions in the interchange
like quality of the road, visibility, and so on. Dependence of the departure rate µ1,j on
number j is shown in Figure 3. In the figure, µ1,0 = 0 and a = b = 1.
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Figure 3. Dependence of the departure rate µ1,j on the vehicle number j in the queue while the initial
rate is µ1,0 = 0 and the intersection parameters are a = b = 1.

For these parameters the departure rate converges and for k = 4 (the fourth vehicle)
becomes close to the approximately constant value that coincides with the indicated above
empirical observation.

Now consider the moment of switching the green light off. At this moment the
departure rate begins to decrease and obtains a value of zero at the end of the yellow
utilization period.

We assume that the departure rate after switching the green light off is inverse of the
rate after switching the green light on. Let the number of vehicles in the intersection before
the exit line including the vehicles before the entrance be k. Then the departure rates of the
exiting vehicles are

µ0,0 = const, µ0,1 = µ0,0 − ae−b, µ0,2 = µ0,1 − ae−b2, . . . , µ0,k = µ0,k−1 − ae−bk, (5)

or in the close form are

µ0,k = µ0,0 − a ∑k
j=1 e−bj = µ0,0 − a

e−bk
(

ebk − 1
)

eb − 1
, (6)

Dependence of the departure rate µ0,j on number j is shown in Figure 4. In the figure,
µ0,0 = µ1,k and a = b = 1.
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Figure 4. Dependence of the departure rate µ0,j on vehicle number j in the queue while the initial
rate is µ0,0 = µ1,k and the intersection parameters are a = b = 1.

Thus, the switches of green, yellow and red lights govern the alternating between two
M/Mn/1 queues: one with the increasing and the other with the decreasing departure rates.

Note that the implemented dependences of the departure rates µ1 and µ0 on the
vehicle number j in the queue are heuristic and can be substituted by other appropriate
monotonically increasing and decreasing functions, respectively.

The queue M/Mn/1, in which arrival is governed by Poisson distribution with con-
stant arrival rate λ and departure is governed by exponential distribution with state-
dependent departure rate µn, was suggested by Harris in 1967 [14]. A simple explanation
of the properties of this queue is presented in the textbook [17]. In 2016, Abouee-Mehrizi
and Baron [16] extended this definition to the M/G/1 queue; however, for the considered
problem we remain with the M/Mn/1 queue with the defined above rates.

Recall that in the M/M/1 queue with arrival rate λ and departure or service rate µ,
the expected number of customers in service (also interpreted as the offered load or the
utilization coefficient) is defined by the ratio [17]

ρ =
λ

µ
, (7)

and necessary and sufficient condition for the system to be in the steady state is

ρ < 1. (8)

In the traffic flows analysis, the ratio ρ is called the traffic intensity [3], and condition (8)
guarantees continuous flow of the traffic.

Denote by t0 the period between the moments of the green light switching off and on
and by t1 the period between the moments of the green light switching on and off. During
the period t0 the yellow and red lights are switching on and off, and during the period t1
only the green light is switched on. The diagram of these switches is shown in Figure 5.
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Figure 5. Diagram of the switches of the green light. The green light is switched on during the period
t1 and it is switched off during the period t0. During the period t0 yellow and red lights are also
switched on and off. Dotted line schematically depicts the changes of the traffic in the intersection
(usually called discharge rate [9]).

Let T = t1 + t0 be the time of complete transportation circle. Then, the expected
number nT of vehicles passed in the lane through the intersection during the transportation
circle is

t1µ1 + t0µ0 = nT , (9)
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and departure rate is
t1µ1 + t0µ0

T
= µT . (10)

From condition (8) it follows that for steady traffic flow in the intersection we need to
satisfy the following inequality

λ < µT , (11)

which for given λ means the requirement to maximize the departure rate µT .

Lemma 1. The departure rate µT reaches its maximum if t1 = T and t0 = 0.

Proof. The decreasing of the traffic flow after switching the green light off begins from the
number k of vehicles, which entered the intersection when the green light was switched on,
that is, µ0,0 = µ1,k. Then from Formulas (4) and (6) it directly follows that the number nT
reaches its maximum

nT = Tµ1,k, (12)

for t1 = T and so t0 = T − t1 = 0. �

Intuitively the statement of the lemma is obvious: if the green light in the lane is
always switched on, then the throughput of this lane is maximal. It means that µT = µ1,
which follows from Equation (12).

3.2. The Queueing Model of the Controlled Traffic Flow in the Simple Crossroad

Let us apply the model of traffic flow in the lane to description of the flow in the
intersection, which is a simple crossroad with two lanes. The scheme of the intersection is
shown in Figure 6.
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Figure 6. Simple intersection of two lanes controlled by standard red-yellow-green traffic lights.
Directions of the vehicles movements from south (S ) to north (N ) and from east (E ) to west (W ) are
denoted by the arrows. While arriving to the intersection, the vehicles may or may not stop before the
stop lines
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In this intersection, which is a cross of two lanes, the vehicles follow from south
to north and from east to west, and the flow in each lane is controlled by the standard
red–yellow–green traffic lights.

The diagram of the traffic lights’ switches is shown in Figure 7. In the figure, the upper
indices define the lane. Similar to Figure 5, t1

1 and t2
1 are the periods during which the green
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light is switched on in the first and in the second lane, respectively. The periods t1
0 and t2

0,
during which green light is switched off are divided into three parts:

tl
0 = tl

0,1 + tl
0,2 + tl

0,3, l = 1, 2, (13)

during tl
0,1 yellow light (switched after green) is switched on, during tl

0,2 red light is
switched on and during tl

0,3 yellow light (switched after red) is switched on.
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Figure 7. Diagram of the lights’ switches in the lanes 1 and 2. The green light is switched on during
the periods t1

1 and t2
1, and it is switched off during the periods t1

0 and t2
0. The periods tl

0, l = 1, 2,
consist of three parts tl

0,1, tl
0,2 and tl

0,3 during which yellow and red lights are switched on.

Denote by λ1 and µ1 arrival and departure rates in the lane 1 and by λ2 and µ2

arrival and departure rates in the lane 2. In the notation of the departure rates, we will
also use the bottom indices, which specify the considered period. As above, we assume
that the traffic in each lane is described by the M/Mn/1 queue with the rates defined by
Equations (4) and (6).

Consider lane 1 directed from south to north. Assume that the green light is switched
off and the number of vehicles in the lane 1 of the intersection is k1

1. Note that an expected
number Lq of vehicles in the lane is defined by the time t1

0 during which green light was
switched off and the arrival rate λ1

L1
q1 = t1

0λ1. (14)

Then, if the number k1
1 is unknown, the value L1

q1 instead can be used.

Since the green light is switched off, the departure rate in the lane is µ1
1,0 = 0. In the

moment the green light is switching on, the vehicles start to follow through the intersection,
and departure rate of the first vehicle in the queue is µ1

1,1. The second vehicle follows
through the intersection with the departure rate µ1

1,2 and so on up to the last vehicle, which
follow the intersection with the departure rate µ1

1,k1
1
.

Denote the vehicle number in the queue by j, j = 1, 2, . . . , k1
1. The expected time

required to the jth vehicle to pass the intersection after switching green light on is

τ1
1,j =

j
µ1

1,j
. (15)
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The total time required to k1
1 vehicles to pass the intersection is

T1
1,k1

1
= τ1

1,k1
1
=

k1
1

µ1
1,k1

1

. (16)

Dependence of the total time T1
1,k1

1
on the number k1

1 of vehicles is shown in Figure 8,

where, as above, the departure rates µ1
1,j are defined by Equations (3) and (4) with µ1,0 = 0

and a = b = 1.
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Figure 8. Dependence of the total time T1
1,k1

1
on the number k1

1 of vehicles. The departure rates µ1
1,j

are defined by Equations (3) and (4) with the parameters µ1,0 = 0 and a = b = 1.

Note again that the total time T1
1,k1

1
is equivalent to the time τ1

1,k1
1

required to the jth

vehicle to pass the intersection after switching green light on.
Assume that the period t1

1 while green light in lane 1 is switched on is equal to the
time T1

1,k1
1

required to k1
1 vehicles to pass through the intersection:

t1
1 = T1

1,k1
1
. (17)

Then, after the period t1
1 green light switches off and yellow light switches on.

The yellow utilization period tl
0,1 is defined as follows. At the end of the period t1

1 the
departure rate is µ1

1,k1
1

and it is the departure rate µ1
0,0 = µ1

1,k1
1

in the moment of switching

green light off and yellow light on. Thus, at this moment traffic intensity is

ρ1
0 =

λ1

µ1
0,0

, (18)

and an expected queue length [17], which is an expected number of vehicles in the queue [6], is

L1
q0 = ρ1

0L1
0 = ρ1

0
ρ1

0

1 − ρ1
0

, (19)

where L1
0 is an expected number of vehicles in the flow through the intersection at the

moment of switching green light off and yellow light on.
Now similarly to Equations (15) and (16), we have

τ1
0,j =

j
µ1

0,j
, j = 1, 2, . . . , L1

q0, (20)

and an expected total time required to L1
q0 vehicles to utilize the yellow period is

T1
0,L1

q0
=

L1
q0

µ1
0,1 − µ1

1,L1
q0

. (21)

Dependence of total time T1
0,L1

q0
on the number L1

q0 of vehicles is shown in Figure 9.
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Figure 9. Dependence of the total time T1
0,L1

q0
on the number L1

q0 of vehicles. The departure rates µ1
0,j

are defined by Equations (5) and (6) with the parameters µ0,0 = µ1
1,k1

1
and a = b = 1.

Following general requirement that during the period tl
0,1 when the yellow light is

switched on the vehicles must exit the intersection, we assume that this period is equal to
the time T1

0,L1
q0

t1
0,1 = T1

0,L1
q0

. (22)

By the presented reasoning for lane 1, we obtained two values: the period t1
1 when the

green light is switched on and the period t1
0,1 when the yellow light is switched on, both

with respect to the rates λ1 and µ1
1. By the same reasoning applied to the lane 2, we can

also define the period t2
1 and the period t2

0,1, both with respect to the rates λ2 and µ2
1.

Then, an optimal scheduling of the traffic lights in the intersection is supplied by the
following obvious fact.

Lemma 2. Throughput in the intersection reaches its maximum if t1
0,2 = t2

1, t1
0,3 = t2

0,1 and
t2
0,2 = t1

1, t2
0,3 = t1

0,1.

Proof. Truthiness of the lemma follows directly from the observation (see Lemma 1) that
for reaching a maximal departure rate during the transportation circle, for lane 1 the period
when the green light is switched off must be as short as possible, and for lane 2 this period
of lane 1 must be as long as possible, and vice versa. �

Figure 7 represents this synchronization of the switches.
Finally, let us define the criterion for changing the traffic lights. Assume that the green

light in lane 1 is switched on and the system is in steady state. Then the traffic intensity in
lane 1 is

ρ1
1 =

λ1

µ1
1

, (23)

and an expected number of the vehicles passing the intersection in lane 1 is

L1
1 =

ρ1
1

1 − ρ1
1

. (24)

On the other hand, during the period t2
0,2 = t1

1 the number of vehicles in the queue in
lane 2 reaches the value

n2
0,2 = t2

0,2λ2. (25)

Then, to satisfy Lemma 2 the green light in lane 1 must be switched off in the moment
when number n2

0,2 of vehicles in the queue in lane 2 becomes greater than the value L1
1:

n2
0,2 > L1

1, (26)

The same criterion for lane 2 is written as

n1
0,2 > L2

1, (27)
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where n1
0,2 is a number of vehicles in the queue in lane 1 and L2

1 is an expected number of
vehicles passing the intersection in lane 2.

Thereby, we obtained the model which specifies the required times and criteria for
scheduling traffic lights in a single lane and in the simplest cross of two lanes. In the next
section, we use this model for analysis of the intersection declared in Section 2.

4. Solution of the Problem: Control of the Road Intersection with Four Lanes

We apply the suggested models of scheduling traffic lights in a single lane and in the
intersection of two lanes to the intersection of four lanes.

4.1. Scheduling the Traffic Lights

The considered intersection of four lanes (see Figure 1) does not allow left and right
turns; thus, it is the direct extension of the considered intersection of two lanes. As above,
we refer to the lane from south to north as to lane 1 and to the lane from east to west as to
lane 2. In addition, we denote the lane from north to south as lane 3 and the lane from west
to east as lane 4.

The lanes 1 and 3 act in parallel and restrict the traffic in the lanes 2 and 4 which also
work in parallel and restrict the traffic in the lanes 1 and 3. At the same time, lanes 1 and 3
are independent and do not restrict the traffic in each other, and the same holds for the
lanes 2 and 4.

There are several ways to schedule the lights in this situation. For example, following
the model presented in Section 3.2, we can independently schedule the lights for the
intersections of the lanes 1 and 2 and of the lanes 3 and 4, and then synchronize these two
intersections. Or, alternatively, we can combine the independent lanes 1 and 3 into one lane
A and the independent lanes 2 and 4 into one lane B and then schedule the lights in the
intersection of the lanes A and B and consider the intersection of the lanes A and B. Below
we follow the second option. The intersection of the combined lanes A and B is shown
in Figure 10.
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The intersection of the combined lanes is a simple intersection of two lanes which can
be directly considered using the model suggested in Section 3.2. However, to apply this
model, the arrival and departure rates and the numbers of the vehicles in the lanes must
be defined.
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To associate the variables and parameters with the lanes A and B we use the upper
indices a and b, respectively. Thus, by λa and µa we denote arrival and departure rates
in the lane A and by λb and µb arrival and departure rates in the lane B. Similarly, ka and
kb denote the number of vehicles in the lanes A and B, respectively, ta and tb denote the
periods of switching the lights on and off, and so on for the other variables. The bottom
indices have the same meaning as above.

Parameters of the lanes 1 and 3 and of the lanes 2 and 4 can be combined in several
ways. Following the meaning of the considered task, we define the rates λa and µa as
follows. Let

ρi =
λi

µi , i = 1, . . . , 4, (28)

be the traffic intensities of the lanes 1, . . . , 4, correspondingly. Then traffic intensities of the
lanes A and B, are, respectively,

ρa = max
{

ρ1, ρ3
}

and ρb = max
{

ρ2, ρ4
}

. (29)

Consequently, the rates λa, µa and λb, µb are the ratios of the lanes with maximal traffic
intensity, that is

λa =

{
λ1 if ρ1 > ρ3,
λ3 otherwise,

and µa =

{
µ1 if ρ1 > ρ3,
µ3 otherwise,

(30)

and

λb =

{
λ2 if ρ2 > ρ4,
λ4 otherwise,

and µb =

{
µ2 if ρ2 > ρ4,
µ4 otherwise.

(31)

The further reasoning about the combined lanes A and B literally follows the consider-
ations presented in Section 3.2 and applied to the rates λa, µa and λb, µb. As a result, we
obtain the period ta

1 when in the lane A green light is switched on and the period ta
01 when

in the lane A yellow light is switched on. Similarly, for the lane B we obtain the period tb
1

when the green light is switched on and the period tb
01 when the yellow light is switched on.

Then, by Lemma 2 we specify the periods ta
0,2 = tb

1 and tb
0,2 = ta

1 during which the red
lights are switched on and the periods ta

0,3 = tb
0,1 and tb

0,3 = ta
0,1 during which the yellow

lights are switched on.
Finally, we use the calculated periods for definition of the corresponding periods of

switching on green, red, and yellow lights in the lanes 1 and 3 and the lanes 2 and 4. The
periods in the lanes 1 and 3 are defined by the periods in the lane A and the periods in the
lanes 2 and 4 are defined by the periods in the lane B.

From Lemma 2 and Equations (30) and (31), it directly follows that the presented
steps result in maximal throughput in the considered intersection. In the next section we
illustrate this statement and functionality of the intersection by numerical simulations.

4.2. Numerical Simulations

The simulation considers the activity of the intersection of two lanes. The goal of
the simulation is to verify that the suggested method processes the reasonable inputs, in
the considered situation random arrival rates λ1 and λ2, and that in spite of the growth
of the pass and total times (see Figures 8 and 9), the resulting periods t1

1, t2
1 and t1

0, t2
0 do

not diverge.
The simulation procedure directly implements the presented above formulas. The

outline of the procedure is as follows.
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1

1 = 𝜇0,0
1 − 𝑎(𝑒−𝑏𝑘0

1
(𝑒𝑏𝑘0

1
− 1) (𝑒𝑏 − 1)⁄ ); {equation (6) with 𝑘 = 𝑘0

1} 

9. 𝑡1
1 = 𝑘1

1 𝜇1,𝑘1
1

1⁄ ; {period of green light switched on, equation (16), (17)} 

10. 𝑡0,1
1 = 𝑘0

1 (𝜇0,0
1 − 𝜇0,𝑘0

1
1 )⁄ ; {period of yellow light switched on before red, 

equation (21) and (22), Figure 7} 

11.  𝑡0,3
1 = 𝑡0,1

1 ; {period of yellow light switched on after red, Figure 7} 

Lane 2: 

12.  draw arrival rate 𝜆2 randomly 

13.  𝑘1
2 = 𝜆2𝑡0

2; {number of vehicles at the entrance} 

14.  𝜇1,1
2 = 𝑎𝑒−𝑏 ; {equation (4) with 𝜇1,0 = 0 and 𝑘 = 1} 

15.  𝜇1,𝑘1
2

2 = 𝑎(𝑒−𝑏𝑘1
2
(𝑒𝑏𝑘1

2
− 1) (𝑒𝑏 − 1)⁄ ); {equation (4) with 𝜇1,0 = 0 and 𝑘 = 𝑘1

2} 

16. 𝑘0
2 = 𝑘1

2 − 𝑘1
2𝜌2; {number of vehicles at the moment of switching green 

light off, where 𝜌2 = 𝜆2 𝜇1,𝑘1
2

2⁄ , equation (7)} 

17.  𝜇0,0
2 = 𝜇1,𝑘1

2
2

; {initial departure rate, equation (6)} 

18.  𝜇0,𝑘0
2

2 = 𝜇0,0
2 − 𝑎(𝑒−𝑏𝑘0

2
(𝑒𝑏𝑘0

2
− 1) (𝑒𝑏 − 1)⁄ ); {equation (6) with 𝑘 = 𝑘0

2} 

19.  𝑡1
2 = 𝑘1

2 𝜇1,𝑘1
2

2⁄ ; {period of green light switched on, equations (16), (17)} 

20. 𝑡0,1
2 = 𝑘0

2 (𝜇0,0
2 − 𝜇0,𝑘0

2
2 )⁄ ; {period of yellow light switched on before red, 

equations (21) and (22), Figure 7} 

21.  𝑡0,2
2 = 𝑡1

1; {period of red light switched on, Lemma 2} 

22.  𝑡0,3
2 = 𝑡0,1

2 ; {period of yellow light switched on after red, Figure 7} 

23.  𝑡0
2 = 𝑡0,1

2 + 𝑡0,2
2 + 𝑡0,3

2 ; {period of green light switched off} 

Lane 1: 

24.  𝑡0,2
1 = 𝑡1

2; {period of red light switched on, see Lemma 2} 

25.  𝑡0
1 = 𝑡0,1

1 + 𝑡0,2
1 + 𝑡0,3

1 ; {period of green light switched off} 

26.  End for. 

In addition, in the procedure, the conditions 𝜆1 < 𝜇
1,𝑘1

1
1  and 𝜆2 < 𝜇

1,𝑘1
2

2  (see Equation 

(8)) were checked and preserved. 

In addition, in the procedure, the conditions λ1 < µ1
1,k1

1
and λ2 < µ2

1,k2
1

(see Equation (8))

were checked and preserved.
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Example of the periods t1
1, t2

1 and t1
0, t2

0 during which in the lanes 1 and 2 green light is
switched on and off is shown in Figure 11. In the figure the starting periods t1

0 and t2
0 when

green light is switched off are t1
0 = t2

0 = 10 and parameters a = b = 1.
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Figure 11. Periods during which the green light is switched on (t1) and off (t0) in Lane 1 (a)
and Lane 2 (b). In the figure, solid line depicts the periods t1 when the green light is switched
on and dashed line depicts the periods t0 of the green light is switched off. The dotted line denotes
the random values of the scaled arrival rates λ1 (lane 1, (a)) and λ2 (lane 2, (b)).

The periods t1 and t0, during which the green light is switched on and off, coincide
with the arrival rates λ1 and λ0 and preserve finite values. As it was expected, the periods
t1 and t0, on one hand, correlate with the rates λ1 and λ0 in the same lane, but on the other
hand, depend on the arrival rate on the crossing lane.

5. Discussion

The queues theory is one of the basic tools used in traffic analysis and traffic light
control, and its basic principles are considered in the textbooks on transportation engineer-
ing [3,9]. These techniques are used both to describe and analyze of the traffic on highways
and to develop the control schemes of the traffic lights in the roads’ intersections.

The suggested model continues this tradition of modelling traffic in the road intersec-
tions. However, in contrast to the existing models, which are based on M/M/1 queues,
it considers the M/Mn/1 queue with the departure rates depending on the vehicle num-
ber in the queue. Such an approach allows scheduling the traffic lights using one input
measurable parameter, the arrival rate to the intersection, while the departure rates and,
consequently, the periods of switching the lights on and off, are calculated using parameters
of the intersection and heuristic dependence of the departure rate on the vehicle number in
the queue.

This heuristic dependence is the most questionable issue in the model. On one hand,
it is clear that these dependences for green lights switching on and off are defined by
monotonically decreasing and increasing functions, respectively, and that these functions
must obtain the intersection properties as parameters. On the other hand, the form of the
functions and their dependence on the intersection’s parameters are arbitrary and must be
defined with respect to the considered situation.

In the paper, we considered the simplest intersection without turns, pedestrian cross-
ing, bus stops, and so on, and verified the model for this intersection. In addition, we
had not considered the issue of accident avoidance. We assumed that during the yellow
utilization period the vehicles will exit from the intersection and will free the intersection
for the vehicles starting to enter from the crossing lane after red light switching off. In the
next studies, and especially in the intersections with turns, this issue must be considered
in detail. As it follows for numerical simulations, the model correctly processes the rea-
sonable inputs and provides the lights’ scheduling, which correctly reacts on the counted
arrival rates.
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The suggested model complements the existing queue theory models of scheduling
traffic lights [6,7,18], and can be used as a generic basis for modeling specific intersections
and controlling the traffic lights.

Implementation of the suggested model, even in its current simple form, to scheduling
traffic lights may help to prevent traffic jams in intersections and resolve vehicle queues
with reasonable waiting times in the crossing lanes.

6. Conclusions

In the paper, we presented a new model for scheduling traffic lights in the controlled
intersection. Following the model, the intersection is described by alternating M/Mn/1
queues with state-dependent departure rates.

Given the parameters of the intersection, the departure rate of each vehicle is calculated
with respect to the vehicle’s number in the queue. Then, the periods during which the
traffic lights are switched on and off are specified with respect to these departure rates and
the arrival rates in the lanes, which are considered as input values.

The presented model is the first attempt of applying state-dependent queues to the
problem of intersection scheduling. However, even in its current form, the model clearly
describes the intersection activity and results in the reasonable scheduling.

The activity of the intersection and its scheduling according to the suggested model
were validated by numerical simulations which justify the suggested approach.
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