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Abstract: In this work, we present an algorithmic framework that supports a decision process in
which an end user is assisted by a domain expert to solve a problem. In addition, the communication
between the end user and the domain expert is characterized by a limited number of questions and
answers. The framework we have developed helps the domain expert to pinpoint a small number
of questions to the end user to increase the likelihood of their insights being correct. The proposed
framework is based on the domain expert’s knowledge and includes an interaction with both the
domain expert and the end user. The domain expert’s knowledge is represented by a knowledge
graph, and the end user’s information related to the problem is entered into the graph as evidence.
This triggers the inference algorithm in the graph, which suggests to the domain expert the next
question for the end user. The paper presents a detailed proposed framework in a medical diagnostic
domain; however, it can be adapted to additional domains with a similar setup. The software
framework we have developed makes the decision-making process accessible in an interactive and
explainable manner, which includes the use of semantic technology and is, therefore, innovative.
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1. Introduction

In recent years, the world of “big data” has gained significant momentum and con-
tinues to generate opportunities and challenges [1,2]. The various uses of big data have
penetrated almost every field of the technological world. We are interested in the challenge
of integrating big data in the technological realm dealing with decision-making processes
in order to leverage these processes.

These processes can be found in a wide variety of content worlds (medicine, commerce,
education, etc.) and require an understanding of situation awareness, data modeling, and
algorithms for delivering intelligent insights. However, these processes provide different
answers to different needs; thus, there are several types of decision-making processes, each
with a suitable setup [3,4].

In this work, we focus on decision-making processes with the following setup: (a) the
process involves two entities: an end user and a domain expert, (b) the end user initiates
the process, (c) between the two entities there is an interaction that includes questions (of
the domain expert) and answers (of the end user), (d) the interaction between the two
entities is limited as possible (in time, the number of questions, money, etc.).

Given the above setup, the purpose of the presented work is to provide a framework
based on semantic technology that enables integrating big data to assist the domain expert
during the process of decision making, by suggesting to them a set of questions (inferred
from the data) for the end user, that will reduce the cycles of questions and answers.

Consider the following two examples of domains whose processes are naturally
suitable for such a setup: medical diagnosis [5] and appliance repairs [6] (Table 1):
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Table 1. Examples for domains with limited interaction.

Appliance Repairs Medical Diagnosis

Domain expert Service center representative Clinician

End user Customer Patient

Interaction

Limited, as the representative has
a small number of questions for
the end user. Using the end user’s
answers, the representative must
identify the type of fault, and, on
this basis, the treatment will be
determined

Limited, as the clinician has about
10 minutes per patient during
which they (a) ask the patient a
small number of questions
(symptoms), and (b) decide on a
limited number of tests

As noted, the two mentioned domains contain a two-sided limited interaction. The
limitation can be expressed in terms of time, the number of questions, etc. Note that both
domains, the medical and the appliance repairs are broad domains that can be specialized
into specific subdomains. For example, the domain of appliance repairs can be specialized
into construction service, internet service, household faults service, etc. The same goes
for the medical domain. It may also contain subdomains, such as medical counseling in
various fields (e.g., psychology), treatment of urgent medical calls, etc.

The suggested framework includes two main components: (a) a formal representa-
tion of the relevant domain expert’s knowledge using semantic technology, specifically
a knowledge graph, and (b) an interactive set of algorithms that begins with a set of initial
domain values (i.e., prior knowledge of the end user), then, based on this prior knowledge
and the knowledge graph representation, it will suggest specific questions to the end user.
Answers to these questions will advance the domain expert in the decision-making process
and become input for the next iteration. The iterations will continue until the domain
expert is satisfied and a decision is made.

We were motivated to represent the expert’s knowledge via a knowledge graph
as graphs have emerged as a natural way of representing connected data [7]. Efforts
during the last decade have organized large amounts of data as collections of nodes and
edges, especially in recommendation systems, search engine optimization, and decision-
making processes [8–10]. The resulting flexible structure, called a knowledge graph, allows
quick adaptation of complex data and connections through relationships. Their inherent
interconnectivity enables the use of graph algorithms to reveal hidden patterns and infer
new knowledge [11–14]. Furthermore, knowledge graphs are computationally efficient and
scale to very large sizes as exemplified by social graphs analysis [15,16].

Our framework was inspired by the perception presented by Musen and his col-
leagues [17], who are well-known researchers in the field of biomedical informatics, re-
garding information technology that assists with clinical decision support (CDS). Musen
et al. [17] present the guiding principles for systems that provide CDS: their discourse is
about communication rather than retrieving information, recommendations rather than
producing reports, and assisting domain experts to develop more informed judgments.
Respectively, the concept that led us in developing our framework is to provide the domain
expert with recommendations inferred from the analysis of relevant data represented by a
graph and enable him to make an informed decision. Nevertheless, an additional leading
concept was to carry it out with a limited number of iterations. Our framework can be
extended to additional domains.

In the presented work we have introduced a new approach for an interactive frame-
work addressed to support decision-making processes characterized by a limited number
of interactions. The framework is innovative by being generic, using a graph data model,
graph algorithms, and semantic technology. We run our algorithms on a real data set and
demonstrate the framework feasibility in a possible realistic scenario. Hence, we provide a
proof of concept to our framework.
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To illustrate the proposed framework, we begin by reviewing knowledge graphs and
decision-making processes (Section 2). We then define the framework’s terminology and
its algorithms (Section 3). Following this, we demonstrate the framework in the medical
diagnostic domain, using a data set consisting of diseases and patient symptoms (Section 4).
Finally, we summarize and consider potential future directions (Section 5).

2. Background and Prior Works
2.1. Background

In this subsection, we review semantic technologies, and, in particular, knowledge graphs
(KG). Then, we describe the algorithms we used on top of the KG within our framework.

2.1.1. Knowledge Graphs

A knowledge graph encodes data in the form of graph structures by capturing rela-
tionships between entities in a flexible manner. Knowledge graphs, or representations of
information as semantic graphs, have attracted widespread attention in both the industrial
and the academic worlds. Their property of providing semantically structured informa-
tion has realized important solutions for many tasks, including question answering [18],
recommendation systems [8], and information retrieval [19]. Knowledge graphs are also
considered to offer great promise for building more intelligent machines.

2.1.2. Community Detection

With respect to graphs, a community can be defined as a subset of nodes densely
connected to each other and loosely connected to nodes in the other communities in the
same graph. Detecting communities in graphs is an important algorithmic challenge in
the process of data understanding. Many methods have been devised over the last few
years within different scientific disciplines, such as physics, biology, computer science, and
social science. Recent studies show that by combining graph topology and node properties,
we can better understand community structures in complex graphs [20]. Common algo-
rithms for community detection in large graphs are the Louvain method and modularity
optimization, as described below.

2.1.3. Louvain Method

The Louvain method is an algorithm for the detection of communities in large
graphs [21]. For each community, the algorithm maximizes a modularity score. The
modularity quantifies the quality of an assignment of nodes to communities. Namely,
this provides an evaluation of how much more densely connected the nodes within a
community are, compared to what could be expected in a random graph. The Louvain
algorithm is a hierarchical clustering algorithm that recursively merges communities into a
single node and executes the modularity clustering on the condensed graphs, and it stops
when a local maxima of modularity is obtained. The method is a greedy optimization
method, easy to implement and efficient, which appears to run in time O(nlogn) where n is
the number of nodes in the graph.

2.1.4. Modularity Optimization

The modularity optimization is an algorithm for the detection of communities in the
graph based on their modularity [22]. Modularity is a measure of the graph structure. It
measures the density of connections within a module or community. Namely, graphs that
have a high modularity score are those that have many connections within a community,
but only a few connections to other communities. The algorithm then tries to optimize the
modularity score for each of the nodes; namely, it determines whether the modularity score
of a node might increase if it would change its community to one of its connected nodes.
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2.2. Prior Work

In this subsection, we review prior work in the context of decision support frameworks
and then we focus on frameworks based on KG.

2.2.1. Clinical Decision Support Frameworks

According to Osheroff and his colleagues, clinical decision support (CDS) is the process
that “provides clinicians, staff, patients, or other individuals with knowledge and person-
specific information, intelligently filtered or presented at appropriate times, to enhance
health and health care” [23]. Moreover, they claim that “a clinical decision support system
(CDSS) is intended to improve healthcare delivery by enhancing medical decisions with
targeted clinical knowledge, patient information, and other health information” [24]. CDSSs
are used to assist and empower clinicians in their complex decision-making processes [25].
Musen and his colleagues [17] pinpoint the definition of CDSS and clarify that these systems
assist not only by retrieving relevant data but by also considering the specific clinical context
and thereby suggesting recommendations for the particular situation. Musen et al. also
emphasize that CDSSs do not themselves make clinical decisions, but assist the decision
makers (e.g., clinicians, patients, and healthcare organizations) in producing more informed
judgments by providing relevant knowledge and analyses.

The range of functions provided by CDSS is wide and includes alarm systems, di-
agnostics, disease management, and prescription and drug control, among others [26].
They can be implemented in several ways, such as computerized alerts and reminders, or
clinical workflow tools and computerized clinical guidelines, where patient data are taken
into consideration. This last example involves developing a guideline-based point-of-care
decision support system. To develop such systems, it is necessary to first create computer
interpretable representations of the clinical knowledge contained in clinical guidelines [5].

Constructing CDS systems requires the most effort in creating the reasoning engine
and in specifying the knowledge on which the reasoning engine operates. There are
many strategies for accomplishing this, each addressing different requirements, including
infobuttons [27], probabilistic systems [28], rule-based approaches [29], ontology-driven
CDS systems [30], etc.

2.2.2. Knowledge Graph-Based Applications Including Decision Support Frameworks

Quoting Sprague from 1980 [31], the definition for decision support system is: “inter-
active computer-based systems, which help decision makers utilize data and models to
solve unstructured problems”. One of the main challenges in designing efficient decision
support frameworks is knowledge acquisition, especially in complicated and uncertain
decision contexts [32]. Knowledge graphs have emerged as a dynamic, scalable, and
domain-independent form of knowledge representation, as Abu-Salih [33] claims “Knowl-
edge Graphs have made a qualitative leap and effected a real revolution in knowledge
representation”. Abu-Salih continues to argue that the underlying structure of the KG
enables better comprehension, reasoning, and interpretation of knowledge for both humans
and machines. These features attract more and more researchers in recent years to use KG
as the main means to deal with real-life problems in various fields, such as threat detec-
tions [34], interactive recommendations [35], healthcare and medical consultations [36–38],
service system developments [39], designing decision support systems [32], and more. We
elaborate on KG usages, which are similar to our framework, in the following paragraphs.

In recent years, KG penetrated the domain of interactive recommender systems (IRS),
which elicit the dynamic preferences of users and take actions based on their current needs
through real-time multi-turn interactions. Zhou et al. [35] investigated the potential of
leveraging KG to provide rich side information for recommendations of decision-making.
Yet, this system does not focus on restricting the interactions with the end user, as our
framework does.

Huang et al. [37] introduced a framework for an AI-based medical consultation system
with knowledge graph embedding. Their framework implementation leverages knowledge
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organized as a graph to have diagnosis according to evidence collected from patients
recurrently and dynamically. This system, similar to our framework, assists the domain
expert. However, while Huang et al.’s system only serves the domain expert, our sug-
gested framework addresses a situation in which the domain expert conducts a real-time
question and answer interaction with the end user, whose answers are used as input for
our algorithms.

Elnagar and Weistroffer [32] were the first to introduce KG to DSS Design. In their
study, they explored how KGs can enhance the decision-making process in DSSs, by
presenting a framework to integrate a KG into the DSS design. They claimed that using
KG may assist in addressing the limitations of varied, unstructured, and dynamic sources
of data that exist among most organizations. They stated that knowledge graphs can
support the decision-making of enterprises by enhancing the efficacy of all data integration
steps and allowing real-time analysis. However, they use a KG for designing the DSS, i.e.,
without changing the main structure of the DSS design, while our work uses the KG as the
main platform and infrastructure for knowledge acquisition, management, and inference.

To summarize: the framework we suggest for a decision-making process has the
following characteristics and is unique to the best of our knowledge: (a) is grounded on
a knowledge graph, (b) enables dynamic and optimal management and inference of big
data, (c) supports an interactive scenario consisting of questions and answers in real-time
between two entities: a domain expert and an end user, and (d) aims to produce a limited
interaction, i.e., to reduce the number of questions in the scenario.

3. Framework and Algorithms

In this section, we introduce the proposed framework, which includes a collection of
algorithms and the flow between them.

We aim for interaction-based decision-making processes. The interaction is between a
domain expert and an end user, and results in a limited number of iterations, consisting of
questions that the framework suggests the domain expert ask the end user. The decision-
making process will progress according to the end-user’s answers.

When we analyzed these types of processes, we concluded that they can be generically
modeled as a collection of symptoms and diseases. Eventually, the process goal is to assist
the domain expert to decide on a diagnosis (i.e., provide an explanation for a given set of
symptoms based on analyzing available data). Musen described the diagnostic process as
being about deciding which questions to ask, which tests to order, or which procedures to
perform [7,17]. Questions that may arise during the diagnosis process are of the type: Does
the end-user have a particular symptom?

The above terms (i.e., symptoms, diseases, questions, and diagnoses) produce a jargon
that can naturally be used in the medical diagnostic domain, yet it is also suitable for
other domains, such as appliance repairs: the symptom represents a problem, the disease
represents a malfunction, the diagnosis is a fault identification, and a typical question can
be: Does the end-user have a particular problem with his appliance?

When using this jargon in the context of the proposed framework, we replace the
term diagnosis with the term hypothesis, as the framework does not provide the domain
expert with diagnoses, but rather with possible hypotheses. Each hypothesis is in fact a
potential disease, and it is accompanied by a question, which is a symptom that indicates
the disease (hypothesis). Therefore, the jargon we used throughout the paper to describe
the framework and its various algorithms include the terms: symptoms, diseases, questions,
and hypotheses. In particular, the framework infers hypotheses along with their related
questions and submits them to the domain expert, who decides whether to use (or not) the
questions to confirm (or not) the hypotheses (diseases).

In the rest of this section, we describe the framework along with its algorithms, first in
general, then in detail.

In general, we start with building a knowledge graph from raw data, which will assist
in exploring the relationships between diseases and symptoms. Following this, we use
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the Louvain hierarchical clustering [21] on the KG (Algorithm 1) to find communities (i.e.,
clusters of diseases that have similar symptoms). Then, given the symptoms reported by
the end user (called evidence symptoms), we find the possible diseases that are compatible
with the evidence symptoms using inference on the KG (Algorithm 2). At this point, we
infer the most probable community to include the end user disease and suggest to the
domain expert a question (symptom) that indicates this community (Algorithm 3). Lastly,
we find the best hypotheses to suggest to the domain expert (Algorithm 4), i.e., we suggest
to the domain expert diseases and symptoms that the end user might have, to address the
improvement of the diagnostic process.

The whole framework is divided into two main parts: the first part, the pre-processing
part, is carried out once the framework is launched; while the second part, the processing
part, is carried out each time a new request arrives in the framework. The pre-processing
part consists of two steps and one algorithm (Algorithm 1), while the processing part
consists of three steps and three algorithms (Algorithms 2–4), as we describe below.

The data structures we use include the structure for representing the KG (the default
is an adjacency list) and additional structures required for running the algorithms. In the
following paragraphs describing the algorithms, we detail these structures and their use.

Pre-processing part:

Input: A list of diseases and their symptoms
Step 1: Construct a knowledge graph (KG) of diseases and symptoms (see Section 3.1).
Step 2: Cluster the diseases into groups (called communities) according to their symptoms,
i.e., diseases with similar symptoms will be in the same community (Algorithm 1).
Output: (1) each disease is associated with a community within the KG; (2) additional
data structure, called a symptoms community matrix (SCM), represents the associations
between groups of diseases and the various symptoms

Processing part:

Input: k evidence symptoms
Step 1: Find the most probable diseases, i.e., the possible diseases that are compatible with
the evidence symptoms (Algorithm 2).
Step 2: Infer and suggest to the domain expert (repeatedly as required) a question (symptom)
that indicates the most probable community to include the end user disease (Algorithm 3).
Step 3: Infer and suggest to the domain expert a list of hypotheses (diseases the end user
might have) and their related questions (symptoms), sorted by relevance (Algorithm 4).

See Figure 1 for a high-level view of the whole suggested framework. In the following
subsections, we elaborate on each of the above four algorithms in detail.

3.1. Building the Knowledge Graph

In this subsection, we describe the construction of the graph. In addition, we define
framework-specific terminology used to describe the algorithms.

Let KG = (V, E) be a directed graph, which is defined as follows. Let V = D
⋃

S be
the set of nodes, where D is the set of diseases and S is the set of symptoms. The edges of
the graph are defined as follows: E={(s, d) ∈ E | symptom s ∈ S indicates disease d ∈ D},
that is, there is an edge from a symptom s to disease d if s might indicate d.

We demonstrate the graph construction and the four algorithms on a simple KG (named
toy problem), which is presented in Figure 2. The toy problem includes five diseases (repre-
sented by the nodes: d1, d2, d3,d4, d5) and ten symptoms (represented by the nodes: s1 . . . s10),
so symptom 1 indicates disease 1, symptoms 2 and 3 indicate diseases 1 and 2, etc.
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Figure 1. A high-level view of the framework. On the top, we demonstrate the pre-processing part,
on the bottom the processing part.

Figure 2. The toy problem KG.

3.2. Framework-Specific Terminology

The following (Table 2) is the terminology that we use to describe the algorithms.
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Table 2. Definition of terms used in our algorithms.

Term Definition

D The set of diseases nodes

S The set of symptoms nodes

ES The set of evidence symptoms (i.e., the symptoms indicated by the patient)

C The set of communities

|c| The size of a single community c ∈ C.
Defined by the number of diseases that belongs to c

Rc(s,c) The symptom’s community rank of a given s ∈ S and c ∈ C.
Defined by the number of edges that point from s to c

LinD(c)
The local-in-degree of a given c ∈ C.
Defined by the number of edges that point to diseases of c, by ES, hence, it is the
sum of Rc(s,c), for each s ∈ ES and the given c

PD’s communities The set of communities c ∈ C with a positive LinD(c), hence, a community in
which at least one edge from s ∈ ES points to c

Rs(s,c)

Rc(s,c)-
(
∑c 6=c′∈PD Rc(s, c′)

)
Defined by the number of edges from symptom s to community c, less the
number of edges from s to some other community c’. The outcome indicates how
this symptom characterizes c.

cs
Community symptom.Defines a symptom indicating a high number of diseases
in the community c and indicating a low number of diseases out of c. Hence,
given a community c, it is the symptom s with the highest Rs(s,c)

Rd(d)
The disease’s symptoms rank.
Defined by the number of symptoms the patient has that indicate D

3.3. The Framework Algorithms

In this subsection, we describe the algorithms that we developed as part of our framework.
Algorithm 1: Cluster the Diseases

To create the communities, we used the Louvain method [12] (see more details in
Section 2.1). You can see below the pseudo-code of Algorithm 1.

Algorithm 1: Disease Community Detection

Input: Knowledge Graph KG = (D
⋃

S, E).
Output: (1) For every d ∈ D, add a property named community, which determines the community
d belongs to. (2) Symptoms community matrix (SCM), which is exhibited in Table 3.
Algorithm:

1. (preprocessing): for every two diseases d1, d2 ∈ D such that (s, d1) ∈ E, (s, d2) ∈ E, add
e = (d1, d2) ∈ E. At the end of this process, the number of edges between d1 and d2 is the
number of symptoms they share.

2. Apply the Louvain method for community detection on the resulting graph accepted in Step 1.
3. Construct the SCM: an |S|×|C| matrix such that SCM[s, c] = Rc(s,c).
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Table 3. The symptoms community matrix (SCM) derived from the toy problem KG. The evidence
symptoms are highlighted for the future calculation of the LinD for each community.

c1 c2 c3
s1 1 0 0
s2 2 0 0
s3 2 0 0
s4 1 0 1
s5 1 1 0
s6 0 1 0
s7 0 1 0
s8 0 0 2
s9 0 0 2
s10 0 0 1

Given the toy problem KG represented in Figure 2, we present the communities that
were found on that KG in Figure 3. The respective SCM is presented in Table 3, for instance,
SCM[s1][c1] = 1, since there is one edge pointing from s1 to c1.

Figure 3. The toy problem KG, including the communities and evidence symptoms (yellow nodes).

Algorithm 2: Find the Most Probable Diseases
Algorithm 2 receives the evidence symptoms and uses the KG to infer which diseases

explain these evidence symptoms and outputs them. You can see below the pseudo-code
of Algorithm 2.

Algorithm 2: Find the most probable diseases

Input: Knowledge graph KG = (D
⋃

S, E), evidence symptoms ES ⊆ S.
Output: PD ⊆ D- set of possible diseases.
Algorithm:
1. For every symptom s in ES:

1.1 For every disease d such that (s,d)∈E
1.1.1 Add d to PD.
2. Return PD

Based on the given toy problem graph (presented in Figure 2), and on a set of given
evidence symptoms (recall in our example they are d2, d5), the output of Algorithm 2 is
PD = {d1, d2, d3}, thus, the PD’s communities are c1 and c2.
Algorithm 3: Find the Most Probable Community

Algorithm 3 receives the most probable diseases found by Algorithm 2 and uses
the SCM to infer which community (i.e., group of diseases) is more likely to include the
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end-user disease. To determine whether the inferred community is relevant, the algorithm
outputs a symptom (which is a question for the end user) named community symptom (cs).
The answer to this question will help to determine whether the patient disease is one of the
community diseases or not.

If the end user indicates having the symptom, the framework will proceed to Algo-
rithm 4. Otherwise, Algorithm 3 will iteratively continue to search for the next community
with the highest potential to contain the user’s disease and accordingly offer the next
relevant cs.

You can see below the pseudo-code of Algorithm 3.

Algorithm 3: Find the most probable community

Input: possible diseases PD, symptoms community matrix (SCM).
Output: cs and the community it indicates (presented as a question to the domain expert) or null
if it does not exist.
Algorithm:

1. Let C be the list of PD’s communities, sorted by their LinD property, in a decreasing order.
2. Let c ∈ C be the current community in the order.
3. For every symptom s /∈ ES in SCM(_,c), calculate Rs (s,c).
4. Let s′ = argmaxs′/∈ESRs(s’,c). If Rs(s’,c) > 0, return s’ (i.e., cs) and c. Otherwise, return to step 2.
5. Return null.

Based on the given PD = {d1, d2, d3} (output by Algorithm 2) that resulted with
c1 and c2 as the PD’s communities, the respective LinD(c1) is 3 and LinD(c2) is 1 (i.e.,
LinD(c1) is the sum SCM[s2,c1] + SCM[s5,c1], as it is presented in Table 3). As c1 has the
highest LinD, we calculate Rs for each symptom with respect to c1 and compared to c2.
s3 has the highest Rs, as Rc(s3, c1)− Rc(s3, c2) yields the maximum value (=2). Thus, the
algorithm outputs c1 and s3 as its respective cs and presents them to the domain expert.
Algorithm 4: Find Disease Symptoms

Algorithm 4 receives the evidence symptoms and a community c and uses the SCM to
infer which diseases in c are more likely to explain the patient’s symptoms. The output of
the algorithm is a list of ordered pairs R. Each pair consists of a hypothesis (disease) and its
related question (symptom), the answers to which might help the diagnosis process. You
can see below the pseudo-code of Algorithm 4.

We define an order between hypotheses in the community c as follows:
(i) Let h1 and h2 be two hypotheses with the same number of evidence symptoms indi-

cating them (that is, Rd(h1) = Rd(h2)) and let s1 and s2 be two symptoms that strengthen
them, respectively. Then, hypothesis h1 is before h2 in the order if Rc(s1) ≤ Rc(s2).

(ii) Let h1 and h2 be two different hypotheses such that Rd(h1) < Rd(h2). Then, h1 is
before h2 in the order.

Algorithm 4: Find Disease Symptom

Input: Community c, evidence symptoms ES, symptoms community matrix (SCM).
Output: a list (R) consisting of ordered pairs. Each pair consists of a hypothesis (disease) and its
related question (symptom). The pairs are sorted by their relevance defined above.
Algorithm:

1. Let R be an empty list.
2. Let D be the list of diseases in c, sorted in a decreasing order by their Rd.
3. Let S = SCM(_,c)\ES be the list of symptoms in community c, without the evidence

symptoms, sorted in an increasing order by their Rc.
4. For each d ∈ D: 4.1. for each s’ in S such that (d,s’) ∈ E, add (d,s’) to R.
5. Return R ordered by relevance.

Based on the previous output, let us consider that s3 is a symptom that the end
user indicates they have. Thus, we assume that c1 is more likely to include the end user
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disease. At that point, the algorithm calculates for each disease in c1 their Rd: Rd(d1) = 2
and Rd(d2) = 3. Thus, the sorted list D includes (d1, d2). Then, the algorithm sorts the
symptoms of c1 (excluding the evidence symptoms, in our case s2, s3, and s5), by their
Rc: Rc(s1, c1) = 1 and Rc(s4, c1) = 1. Thus, the sorted list S includes (s1, s4). Finally, the
algorithm returns the sorted list R, which includes the following pairs: [(d2, s4),(d1, s1)].

At that point, R is presented to the domain expert for further consideration.

4. Case Study Scenario

To examine the proposed framework, particularly the use of the algorithms listed in
Section 3, we used a data set composed of patients’ records that were taken from Kaggle
(https://www.kaggle.com/ (accessed on 25/October/2022)) (described in Section 4.1). We
ran a sample scenario on the given data set, which is presented in Section 4.2, followed by
the results of the algorithms run using the sample scenario (in Section 4.3).

4.1. Data Set Description

The data set contained a total of 410 patient records. Each record referred to one patient
and included the name of the disease and the symptoms the patient was experiencing. The
data set included a total of 41 different diseases and most of the known symptoms that can
characterize the specific disease.

The number of disease symptoms ranges from 4 to 17. The data set included a total of
130 different symptoms. Some of the symptoms were unique and characterized one specific
disease, while others were quite common and characterized various diseases.

4.2. Knowledge Graph Construction and Community Detection

In this paragraph, we demonstrate the pre-processing part, that is, the knowledge
graph construction and the communities’ detection.

The knowledge graph was implemented using Neo4j and constructed as follows: we
created a node for each of the 41 diseases and 130 symptoms. We created an edge between
a symptom node and a disease node if that symptom characterized the disease. Some of
the symptom nodes characterize multiple diseases, and thus have multiple connections.

After building the graph, we ran Algorithm 1 for community detection (if you recall,
we used the Louvain method). This part was implemented using Neo4j Graph Data Science
library (https://neo4j.com/docs/graph-data-science/current/algorithms/ (accessed on 17
August 2022)). Four communities were identified. Figure 4 exhibits the knowledge graph
along with the detected communities. For clarity, each community is represented by a
distinct color.

4.3. Scenario Description

Let us consider the following scenario: A patient arrives with the following two
symptoms: yellowish skin and itching. These are our evidence symptoms.

Figure 5 depicts a sub-graph derived from the KG, including the evidence symptoms (in
green) and the relations of the symptoms (i.e., the diseases that these symptoms characterize).

For display clarity, we present only some of the relations. In addition, Figure 5 presents
two communities that were found by the community detection algorithm (Algorithm 1).
The first community is colored in yellow and includes drug reaction and chickenpox, while
the second community is colored in gray and includes hepatitis A–E and jaundice.

Running Algorithm 2 outputs the most probable diseases. In our case, they are six
gray nodes that belong to the gray community and two yellow nodes that belong to the
yellow community.

https://www.kaggle.com/
https://neo4j.com/docs/graph-data-science/current/algorithms/
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Figure 4. The detected communities on the knowledge graph (to be uploaded).

Figure 5. The sub-graph derived from the KG.

Algorithm 3 first finds the most probable community, which, as explained in the
previous section, is the community with the highest LinD. As mentioned, in our case we
have two communities: the gray community and the yellow community. The LinD of the
yellow community is three, since three edges are pointing from the evidence symptoms
(the green nodes) to the diseases of the yellow community (yellow nodes): itching pointing
to two yellow nodes (chickenpox and drug reaction) and yellowish skin to one yellow
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node (drug reaction). Similarly, the LinD of the gray community is six: there are six edges
connecting the evidence symptoms with the diseases of the gray community. Thus, the
gray community has the highest LinD.

At this point, Algorithm 3 examines the community with the highest LinD (in our case,
the gray community) to suggest cs: a symptom that is best indicative of this community.
In fact, cs is the symptom with the highest Rs(s,c), given c is the gray community and
compared to the other PD’s communities (in our case the yellow community). Thus, to
find the respective cs, the algorithm calculates Rs for each of the symptoms concerning the
gray community, as can be seen in Figure 6 (table a). We can see that the symptom with the
highest Rs relative to the gray community is abdominal pain. As so, Algorithm 3 outputs
the gray community and its respective cs.

Figure 6. Table A—the Symptom’s Rc for each PD’s community along with the Rs for the gray
community; Table B—the diseases in the gray community with their Rd; Table C—the symptoms
indicating the gray diseases with their Rc.

In the presented scenario, the patient has this symptom, and, therefore, the hypothesis
that the gray community contains one of the patient’s diseases is strengthened. We can
now continue to the last step and run Algorithm 4. Otherwise, if you recall, Algorithm
3 infers (repeatedly as required) the next question (symptom) to indicate the next most
probable community.

Algorithm 4 returns R, which is a list of sorted pairs (disease, symptom), such that
the symptom indicates the disease. The gray diseases are sorted in a decreasing manner
according to their Rd and listed in Figure 6, Table B. In addition, the symptoms indicating
these diseases are sorted increasingly according to their Rc and listed in Figure 6, Table
C. In our case study, the algorithm returns the sorted list R that includes the pairs as they
appear in the following table (Table 4):
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Table 4. The sorted list of hypotheses with their related questions returned by Algorithm 4.

Order Hypothesis (Disease) Question (Symptom)
1 Hepatitis E Stomach bleeding
2 Hepatitis A Joint pain
3 Hepatitis D Joint pain
4 Hepatitis E Joint pain
5 Hepatitis B Fatigue
6 Hepatitis D Fatigue
7 Jaundice High fever
8 Jaundice Fatigue
9 Hepatitis C Fatigue

5. Conclusions and Discussion
5.1. Summary

Decision-making processes are found in almost every area of our lives, and thus the
realm of decision making is constantly evolving and receiving a lot of research attention.
When we come to analyze, model, and implement systems that support these processes,
we are required to focus on a specific sub-domain, since it is almost impossible to provide
one selected solution for all the different requirements of decision-making processes, which
arise from different content worlds.

In the current work, we focus on a sub-domain of decision-making processes charac-
terized by the following characteristics: (a) the trigger for the procedure is an end user’s
request, (b) a domain expert is present, and (c) these two entities have an interaction, in
a real-time scenario, consisting of questions (asked by the domain expert) and answers
(given by the end user) that are limited in nature, i.e., the number of questions the domain
expert addresses to the end user and the answers they receive must be limited.

This sub-domain (we named it “decision-making process with limited interaction”)
includes specific processes, such as an encounter between a physician and a patient, a
contact between a service provider and a customer, an urgent call from a person in need of
help to an assisting party, etc. All the examples below illustrate why the interaction needs
to be limited. As such, one of our goals is to distill the necessary questions, asked by the
domain expert, to assist them in reaching the right decision efficiently.

5.2. Contribution

In the literature review we performed, we found few references to the described
process configuration. Therefore, we believe that our work will provide a contribution to
addressing such a configuration of decision-making processes.

As noted, the algorithmic framework we developed aims to help the domain experts
to pinpoint their questions to the end user. The proposed framework is based on the
knowledge of the domain expert and their interaction with the end users.

The algorithmic framework consists of two parts. In the first part, a knowledge graph
is constructed that characterizes the domain expert’s knowledge. In the second part, as
part of the interaction with the end user, the answers they provide are entered in the graph
as evidence properties and generate a trigger for the inference algorithm in the graph.

As stated, this study aims to provide a generic framework that helps to refine the
work processes with the characteristics mentioned earlier. At the same time, we want to
present a possible use of the framework, and to that end, we chose the medical world as a
case study. Specifically, we focused on the classic problem of medical diagnostics, which
is part of a wide range of clinical decisions [7,17]. Medical diagnostics is a challenge that
in recent decades has led to the development of methodologies and systems to support
clinical decisions [40]. In this chosen case study, the end user is a patient, the domain expert
is a physician, and the interaction is the encounter between them that aims to diagnose the
patient’s disease.
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In this work, we propose a new approach for an interactive framework addressed to
support decision-making processes characterized by a limited number of interactions. The
innovation of the work stems from the use of semantic technologies, including a graphical
data model, combined with unique algorithms. In addition, we tried to provide a generic
framework that can be adapted to other domains beyond the medical domain.

5.3. Limitations

Many researchers are passionate about exploring the potential of artificial intelligence
to support decision making, particularly within the clinical domain [41]. Nevertheless,
there are still complexities researchers are trying to address. For instance, one of the
challenges is to evaluate the improvement, if any, that such systems provide. Vasey and
colleagues argue that “little is known about the outcomes of these systems when used as
adjuncts to human decision making (human vs. human with)”. Via systematic review,
they explored the association between the interactive use of machine learning (ML)-based
diagnostic CDSSs and clinician performance and reported that there is minimal evidence
to suggest that using ML-based CDSSs is associated with improved physician diagnostic
performance, since most studies had a small number of participants [42].

Besides the innovation and uniqueness of our work, there are also several limitations,
which we discuss in the next paragraphs:

• In the case study we presented, we demonstrated the feasibility of the framework
but did not compare its performance to another system or to a real doctor–patient
situation. In other words, we did not carry out a comprehensive evaluation.

• We encountered a difficulty in estimating the complexity of the Algorithms 2–4, as
their activation depends on the data existing in the KG, and on the number of iterations
that will be performed in the interaction between the domain expert and the end user.

• As mentioned, the KG was constructed based on the data of diseases and symptoms
taken from the Kaggle website. The KG was used for examining the case study we
presented, as a proof of concept. Yet, the existing KG cannot be considered as big data.
Knowledge graphs are designed to handle large volumes of data, and in our future
work, we might test the scalability of the framework on a larger scale.

• The data we used did not contain information on the extent to which a symptom is
related to a disease. Therefore, the KG did not have weights on the edges. This issue
will be addressed in our future work, as well as statistical aspects.

5.4. Future Work

The framework we have developed makes the decision-making process accessible in
an interactive and explainable manner, which includes the use of semantic technology and
is, therefore, innovative.

Following our current work, we will aim to produce a comparative analysis of the
suggested framework. The following are potential future directions:

• Using ontologies to enrich semantic reasoning.
• Using a weighted knowledge graph for representing the cost of each question.

In addition, we plan to combine the knowledge graph with medical ontologies having
semantic and verbal data that supplement and/or expand the medical information. Fur-
thermore, integration with specific medical information about patients (test results, medical
background, etc.) can also increase the accuracy of the medical diagnosis.
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