
Citation: Alokla, A.; Gad, W.; Nazih,

W.; Aref, M.; Salem, A.-b.

Pseudocode Generation from Source

Code Using the BART Model.

Mathematics 2022, 10, 3967. https://

doi.org/10.3390/math10213967

Academic Editors: Nebojsa Bacanin

and Catalin Stoean

Received: 2 September 2022

Accepted: 21 October 2022

Published: 25 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Pseudocode Generation from Source Code Using the
BART Model
Anas Alokla 1, Walaa Gad 1 , Waleed Nazih 2,* , Mustafa Aref 1 and Abdel-badeeh Salem 1

1 Faculty of Computers and Information Sciences, Ain Shams University, Abassia, Cairo 11566, Egypt
2 College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University,

Al Kharj 11942, Saudi Arabia
* Correspondence: w.nazeeh@psau.edu.sa

Abstract: In the software development process, more than one developer may work on developing
the same program and bugs in the program may be fixed by a different developer; therefore, under-
standing the source code is an important issue. Pseudocode plays an important role in solving this
problem, as it helps the developer to understand the source code. Recently, transformer-based pre-
trained models achieved remarkable results in machine translation, which is similar to pseudocode
generation. In this paper, we propose a novel automatic pseudocode generation from the source code
based on a pre-trained Bidirectional and Auto-Regressive Transformer (BART) model. We fine-tuned
two pre-trained BART models (i.e., large and base) using a dataset containing source code and its
equivalent pseudocode. In addition, two benchmark datasets (i.e., Django and SPoC) were used to
evaluate the proposed model. The proposed model based on the BART large model outperforms
other state-of-the-art models in terms of BLEU measurement by 15% and 27% for Django and SPoC
datasets, respectively.

Keywords: pseudocode generation; BERT; GPT; BART; natural language processing; neural
machine translation

MSC: 68T50

1. Introduction

In software development and maintenance, developers devote approximately 59% of
their time to comprehending the source code [1,2]. Previous studies have shown that natural
language description (i.e., pseudocode) is important for understanding the source code,
which reduces the required time for software development. Writing a natural language
description for every line of source code is challenging and difficult. As a result, developers
often ignore this process although it is vital.

Several techniques were proposed for converting source code into pseudocode [3–6].
Previous work has used Neural Machine Translation (NMT) [7] and Statistical Machine
Translation (SMT) [8,9]. SMT is based on utilizing statistical methods to find the alignment
between input and output sentences, while NMT uses two neural networks (i.e., encoder
and decoder) [10,11]. The training process of SMT is time consuming, and its results are
not promising compared to NMT.

Transformer [12] was adapted to the Recurrent Neural Network (RNN) [13] and
the Long Short-Term Memory (LSTM) [14] to overcome the vanishing gradient [15] and
exploding gradient [16] problems.

There have been many transform-based models for language modeling such as Bidi-
rectional Encoder Representations from Transformer (BERT) [17], Generative Pre-trained
Transformer (GPT) [18,19], Bidirectional and Auto-Regressive Transformer (BART) [20],
and Text-to-Text Transfer Transformer (T5) [21].

Mathematics 2022, 10, 3967. https://doi.org/10.3390/math10213967 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10213967
https://doi.org/10.3390/math10213967
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7816-3518
https://orcid.org/0000-0003-3153-4251
https://doi.org/10.3390/math10213967
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10213967?type=check_update&version=2

Mathematics 2022, 10, 3967 2 of 14

BERT and GPT are language models that were trained over a huge corpus of unlabeled
text. The GPT is a unidirectional model in which training is used to predict the future
left-to-right context, while BERT is based on bidirectional representations of unlabeled text
by jointly conditioning the left and right context in all layers [17,18].

BART is a modified BERT with an emphasis on natural text generation. It consists of a
bidirectional encoder and an auto-regressive decoder. Additionally, the training procedure
begins by noisily perturbing the input text with functions such as deleting and masking
before attempting to reconstruct the original text sequentially [20].

Furthermore, many applications such as Machine Translation (MT), Machine Summa-
rization (MS), and Question Answering (QA) rely on BART.

In this paper, a novel adapted BART model was proposed for pseudocode generation.
This model used a bidirectional transformer sequence for encoding as in the BERT model
and an auto-regressive decoder for decoding as in the GPT model. This auto-regressive
decoder generates a one-directional, left-to-right transformer sequence.

In addition, we formulated the pseudocode generation problem as MS because we
train the adapted model using input data (i.e., source code) and output data (i.e., pseudo-
code) with the same languages (e.g., English language). The adapted model was trained
with a source code and its equivalent pseudocode while in the testing phase; the model
generated the pseudocode given the input source code. To evaluate the proposed model’s
performance, we measured its BLEU [13] measurement over two standard datasets (i.e.,
Django and SPoC).

To our knowledge, the proposed model is the first attempt to use BART models to
generate pseudocode automatically. Our contributions include the following: (1) formu-
lating pseudocode generation as an MS problem and using BART models for automatic
pseudocode generation; (2) BART hyperparameter search optimization; (3) achieving BLEU
measurements higher than other state-of-the-art models with 15% and 27% over Django
and SPoC datasets, respectively.

This paper is organized as follows: Section 2 presents the related work, Section 3
presents the proposed model, Section 4 shows experimental results, and finally, Section 5 is
the conclusion.

2. Related Work

Machine translation (MT) may be used for a variety of purposes in addition to lin-
guistic translation from one language to another. Summarizing linguistic texts, locating
descriptions of programming techniques, and translating Natural Language (NL) (pseu-
docode) into source code and vice versa are some of the tasks performed by MT.

In [3], the authors proposed a transformer-based system (DLBT) to convert the source
code into pseudocode. This system starts with source code tokenization and embedding. In
addition, it has a post-processing phase after transformer encoding and decoding to handle
some minor errors that may occur during encoding. The biggest advantage of this system
is the handling of missing tokens or those with low frequency.

In [4], the authors used retrieval mechanisms [22] to enhance DLBT’s performance
and solve the problem with input with missing or low-frequency tokens in the training
dataset. This model has three steps; the first step retrieves sentences from the input that
are the most similar to those in the training dataset. The second step passes the retrieved
input into the DLBT. The third step achieves the targeted translation by the process of the
replacement of the retrieved input with the corresponding retrieved translation from the
training dataset.

In [5], the authors modified the transformer model for generating pseudocode from
a source code. They used a transformer encoder containing two components: the first
component is the normal encoder self-attention, while the second component uses a one-
dimensional Convolutional Neural Network (CNN), then a Gated Linear Unit (GLU) [23],
and a residual connection [24]. The output of the second component is responsible for

Mathematics 2022, 10, 3967 3 of 14

source code feature extraction. In addition, results from the encoder components are
combined before feeding into the decoder.

In [6], the authors used a Long Short-Term Memory (LSTM) to build an NMT to
generate the pseudocode from the source code. The encoder and decoder utilized LSTM
and were combined through the attention layer. LSTM was used to avoid the vanishing
gradient problem [15], while the attention layer aligned input and output sentences to
improve the results. The limitation of this system was the time-consuming training process
as it processes every sentence word by word.

In [25], the authors proposed a model consisting of three components to convert
source code to pseudocode. The first component is an encoder with Bidirectional LSTM
(BiLSTM), while the last component is an explanation decoder with attention and copy
mechanisms [26]. In addition, a sketch decoder links the previously mentioned components.
This decoder has LSTM and an attention layer.

In [9], the authors proposed a model based on Phrase-Based Machine Translation
(PBMT) and Tree-to-String Machine Translation (T2SMT). The main role of PBMT is to align
the input source code and output pseudocode. In addition, T2SMT converts the source code
to a tree using Abstract Syntax Trees (ASTs) to maintain its context [27]. The disadvantage
of this model is the low accuracy in the case of hitherto unseen sentences.

In [28], the authors proposed a Rule-Base Machine Translation system (RBMT) for
converting the source code to pseudocode. The RBMT extracts more information from
the source code and converts it to XML code using predefined templates. The proposed
model is dataset based since RBMT should analyze the dataset to design the required rules
and templates.

In [29], the authors designed a transformer-based model to convert the pseudocode
to source code. The proposed model used BERT in the encoder, while the decoder was
the traditional transformer decoder. In addition, the BERT was used to extract features
from the input since the pseudocode is very similar to natural language. The model had
two inputs in the training phase: the source sentence (i.e., pseudocode) to be fed into the
encoder and the target sentence (i.e., source code) to be fed into the decoder. Later, in the
translation phase, only one input was required, which is the source sentence.

Neural Machine Summarization (NMS) for summarizing source code to comments was
proposed in [30]. This model deployed a retrieval-based mechanism to solve the problem
of tokens having a low frequency or even those that did not exist in the training dataset. In
addition, the model worked in two phases: the offline phase for training and the online
phase for testing. In the offline phase, the model utilized an encoder, decoder, and attention
layer to link them. In the online phase, an encoder with two levels of source retrieval
was utilized; then, a decoder regenerated the output by fusing the two outputs of the
aforementioned encoder. Furthermore, the proposed model was evaluated automatically
and manually.

In [31], a large model for code representation was proposed to handle the limitations of
the previous work such as the need for bilingual datasets for training. The proposed model
has multi-layer transformer architecture similar to BART and T5. In addition, it used the
same parameter settings as CodeBERT [32] and GraphCodeBERT [33]. The proposed model
was pre-trained for both generation and classification tasks using large datasets of source
code only. Furthermore, five downstream tasks were used to evaluate the proposed model.

In [34], the authors proposed a model for source code summarization. The proposed
model was based on AST, multi-head attention, residual connection, and Graph Neural
Networks (GNNs) [35]. Two encoders were utilized in this model: the first one processes the
source code, while the second one takes AST embedding and feeds it into GNN. In addition,
they utilized a decoder with three multi-head attention mechanisms. To generate the
output, the summary tokens were fed into a decoder composed of six transformer decoding
blocks. The proposed system was evaluated using two real Java and Python datasets.

Mathematics 2022, 10, 3967 4 of 14

3. The Proposed Model for Pseudocode Generation

In this paper, a novel model based on the bidirectional encoder and auto-regressive
architecture was proposed for pseudocode generation. This model has two main compo-
nents as shown in Figure 1: the bidirectional encoder as in the BERT model [17] and the
auto-regressive decoder as in the GPT model [18].

Mathematics 2022, 10, x FOR PEER REVIEW 4 of 16

decoding blocks. The proposed system was evaluated using two real Java and Python

datasets.

3. The Proposed Model for Pseudocode Generation

In this paper, a novel model based on the bidirectional encoder and auto-regressive

architecture was proposed for pseudocode generation. This model has two main com-

ponents as shown in Figure 1: the bidirectional encoder as in the BERT model [17] and the

auto-regressive decoder as in the GPT model [18].

Figure 1. The BART model architecture.

In addition, there are other components such as a randomly initialized encoder for

embedding the encoder sentences, the liner component for changing the output shape

from auto-regressive to linear vectors, and the softmax component for predicting the

linear vectors to tokens by using the softmax function.

3.1. Bidirectional Encoder

Figure 2 presents the bidirectional encoder of the BART model. The encoding pro-

cess begins with tokens embedded as inputs for transformer encoder blocks (i.e., first

layer). In addition, the output of the previous layer propagates to the next transformer

layers. In the last layer, each transformer encoder outputs a vector that presents the fea-

tures of an input token.

Figure 1. The BART model architecture.

In addition, there are other components such as a randomly initialized encoder for
embedding the encoder sentences, the liner component for changing the output shape
from auto-regressive to linear vectors, and the softmax component for predicting the linear
vectors to tokens by using the softmax function.

3.1. Bidirectional Encoder

Figure 2 presents the bidirectional encoder of the BART model. The encoding process
begins with tokens embedded as inputs for transformer encoder blocks (i.e., first layer). In
addition, the output of the previous layer propagates to the next transformer layers. In
the last layer, each transformer encoder outputs a vector that presents the features of an
input token.

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 16

Figure 2. The bidirectional BART encoder architecture.

The transformer has three components: multi-head attention, add and norm, and

feed-forward [12]. The multi-head attention has several attention layers running in par-

allel. The add and norm component adds the input vectors with the multi-head attention

output and applies a normalized residual. The feed-forward is a feed-forward neural

network.

3.2. Auto-Regressive Decoder

The auto-regressive decoder of the BART model is presented in Figure 3. The au-

to-regressive decoder takes tokens embedded as inputs. The output of each layer is pro-

cessed for the next layer in all the transformer’s layers. In the last layer, each transformer

decoder generates a vector that represents the features of the output tokens.

Figure 3. The auto-regressive BART decoder architecture.

The transformer component in the auto-regressive decoder is similar to that of the

bidirectional encoder but with a second multi-head attention component to link the

output of the bidirectional encoder with the auto-regressive decoder.

3.3. Pre-Trained BART Model

In our work, we fine-tuned two pre-trained BART models (i.e., large and base). The

large model has 12 encoder and decoder layers. In addition, the attention layer in every

transformer encoder and decoder has 16 attention heads. Furthermore, the dimension of

layers (i.e., 𝑑𝑚𝑜𝑑𝑒𝑙) is 1024, and the total number of parameters of the model is 400 M.

Figure 2. The bidirectional BART encoder architecture.

Mathematics 2022, 10, 3967 5 of 14

The transformer has three components: multi-head attention, add and norm, and
feed-forward [12]. The multi-head attention has several attention layers running in parallel.
The add and norm component adds the input vectors with the multi-head attention output
and applies a normalized residual. The feed-forward is a feed-forward neural network.

3.2. Auto-Regressive Decoder

The auto-regressive decoder of the BART model is presented in Figure 3. The auto-
regressive decoder takes tokens embedded as inputs. The output of each layer is processed
for the next layer in all the transformer’s layers. In the last layer, each transformer decoder
generates a vector that represents the features of the output tokens.

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 16

Figure 2. The bidirectional BART encoder architecture.

The transformer has three components: multi-head attention, add and norm, and

feed-forward [12]. The multi-head attention has several attention layers running in par-

allel. The add and norm component adds the input vectors with the multi-head attention

output and applies a normalized residual. The feed-forward is a feed-forward neural

network.

3.2. Auto-Regressive Decoder

The auto-regressive decoder of the BART model is presented in Figure 3. The au-

to-regressive decoder takes tokens embedded as inputs. The output of each layer is pro-

cessed for the next layer in all the transformer’s layers. In the last layer, each transformer

decoder generates a vector that represents the features of the output tokens.

Figure 3. The auto-regressive BART decoder architecture.

The transformer component in the auto-regressive decoder is similar to that of the

bidirectional encoder but with a second multi-head attention component to link the

output of the bidirectional encoder with the auto-regressive decoder.

3.3. Pre-Trained BART Model

In our work, we fine-tuned two pre-trained BART models (i.e., large and base). The

large model has 12 encoder and decoder layers. In addition, the attention layer in every

transformer encoder and decoder has 16 attention heads. Furthermore, the dimension of

layers (i.e., 𝑑𝑚𝑜𝑑𝑒𝑙) is 1024, and the total number of parameters of the model is 400 M.

Figure 3. The auto-regressive BART decoder architecture.

The transformer component in the auto-regressive decoder is similar to that of the
bidirectional encoder but with a second multi-head attention component to link the output
of the bidirectional encoder with the auto-regressive decoder.

3.3. Pre-Trained BART Model

In our work, we fine-tuned two pre-trained BART models (i.e., large and base). The
large model has 12 encoder and decoder layers. In addition, the attention layer in every
transformer encoder and decoder has 16 attention heads. Furthermore, the dimension of
layers (i.e., dmodel) is 1024, and the total number of parameters of the model is 400 M.

The base model was pre-trained using a smaer dataset, so it has a smaller number
of layers and parameters. Table 1 summarizes the differences between large and base
BART models.

Table 1. Description of pre-trained BART models.

Model nlayers dmodel nheads nparams

BART large 12 1024 16 400 M
BART base 6 768 12 110 M

According to [12], transformer complexity for one layer is defined as O
(
d× n2). How-

ever, the proposed model has 6 layers, then the total complexity is O
(
6
(
d× n2)+ 6

(
d× n2))

for base BART, and O
(
12
(
d× n2)+ 12

(
d× n2)) for large BART, where d is the embedding

dimension or dmodel and n is the number of words.

4. Experiments

Our proposed approach used the BART model and reported the performance over
Django [6] and SPoC [36] datasets. In the first experiment, we tried the two versions of the

Mathematics 2022, 10, 3967 6 of 14

BART model (i.e., base and large). Since the large model achieved a better BLEU score over
both datasets, we adopted it in the rest of the experiments.

In the second experiment, we fine-tuned the BART large model over Django [6] and
SPoC [36] to achieve the best BLEU score. Finally, we compared between our proposed
model’s BLEU score and the reported score of other state-of-the-art models.

4.1. Datasets

Django [6] and SPoC [36] datasets were used to evaluate the proposed model. The
Django dataset has Python source code, while the SPoC dataset has C++ source code.
Datasets samples are shown in Figure 4.

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 16

The base model was pre-trained using a smaller dataset, so it has a smaller number

of layers and parameters. Table 1 summarizes the differences between large and base

BART models.

Table 1. Description of pre-trained BART models.

Model 𝒏𝒍𝒂𝒚𝒆𝒓𝒔 𝒅𝒎𝒐𝒅𝒆𝒍 𝒏𝒉𝒆𝒂𝒅𝒔 𝒏𝒑𝒂𝒓𝒂𝒎𝒔

BART large 12 1024 16 400 M

BART base 6 768 12 110 M

According to [12], transformer complexity for one layer is defined as 𝑂(𝑑 × 𝑛2).

However, the proposed model has 6 layers, then the total complexity is 𝑂 (6(𝑑 × 𝑛2) +

6(𝑑 × 𝑛2)) for base BART, and 𝑂 (12(𝑑 × 𝑛2) + 12(𝑑 × 𝑛2)) for large BART, where d

is the embedding dimension or 𝑑𝑚𝑜𝑑𝑒𝑙 and 𝑛 is the number of words.

4. Experiments

Our proposed approach used the BART model and reported the performance over

Django [6] and SPoC [36] datasets. In the first experiment, we tried the two versions of

the BART model (i.e., base and large). Since the large model achieved a better BLEU score

over both datasets, we adopted it in the rest of the experiments.

In the second experiment, we fine-tuned the BART large model over Django [6] and

SPoC [36] to achieve the best BLEU score. Finally, we compared between our proposed

model’s BLEU score and the reported score of other state-of-the-art models.

4.1. Datasets

Django [6] and SPoC [36] datasets were used to evaluate the proposed model. The

Django dataset has Python source code, while the SPoC dataset has C++ source code.

Datasets samples are shown in Figure 4.

Figure 4. Examples of Django and SPoC datasets. Figure 4. Examples of Django and SPoC datasets.

The problem with the SPoC dataset is that some lines of code may have different
pseudocode descriptions. This problem was solved in [3]. The Django and SPoC datasets
were split into training, evaluation, and test datasets. Table 2 presents the number of
samples in training, evaluation, and test datasets for Django and SPoC.

Table 2. The number of training, evaluation, and test samples in Django and SPoC datasets.

Dataset Training Evaluation Test

Django 17,005 600 1200
SPoC 180,962 9000 15,183

4.2. Models’ Parameters

The performance of the BART model is significantly influenced by its parameters. The
performance might improve or worsen based on the values of these parameters.

In addition to the models’ details mentioned in Table 1, we conducted discovery
experiments and attempted different model parameters before settling on the following
values: the learning rate, 0.001; the dropout, 0.1; the maximum length of the input sequence,
128 for the Django dataset and 64 for SPoC dataset; and the number of training epochs, 8
for Django dataset and 5 for SPoC dataset.

Mathematics 2022, 10, 3967 7 of 14

4.3. Performance Measures

The BLEU [13] metric was used for measuring the proposed model’s accuracy. This
metric measures the matching between the models’ outputs and the actual outputs. The
value of the BLEU metric ranges from zero to one. The highest value (i.e., one) indicates that
we have a complete match between the models’ outputs and the actual outputs. Different
forms of BLEU were utilized based on different grams.

Pn =
∑ngramεC countclip(ngram)

∑ngram′εC count(ngram′) . (1)

where Pn is the precision score based on n-gram (e.g., P1 means the precision based on uni-
gram). The ∑ngramεC countclip(ngram) is the summation of the n-gram matches between
the actual sentence and the predicted sentence.

In addition, the clipped n-gram is the number of predicted sentences.
∑ngram′εC count(ngram′). is the number of n-gramn the candidate sentence.

BP(r, c) =

{
e(1−

|r|
|c|) i f |r| ≥ |c|

1 otherwise

}
. (2)

BP is the brevity penalty, r is the actual sentence, |r| is its length, c is the predicated
sentence, and |c| is its length.

BLEU(r, c) = BP(r, c). exp(∑N
n=1 wn. log Pn) (3)

Using n-grams up to length N and positive weights ∑N
n=1 wn summing to one where

wn is a vector such as (1,0,0,0) for uni-gram and (0.5,0.5,0,0) for bi-gram. The accuracy is
the summation of all BLEU scores equal to one and multiplied by the number of sentences
in the test data.

4.4. Results

In the first experiment, we compared the performance of different BART models over
Django and SPoC datasets. An example of the pseudocode generated from the Python
source code using the BART models is shown in Table 3. The pseudocode was produced
in three different ways: manually by a skilled programmer; using BART base; and finally,
using BART large.

In line 1, both BART base and BART large produce the appropriate pseudocode. In line
2, BART base does not generate “a” before “newline” and “character” after “new-line”. It
also replaces “into” with “to the”. BART large does not generate “character” after “newline”
and adds the “a” before the “self. stream”. Both models generated correct semantic and
grammatical sentences but were not as typical as the manual pseudocode.

In line 3, BART base adds “5” before the “arguments” while BART large generates the
correct pseudocode. In line 4, both models removed “string” in the sentence, but BART
base generates the first “string”. Both models generate correct semantic and grammatical
sentences but are not as typical as the manual pseudocode.

In line 5, BART base replaces the “add” with “sum”, which is semantically correct,
while the BART large model generates the correct pseudocode.

Mathematics 2022, 10, 3967 8 of 14

Table 3. The output of BART base and BART large for Django samples.

Python Code Pseudocode

Manually Generated Pseudocode

1
2
3
4
5

if new_name! = col_name:
self. stream. write (b’\n’)
def __init__ (self, context, base, sysid, pubid):
if path. startswith ((‘http://’, ‘https://’, ‘/’)):
dec_part = decimal_sep + dec_part

if new_name is not equal to col_name,
write a newline character into self.stream file stream.
define the method __init__ with arguments self, context, base, sysid and pubid.
if path starts with string ‘http://’ or string ‘https://’ or with string ‘/’,
add decimal_sep and dec_part, substitute the result for dec_part.

BART Base

1
2
3
4
5

if new_name ! = col_name :
self. stream. write (b’\n’)
def __init__ (self, context, base, sysid, pubid):
if path. startswith ((‘http://’, ‘https://’, ‘/’)):
dec_part = decimal_sep + dec_part

if new_name is not equal to col_name,
write newline to the self.stream file stream.
define the method __init__ with 5 arguments: self, context, base, sysid and pubid.
if path starts with string ‘http://’, ‘https://’ or ‘/’,
sum decimal_sep and dec_part, substitute the result for dec_part.

BART Large

1
2
3
4
5

if new_name! = col_name:
self. stream. write (b’\n’)
def __init__ (self, context, base, sysid, pubid):
if path. startswith ((‘http://’, ‘https://’, ‘/’)):
dec_part = decimal_sep + dec_part

if new_name is not equal to col_name,
write a new line into a self.stream file stream.
define the method __init__ with arguments self, context, base, sysid and pubid.
if path starts with ‘http://’, ‘https://’ or ‘/’,
add decimal_sep and dec_part, substitute the result for dec_part.

Table 4 shows the output of repeating the previous experiment over the SPoC dataset
instead of the Django dataset.

Table 4. The output of BART base and BART large for SPoC samples.

C++ Code Pseudocode

Manually Generated Pseudocode

1 int len = s.size(); create integer len with len = size of s
2 cin >> s >> t; read s and t
3 for (int j = 0; j < (n − i * 2 − 1)/2; j ++) {cout << “*”;} for j = 0 to (n − i * 2 − 1)/2, print *
4 if (a == “rock” and b == “paper”) return −1; return −1 if a is equal to “rock” and b = “paper”
5 for (int j = 1; j <= 2 * (i − 1) + 1; j ++) cout << “D”; for j = 1 to 2 * (i − 1) + 1 inclusive, print D

BART Base

1 int len = s.size(); create integer len with len = size of s
2 cin >> s >> t; read s and t
3 for (int j = 0; j < (n − i * 2 − 1)/2; j ++) {cout << “*”;} for j = 0 to (n − i * 2 − 1)/2, exclusive
4 if (a == “rock” and b == “paper”) return −1; if a is equal to “rock” and b is equal“paper” return −1
5 for (int j = 1; j <= 2 * (i − 1) + 1; j ++) cout << “D”; for j = 1 to 2 * (i − 1) + 1, displayD

BART Large

1 int len = s.size(); create integer len with len = size of s
2 cin >> s >> t; read s and t
3 for (int j = 0; j < (n − i * 2 − 1)/2; j ++) {cout << “*”;} for j = 0 to (n − i * 2 − 1)/2, print
4 if (a == “rock” and b == “paper”) return −1; if a is equal to “rock” and b is equal“paper” return −1
5 for (int j = 1; j <= 2 * (i − 1) + 1; j ++) cout << “D”; for j = 1 to 2 * (i − 1) + 1, print D

In lines 1 and 2, both BART base and BART large generate the correct pseudocode.
In line 3, BART base adds the token “exclusive” instead of “print *”—maybe because a
large number of for loops in the dataset have this token. Large BART was better since it
generates “print” instead of “print *”.

Both BART base and BART large generate logically and semantically correct pseu-
docode for lines 4 and 5. In line 4, a “return −1” was added after the condition, and “is
equal” was generated instead of the “=” sign after “b”. In addition, BART base generated
“display” instead of “print” in line 5.

Mathematics 2022, 10, 3967 9 of 14

Since BART large achieved the better performance in the previous experiment, we
conducted the second experiment to fine-tune it to achieve the best accuracy over the
Django and SPoC datasets.

To evaluate the proposed model’s performance, the value of loss function, BLEU
metric, and accuracy were calculated for train, evaluation, and test datasets. Table 5 shows
the aforementioned measurements over the output of fine-tuned BART large that was
trained using the Django dataset and eight epochs.

Table 5. The performance of BART large using Django dataset and 8 epochs.

Epochs 1 2 3 4 5 6 7 8

Train Loss 0.644 0.30 0.270 0.131 0.241 0.375 0.106 0.093
Evaluation Loss 0.543 0.470 0.435 0.417 0.417 0.426 0.437 0.441
Evaluation BLEU 68.59 72.06 74.56 75.41 76.09 76.66 77.20 77.53
Evaluation Accuracy 43.71 49.24 51.26 53.26 54.69 54.63 55.53 56.13
Test BLEU 68.92 72.12 73.52 74.42 75.44 77.15 77.11 77.76
Test Accuracy 46.57 50.12 52.75 53.33 54.80 56.39 56.80 58.31

In addition, Figure 5 shows (a) the accuracy of evaluation, test, and train datasets;
(b) the BLEU of evaluation, test, and train datasets; and (c) the evaluation loss and training
loss for the Django dataset.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 16

(a)

(b)

40

45

50

55

60

65

70

75

A
cc

u
ra

cy

Number of Epochs

Evaluation Accuracy Test Accuracy Train Accuracy

65

70

75

80

85

90

B
LE

U
 S

co
re

Number of Epochs

Evaluation BLUE Test BLUE BLUE TrainFigure 5. Cont.

Mathematics 2022, 10, 3967 10 of 14
Mathematics 2022, 10, x FOR PEER REVIEW 11 of 16

(b)

(c)

Figure 5. Performance of the BART large model for the Django dataset. (a) Accuracy of evaluation,

test, and train datasets. (b) BLEU of evaluation, test, and train datasets. (c) Loss of evaluation and

train dataset.

Table 6 shows the performance measurements over the output of fine‐tuned BART

large that was trained using the SPoC dataset and five epochs.

Table 6. The performance of BART large using SPoC dataset and 5 epochs.

Epoch 1 2 3 4 5

Train Loss 0.328 0.284 0.210 0.181 0.124

Evaluation Loss 0.443 0.400 0.375 0.357 0.327

Evaluation BLEU 70.28 73.32 75.87 75.89 77.05

65

70

75

80

85

90

B
LE
U
 S
co
re

Number of Epochs

Evaluation BLUE Test BLUE BLUE Train

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ss
 V
al
u
e

Number of Epochs

Evaluation Loss Train Loss

Figure 5. Performance of the BART large model for the Django dataset. (a) Accuracy of evaluation,
test, and train datasets. (b) BLEU of evaluation, test, and train datasets. (c) Loss of evaluation and
train dataset.

Table 6 shows the performance measurements over the output of fine-tuned BART
large that was trained using the SPoC dataset and five epochs.

In addition, Figure 6 shows (a) the accuracy of evaluation, test, and train datasets; (b)
the BLEU of evaluation, test, and train datasets; and (c) the evaluation loss and training
loss for the SPoC dataset.

Mathematics 2022, 10, 3967 11 of 14

Table 6. The performance of BART large using SPoC dataset and 5 epochs.

Epoch 1 2 3 4 5

Train Loss 0.328 0.284 0.210 0.181 0.124
Evaluation Loss 0.443 0.400 0.375 0.357 0.327
Evaluation BLEU 70.28 73.32 75.87 75.89 77.05
Evaluation Accuracy 52.83 54.62 57.79 60.18 60.77
Test BLEU 71.58 74.32 75.43 76.89 77.65
Test Accuracy 52.37 56.62 58.09 60.28 61.77
Evaluation BLEU 70.28 73.32 75.87 75.89 77.05
Evaluation Accuracy 52.83 54.62 57.79 60.18 60.77

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 16

(a)

(b)

40

45

50

55

60

65

70

A
cc

u
ra

cy

Number of Epochs

Evaluation Accuracy Test Accuracy Train Accuracy

65

67

69

71

73

75

77

79

81

83

85

B
LE

U
 S

co
re

Number of Epochs

Evaluation BLUE Test BLUE Train BLUE

Figure 6. Cont.

Mathematics 2022, 10, 3967 12 of 14
Mathematics 2022, 10, x FOR PEER REVIEW 13 of 16

(c)

Figure 6. Performance of BART large model for SPoC dataset. (a) Accuracy of evaluation, test, and

train datasets. (b) BLEU of evaluation, test, and train datasets. (c) Loss of evaluation and train da-

taset.

Finally, a comparison between the proposed fine-tuned BART model and the

state-of-the-art systems over the test dataset of Django and SPoC is introduced in Table 7.

BART large achieved the best BLEU score over the Django and SPoC datasets.

Table 7. The comparison between the proposed model and state-of-the-art models on Django and

SPoC datasets.

Dataset Model BLEU

Django BART Large 77.76

BART Base 75.82

Levenshtein Retrieval on 6-layer DLBT [4] 61.96

Levenshtein Retrieval on 8-layer DLBT [4] 61.29

6-layer DLBT Not cross [3] 59.62

8-layer DLBT Not cross [3] 58.58

Code2NL [24] 56.54

code2pseudocode [6] 54.78

T2SMT [9] 54.08

DeepPseudo [5] 50.817

Code-GRU [25] 50.81

Seq2Seq w Atten. [5] 43.96

NoAtt [6] 43.55

RBMT [28] 41.876

CODE-NN [5,25] 40.51

ConvS2S [5] 37.455

Seq2Seq w/o Atten. [5] 36.483

Seq2Seq [25] 28.26

PBMT [9] 25.17

SimpleRNN [6] 06.45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ss

 V
al

u
e

Number of Epochs

Evaluation Loss Train Loss

Figure 6. Performance of BART large model for SPoC dataset. (a) Accuracy of evaluation, test, and
train datasets. (b) BLEU of evaluation, test, and train datasets. (c) Loss of evaluation and train dataset.

Finally, a comparison between the proposed fine-tuned BART model and the state-of-
the-art systems over the test dataset of Django and SPoC is introduced in Table 7. BART
large achieved the best BLEU score over the Django and SPoC datasets.

Table 7. The comparison between the proposed model and state-of-the-art models on Django and
SPoC datasets.

Dataset Model BLEU

Django BART Large 77.76
BART Base 75.82
Levenshtein Retrieval on 6-layer DLBT [4] 61.96
Levenshtein Retrieval on 8-layer DLBT [4] 61.29
6-layer DLBT Not cross [3] 59.62
8-layer DLBT Not cross [3] 58.58
Code2NL [24] 56.54
code2pseudocode [6] 54.78
T2SMT [9] 54.08
DeepPseudo [5] 50.817
Code-GRU [25] 50.81
Seq2Seq w Atten. [5] 43.96
NoAtt [6] 43.55
RBMT [28] 41.876
CODE-NN [5,25] 40.51
ConvS2S [5] 37.455
Seq2Seq w/o Atten. [5] 36.483
Seq2Seq [25] 28.26
PBMT [9] 25.17
SimpleRNN [6] 06.45

SPoC BART Large 77.65
BART Base 76.26
Levenshtein Retrieval on 6-layer DLBT [4] 50.28
6-layer DLBT Not cross [3] 48.12
DeepPseudo [5] 46.454
Transformer [5] 43.738
Seq2Seq w Atten [5] 41.007
ConvS2S [5] 34.197
Seq2Seq w/o Atten. [5] 33.761
CODE-NN [5,25] 32.105

Mathematics 2022, 10, 3967 13 of 14

5. Conclusions and Future Work

A novel, fine-tuned BART model was developed for automatic pseudocode generation.
This model consists of two components: a bidirectional encoder as in the BERT model and
a unidirectional decoder as in the GPT model. The proposed model was evaluated using
benchmark datasets in Python and C++.

The model’s results were better than those of other state-of-the-art models. Testing
BART base with six layers and BART large with 12 layers over the Python dataset, they
achieved 77.76% and 75.82% in terms of BLEU measure. In addition, BART base with six
layers and BART large with 12 layers achieved 77.65% and 76.26% in terms of the BLEU
measure over the C++ dataset.

We are planning to try other pre-trained models bigger than BART and having more
parameters such as T5. Furthermore, we plan to revisit the fine-tuning of other models that
were developed for programming languages such as CodeBERT.

Author Contributions: Conceptualization, W.G. and W.N.; methodology, W.G. and W.N.; software,
A.A.; investigation, A.A., W.G. and W.N.; data curation, A.A.; writing—original draft preparation,
A.A., W.G. and W.N.; writing—review and editing, W.G. and W.N.; supervision on main idea,
references, figures, and experimental outputs, M.A. and A.-b.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets used in experiments are public, and they were retrieved from
the following URLs: https://ahcweb01.naist.jp/pseudogen/ and https://sumith1896.github.io/
spoc/ (accessed on 10 July 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xia, X.; Bao, L.; Lo, D.; Xing, Z.; Hassan, A.E.; Li, S. Measuring program comprehension: A large-scale field study with

professionals. IEEE Trans. Softw. Eng. 2017, 44, 951–976. [CrossRef]
2. Von Mayrhauser, A.; Vans, A.M. Program comprehension during software maintenance and evolution. Computer 1995, 28, 44–55.

[CrossRef]
3. Gad, W.; Alokla, A.; Nazih, W.; Aref, M.; Salem, A.B. DLBT: Deep Learning-Based Transformer to Generate Pseudo-Code from

Source Code. CMC-Comput. Mater. Contin. 2022, 70, 3117–3132. [CrossRef]
4. Alokla, A.; Gad, W.; Nazih, W.; Aref, M.; Salem, A.B. Retrieval-Based Transformer Pseudocode Generation. Mathematics 2022,

10, 604. [CrossRef]
5. Yang, G.; Zhou, Y.; Chen, X.; Yu, C. Fine-Grained Pseudo-Code Generation Method via Code Feature Extraction and Transformer.

In Proceedings of the 28th Asia-Pacific Software Engineering Conference (APSEC), Taipei, Taiwan, 6–9 December 2021; IEEE:
Manhattan, NY, USA, 2021.

6. Alhefdhi, A.; Dam, H.K.; Hata, H.; Ghose, A. Generating Pseudo-Code from Source Code using Deep Learning. In Proceedings
of the 25th Australasian Software Engineering Conference (ASWEC), Adelaide, SA, Australia, 26–30 November 2018; IEEE:
Manhattan, NY, USA, 2018; pp. 21–25.

7. Koehn, P. Neural Machine Translation; Cambridge University Press: Cambridge, UK, 2020.
8. Babhulgaonkar, A.; Bharad, S. Statistical Machine Translation. In Proceedings of the 1st International Conference on Intelligent

Systems and Information Management (ICISIM), Aurangabad, India, 5–6 October 2017; IEEE: Manhattan, NY, USA, 2017;
pp. 62–67.

9. Oda, Y.; Fudaba, H.; Neubig, G.; Hata, H.; Sakti, S.; Toda, T.; Nakamura, S. Learning to Generate Pseudo-Code from Source
Code using Statistical Machine Translation. In Proceedings of the 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), Lincoln, NE, USA, 9–13 November 2015; IEEE: Manhattan, NY, USA, 2015; pp. 574–584.

10. Sennrich, R.; Zhang, B. Revisiting Low-Resource Neural Machine Translation: A Case Study. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 211–221.

11. Mahata, S.K.; Mandal, S.; Das, D.; Bandyopadhyay, S. Smt vs. nmt: A comparison over hindi & Bengali simple sentences. arXiv
2018, arXiv:1812.04898.

12. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, 30, 5998–6008.

https://ahcweb01.naist.jp/pseudogen/
https://sumith1896.github.io/spoc/
https://sumith1896.github.io/spoc/
http://doi.org/10.1109/TSE.2017.2734091
http://doi.org/10.1109/2.402076
http://doi.org/10.32604/cmc.2022.019884
http://doi.org/10.3390/math10040604

Mathematics 2022, 10, 3967 14 of 14

13. Reiter, E. A structured review of the validity of BLEU. Comput. Linguist. 2018, 44, 393–401. [CrossRef]
14. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
15. Roodschild, M.; Sardinas, J.G.; Will, A. A new approach for the vanishing gradient problem on sigmoid activation. Prog. Artif.

Intell. 2020, 9, 351–360. [CrossRef]
16. Pascanu, R.; Mikolov, T.; Bengio, Y. Understanding the exploding gradient problem. arXiv 2012, arXiv:1211.5063.
17. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
18. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving language understanding by generative pre-training. Comput.

Sci. 2018, preprint.
19. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. In Proceedings of the Advances in Neural Information Processing Systems 33 (NeurIPS
2020), Online, 6–12 December 2020; Volume 33, pp. 1877–1901.

20. Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. BART: Denoising
Sequence-to-Sequence Pre-Training for Natural Language Generation, Translation, and Comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 7871–7880.

21. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 1–67.

22. Zhang, J.; Utiyama, M.; Sumita, E.; Neubig, G.; Nakamura, S. Guiding Neural Machine Translation with Retrieved Translation
Pieces. In Proceedings of the NAACL-HLT, New Orleans, LA, USA, 1–6 June 2018; pp. 1325–1335.

23. Dauphin, Y.N.; Fan, A.; Auli, M.; Grangier, D. Language Modeling with Gated Convolutional Networks. In Proceedings of the
International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 933–941.

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

25. Deng, Y.; Huang, H.; Chen, X.; Liu, Z.; Wu, S.; Xuan, J.; Li, Z. From Code to Natural Language: Type-Aware Sketch-Based Seq2Seq
Learning. In Proceedings of the International Conference on Database Systems for Advanced Applications, Hyderabad, India,
11–14 April 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 352–368.

26. Gu, J.; Lu, Z.; Li, H.; Li, V.O. Incorporating Copying Mechanism in Sequence-to-Sequence Learning. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12 August 2016;
pp. 1631–1640.

27. Buch, L.; Andrzejak, A. Learning-Based Recursive Aggregation of Abstract Syntax Trees for Code Clone Detection. In Proceedings
of the 26th International Conference on Software Analysis, Evolution and Reengineering (SANER), Hangzhou, China, 24–27
February 2019; IEEE: Manhattan, NY, USA, 2019; pp. 95–104.

28. Rai, S.; Gupta, A. Generation of Pseudo Code from the Python Source Code using Rule-Based Machine Translation. arXiv 2019,
arXiv:1906.06117.

29. Norouzi, S.; Tang, K.; Cao, Y. Code Generation from Natural Language with Less Prior and More Monolingual Data. arXiv 2021,
arXiv:2101.00259.

30. Zhang, J.; Wang, X.; Zhang, H.; Sun, H.; Liu, X. Retrieval-Based Neural Source Code Summarization. In Proceedings of the 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE), Seoul, Korea, 5–11 October 2020; IEEE: Manhattan,
NY, USA, 2020; pp. 1385–1397.

31. Niu, C.; Li, C.; Ng, V.; Ge, J.; Huang, L.; Luo, B. SPT-Code: Sequence-to-Sequence Pre-Training for Learning Source Code
Representations. In Proceedings of the 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE), Pittsburgh,
PA, USA, 21–29 May 2022; IEEE: Manhattan, NY, USA, 2022; pp. 1–13.

32. Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. CodeBERT: A Pre-Trained
Model for Programming and Natural Languages. Findings of the Association for Computational Linguistics: EMNLP 2020. arXiv
2020, arXiv:2002.08155.

33. Guo, D.; Ren, S.; Lu, S.; Feng, Z.; Tang, D.; Liu, S.; Zhou, L.; Duan, N.; Svyatkovskiy, A.; Fu, S.; et al. Graphcodebert: Pre-training
code representations with data flow. arXiv 2020, arXiv:2009.08366.

34. Guo, J.; Liu, J.; Wan, Y.; Li, L.; Zhou, P. Modeling Hierarchical Syntax Structure with Triplet Position for Source Code Summa-
rization. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Dublin, Ireland, 22–27 May 2022; pp. 486–500.

35. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the Advances in Neural
Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30.

36. Kulal, S.; Pasupat, P.; Chandra, K.; Lee, M.; Padon, O.; Aiken, A.; Liang, P.S. Spoc: Search-based pseudocode to code. In
Proceedings of the Advances in Neural Information Processing Systems 32 (NeurIPS 2019), Vancouver, BC, Canada, 8–14
December 2019; Volume 32.

http://doi.org/10.1162/coli_a_00322
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1007/s13748-020-00218-y

	Introduction
	Related Work
	The Proposed Model for Pseudocode Generation
	Bidirectional Encoder
	Auto-Regressive Decoder
	Pre-Trained BART Model

	Experiments
	Datasets
	Models’ Parameters
	Performance Measures
	Results

	Conclusions and Future Work
	References

