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Abstract: Object recognition is conducted using red, green, and blue (RGB) images in object recogni-
tion studies. However, RGB images in low-light environments or environments where other objects
occlude the target objects cause poor object recognition performance. In contrast, infrared (IR) im-
ages provide acceptable object recognition performance in these environments because they detect
IR waves rather than visible illumination. In this paper, we propose an inter- and intra-weighted
cross-fusion network (Infusion-Net), which improves object recognition performance by combining
the strengths of the RGB-IR image pairs. Infusion-Net connects dual object detection models using a
high-frequency (HF) assistant (HFA) to combine the advantages of RGB-IR images. To extract HF
components, the HFA transforms input images into a discrete cosine transform domain. The extracted
HF components are weighted via pretrained inter- and intra-weights for feature-domain cross-fusion.
The inter-weighted fused features are transmitted to each other’s networks to complement the lim-
itations of each modality. The intra-weighted features are also used to enhance any insufficient
HF components of the target objects. Thus, the experimental results present the superiority of the
proposed network and present improved performance of the multispectral object recognition task.

Keywords: multispectral object detection; inter- and intra-weighted fusion; high-frequency
component; discrete cosine transform

MSC: 68T45

1. Introduction

Among various developments in computer vision, object detection is an essential
funciton. Multimodality object detection can be employed in surveillance cameras, drones,
autonomous driving, license plate recognition [1,2], crack detection [3], and other applica-
tions, as shown in Figure 1. The current object detection models display remarkable speed
and accuracy. Among them, YOLOv7 [4] recently surpassed all known object detection
models in standard datasets, such as the Microsoft Common Objects in Context dataset [5],
which included areas such as proper illumination and clear boundaries between objects
and the background.

However, in the real world, some object detection degradation components are unsuit-
able for object detection, such as rain, fog, shadow, low light, and low resolution. Hence,
under these conditions, object detection models suffer severe performance degradation.
Infrared (IR) images with clearer object edges than RGB images can be used as input images
to prevent performance degradation. Nevertheless, object detection models still exhibit
unacceptable performance due to the lack of information about the IR image (object color,
texture, etc.).

In addition, object detection models cannot purify object detection-irrelevant features,
such as dark illumination, occluded objects in RGB images, and IR image colors. As unpu-
rified object detection-irrelevant features interrupt the model training stability, the accuracy
of object detection models diminishes, as illustrated in Figure 2. For example, Figure 3
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presents examples of the advantages of RGB and IR images under certain conditions. On
a bright day, the RGB image in Figure 3a provides more information, including color,
edges, and textures, than the IR image in Figure 3a. In contrast, at night, the IR image in
Figure 3b displays a more precise outline of pedestrians under dark illumination than the
RGB image in Figure 3b. In addition, even if a branch occludes the object, the IR image
presents a clearer boundary of the item. Hence, an object detection model that can exploit
the advantages of each image is necessary to achieve the best recognition performance in
various environments.

Figure 1. Example applications of the multimodality object detection model.

Figure 2. Problems with RGB- or IR-based object detection models.

Due to the development of convolution neural networks (CNNs), dual-stream CNN-
based object detectors have been proposed. The dual-stream CNN-based object detectors
consist of two streams: an RGB and IR stream. Using the two streams as features, these
models improve the performance of object detection in a multispectral environment. In
addition, multispectral datasets, such as FLIR [6] and LLVIP [7], that match the resolution
of RGB images and IR images, have also led to continuous development in this field.

Recent dual-stream CNN-based object detectors fuse the features of RGB and IR images
in the detection model. Various studies have been conducted regarding object recognition in
a multispectral environment based on these fusion approaches. However, these approaches
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cannot properly exploit the advantages of RGB and IR streams. As these models add or
multiply the features of each stream, models cannot adaptively fuse information on features
according to each feature level. In addition, object detection-irrelevant features (occluded
objects in RGB images, the color of IR images, etc.) may be fused, causing instability in
model training and performance degradation.

Figure 3. RGB-IR image pair on (a) a bright day and (b) at night.

To address this issue, in this paper, we propose an inter- and intra-weighted cross-
fusion network (Infusion-Net) using a high-frequency (HF) assistant (HFA). The Infusion-
Net exchanges the features of RGB and IR with four HFA blocks, depending on the feature
level. In this process, the Infusion-Net adaptively exploits the object detection-relevant
features of each stream. The HFA block consists of a HF extraction and an enhancing
process based on the discrete cosine transform (DCT). The HF extraction in the HFA
block purifies the object detection-irrelevant features. In enhancing the process in the
HFA, a residual channel attention block (RCAB) [8] reinforces the purified features. The
Infusion-Net adaptably adjusts information utilization and feature enhancement for each
stream according to each fusion phase via learnable inter- and intra-weight parameters.
Moreover, Infusion-Net surpasses other multistream approaches on multispectral datasets,
such as FLIR and LLVIP. In addition, the extensive experiments present the effectiveness of
these approaches.

The contributions of this paper are summarized as follows:

• We propose an Infusion-Net that gradually fuses the features of RGB and IR streams
according to feature level to exploit the advantages of each stream.

• We propose an HFA block that interchanges, purifies, and reinforces the HF informa-
tion based on DCT. In the HFA block, the HF information is extracted and reinforced
by the proposed extraction method and RCAB.

• We propose the learnable inter- and intra-weight parameters for HF interchange and
reinforcement according to the fusion phases. The features of each stream can be
adaptably enhanced and fused in each phase using learnable parameters.
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2. Related Work
2.1. Object Detection Models

Owing to the development of the CNN, object detectors demonstrate remarkable
performance. Several outstanding works have been proposed for object detection, including
CenterNet [9], Faster R-CNN [10], and the YOLO series. The YOLO series has shown
remarkable accuracy and inference speed, advancing the one-stage object detection design.

In addition, YOLOv4 [11] employs cross stage partial (CSP) darknet, which matches al-
most all optimal architecture features obtained by the network architecture search technique
as a backbone. The scaled YOLOv4 was proposed based on the CSP approach by scaling
the features, and it applies to both small and large networks. Moreover, YOLOv5 [12] has
four models: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. Generally, YOLOv5 uses the
architecture of CSPDarknet with a spatial pyramid pooling layer as a backbone. Further,
YOLOv6 [13] was proposed using a self-distillation strategy performed on the classification
and regression tasks. Furthermore, YOLOv6 dynamically adjusts the information from the
teacher and labels it to help the student model learn knowledge more efficiently during all
training phases.

Next, YOLOv7 [4] is the latest work in the YOLO series. This network further improves
the detection speed and accuracy based on the previous work. Specifically, in terms of
the overall architecture, this paper proposes extended-ELAN (E-ELAN). Specifically, the
ELAN uses expand, shuffle, and merge cardinality to continuously enhance the network
learning ability without destroying the original gradient path by considering the following
design strategy [14]. In addition, E-ELAN can guide various groups of computational
blocks to learn diverse features. Further, YOLOv7 also proposes a compound model scaling
method to maintain the model properties from the initial design and the optimal structure.
Regarding network optimization strategy, YOLOv7 introduces model reparameterization
and dynamic label assignment, analyzes the existing problems, and reduces them.

Specifically, YOLOv7 was proposed with direct access to the cascade of ResNet [15]
or DenseNet [16], providing more gradient diversity for various characteristic graphs.
However, these structures destroy the network structure because RepConv [17] has an
identity connection. Therefore, the YOLOv7 was proposed by removing the identity
connection in RepConv and designing the planned reparameterized convolution, realizing
the efficient combination of the reparameterized convolution and various networks. In
addition, YOLOv7 uses the idea of deep supervision and adds an additional auxiliary head
structure in the middle network layer as an auxiliary loss to guide the weight of the shallow
network. These mono-modality object detection methods provide real-time inference and
achieve object detection performance.

However, these object detection models use only one stream. Hence, these models can-
not exploit the advantages of each stream, such as the object color and detail information in
RGB images and the precise edges and proper illumination in IR images. The proper feature
utilization is required across each stream to acquire better object detection performance.

2.2. Fusion Mechanism of the Multispectral Object Detection

Despite numerous attempts at object detection, problems with improving perfor-
mance by fusing features from other input modalities still exist. The conventional fusion
mechanism-based approaches [18–20] focus on preprocessing the input image to obtain
a fusion of RGB and IR information. Moreover, these fusion mechanism-based models
can be categorized by the position of the feature fusion, such as early, late, and halfway
fusion. Moreover, these approaches focus on fusing the features, such as through element-
wise adding, multiplication, max-pooling, average-pooling, element-wise product, and
other methods. Among the previous studies, Wagner et al. [21] analyzed two fusion meth-
ods, early and late fusion, and their performance on multispectral datasets. Based on
the analysis, Wagner et al. proposed the cyclic fuse-and-refine (CFR) method to improve
performance by using cyclical fuses and refines for each spectral feature. Liu et al. [22]
designed two other fusion methods, halfway and score fusion, using two convolutional
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networks. The guided attentive feature fusion (GAFF) [23] was proposed to guide efficient
and effective multispectral feature fusion by using attention modules. A gated fuse unit [24]
was proposed to learn the combination of feature maps generated between RGB and IR
streams to determine an optimal fusion mechanism. Recently, a cross-modality fusion
transformer (CFT) [25] was proposed to combine the features of RGB and IR streams with
state-of-the-art (SOTA) performance in a multispectral object detection task by using a
transformer [26]. In particular, the CFT learns long-range dependencies and integrates
global contextual information at the feature level. The network can robustly capture the
latent interactions between RGB and IR images. These multimodality object detection
methods present higher accuracy than mono-modality methods by exploiting the features
of each stream. Moreover, these methods efficiently fuse the features of each stream in
the feature domain. Hence, these models contain more powerful feature information than
other approaches.

However, these fusion-based models [21–25] utilized the unpurified object detection-
irrelevant features (occluded objects in RGB images, the color of IR images, etc.). As result,
these object detection-irrelevant features may be fused, leading to instability in model
training and performance degradation. Moreover, even though these fusion-based models
fuse the features of each stream, they do not fully adaptably fuse the features of each
stream according to the feature level. Therefore, the fusion information must be adaptably
fused according to the feature level and fusion phase. Thus, we propose the Infusion-Net,
which gradually fuses the features of each stream according to the feature level using
learnable weights. It provides optimal feature utilization and selectively enhances the
features according to the fusion phase. When fusing the features in the Infusion-Net, the
object detection-irrelevant features are eliminated through HF extraction. Only object
detection-relevant features are interchanged and reinforced by HFA.

3. Proposed Method

This section describes the Infusion-Net for multispectral object detection. Section 3.1
provides an overview of DCT. Section 3.2 describes the HFA based on the DCT. Finally,
Section 3.3 presents the overall architecture of Infusion-Net.

3.1. Discrete Cosine Transform

This section describes the HFA block, which interchanges, purifies, and reinforces the
HF information based on DCT. Before describing the HFA, we explain why we use the DCT
in the HFA blocks and the principle behind the DCT [27].

The image of the spatial domain can be transformed into the frequency of the spectral
domain. Inversely, the frequency can be transformed into an image without loss of image
quality. The discrete Fourier transform is commonly employed to transform the image or
frequency. However, even if the input value consists of integer values, the transformed
output includes complex numbers. Calculating complex numbers causes memory overhead
and high computational costs in CNN-based models. To address this issue, we apply the
DCT, transforming the input values into integer values using the cosine function. We
convert the two-dimensional (2D) images to a frequency; thus, we employ the 2D DCT and
2D inverse DCT. The equations for the 2D DCT and 2D inverse DCT (IDCT) are represented
as follows:

2D_DCT(u, v) = α(u)β(v)
N

∑
i=0

M

∑
j=0

f(i, j) cos(
π(2i + 1)u

2N
) cos

(
π(2j + 1)v

2M

)
, (1)

2D_IDCT(i, j) =
N

∑
u=0

M

∑
j=0

α(u)β(v)F(u, v) cos(
π(2u + 1)i

2N
) cos

(
π(2v + 1)j

2M

)
, (2)
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α(u) =


√

1
N , u = 0√
2
N , u 6= 0

, (3)

β(v) =


√

1
M , v = 0√
2
M , v 6= 0

, (4)

where F(u, v) denotes the value of the transformed frequency, where the pixel value f(i, j)
of the (i, j) position of the image is transformed, and f(i, j) denotes the value of the trans-
formed image. Equations (1) and (2) represent the 2D DCT and 2D IDCT, respectively.
Equations (3) and (4) display the cosine basis function and regularization constant.

In the DCT, the high frequency is concentrated on the bottom-right side of the fre-
quency. In contrast, the low frequency is concentrated on the top-left side. With this
principle, we can adaptably extract the desired HF information via the binary mask M.
The mask has zero values at the top of the diagonal and a value of one at the bottom of the
diagonal. Hence, we can extract the desired HF information through hyperparameters τ
that adjust diagonal positions, as presented in Figure 4a. Black pixels indicate a value of
zero, and white pixels indicate a value of one. The binary mask function can be formulated
as follows:

M(i, j) =
{

0, y < −i + 2τw
1, otherwise

, (5)

where w denotes the image width, and i and j denote the horizontal and vertical coordinates
of M, respectively. The hyperparameter τ ranges from 0 to 0.5. The generated M is used to
extract HF components Hf by multiplying the binary mask M and the input, transformed
by the 2D DCT. The equation for the HF extraction HE is formulated as follows:

HfDCT = 2D_DCT(I)
⊗

M, (6)

Hf = 2D_IDCT(HfDCT), (7)

where I denotes the input and
⊗

denotes the element-wise product. In addition, 2D_DCT
and 2D_IDCT denote the 2D DCT and 2D IDCT functions, respectively. Figure 4b depicts
the results of the HF extraction, according to hyperparameter τ. As illustrated in Figure 4b,
when hyperparameter τ is too small, object detection-irrelevant information, such as an un-
wanted color, exists, and when the hyperparameter τ is too large, object detection-relevant
information, such as an edge of an object, is removed. Hence, the proper hyperparameter τ
is needed to improve object detection performance.

Figure 4. (a) Examples of binary mask M according to hyperparameter τ; (b) results of high-
frequency extraction according to hyperparameter τ.

In object detection tasks, the edges and texture information for objects are essential to
improve object detection performance. This information helps detect the object position
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and classify the object class. This paper demonstrates that edges and texture information
are included in HF information. Figure 5 presents the DCT-based HF extraction results
according to the HF extraction order. The RGB and IR images in Figure 5a,b are transformed
into the DCT frequency domain. Afterward, HF information is extracted using a predefined
binary mask. The extracted HF information is presented in Figure 5c,d. As illustrated in
Figure 5e,f, the HF information contains edge and texture information that significantly
affects the detection performance. Figure 5e displays more noticeable edges of objects
than the original RGB image, making it difficult to recognize the object position with
the naked eye. These results demonstrate that HF extraction can help improve object
detection performance.

Figure 5. (a) RGB image; (b) IR image; (c) HF extraction in the DCT domain (RGB image); (d) HF
extraction in the DCT domain (IR image); (e) extracted HF result (RGB image). (f) extracted HF result
(IR image).

3.2. High-Frequency Assistant Based on the Discrete Cosine Transform

Based on the HF observation, we devised the HFA block, which interchanges, purifies,
and reinforces HF features, as depicted in Figure 6. We applied the HF extraction to the
feature level, not the image level. The HFA block transforms the features of the RGB and IR
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streams to the DCT frequency. Then, only the necessary HF features are extracted using a
predefined binary mask M. The extracted HF features are transformed by the IDCT. With
this process, the object detection-irrelevant features are purified. In addition, we reinforced
the HF information using an RCAB [8]. As the RCAB focuses on the correlation around the
features, the HF information is more precise and sharper. The reinforced HF information
is added to the original feature. The enhanced features of the RGB and IR streams are
interchanged with each stream. Hence, the proposed model has powerful representation
compared with other approaches. The equation for the HFA is formulated as follows:(

frgb +F (fir), fir +F
(

frgb

))
= HFA

(
frgb, fir

)
, (8)

F (f) = f +R(HE(f)), (9)

where frgb and fir denote features of the RGB and IR streams, respectively,R represents the
process of the RCAB, F denotes the function for reinforcing the HF information in the HFA,
and HE is the process of HF extraction, as in Equations (6) and (7).

Figure 6. Architecture of the high-frequency assistant (HFA).

3.3. Overall Architecture of Inter- and Intra-Weighted Cross-Fusion Network (Infusion-Net)

This section describes the Infusion-Net for multispectral object detection. As presented
in Figure 7, the Infusion-Net primarily consists of RGB and IR streams. Each stream
receives an RGB image and an IR image as input. Then, four HFA blocks are employed
to interchange the features of each stream, purifying only the necessary information. By
dividing the interchange part according to the phase, we adaptably fuse the RGB and IR
features by feature level. When fusing the features of each stream, the learnable intra- and
inter-weight parameters are employed for the components of each stream. The intra-weight
parameter α controls the degree of feature enhancement. As revealed in Figure 7, the
extracted HF features of each stream are multiplied by each intra-weight parameter α
according to each phase. The features are adaptably enhanced, according to each phase;
thus, the Infusion-Net can exploit the optimal feature information depending on the fusion
phase. The inter-weight parameter β controls the degree of utilization of the other stream
feature, as depicted in Figure 7. Each stream adaptably receives features of another stream,
according to feature level; thus, the Infusion-Net comprises the advantages of each stream.
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The features of each stream according to the phase in the Infusion-Net can be formulated
as follows:

f i+1
rgb = f i

rgb +
(

HE
(

f i
rgb

)
× α

pi
rgb

)
+
(
F
(

f i
ir × β

pi
ir

))
, (10)

f i+1
ir = f i

ir +
(

HE
(

f i
ir

)
× α

pi
ir

)
+
(
F
(

f i
rgb × β

pi
rgb

))
, (11)

where i denotes the phase of the Infusion-Net, f i
rgb and f i

ir represent the features of the

RGB and IR streams when the phase is i, respectively, α
pi
ir and β

pi
ir are the intra- and inter-

weight parameters of the IR stream, respectively, and α
pi
rgb and β

pi
rgb denote the intra- and

inter-weight weight parameters of the RGB stream, respectively.

Figure 7. Overall architecture of the proposed Infusion-Net.

The fused features of each phase are concatenated with the detection module. When
concatenating the features of each phase, the stream scaler weights are applied to emphasize
the features of the stream according to phase selectively. Therefore, the Infusion-Net can
filter the object-irrelevant features and emphasize more precise object-relevant features. A
concatenated feature C is formulated as follows:

f i
m =

(
f i

rgb × wpi
rgb

)
+
(

f i
ir × wpi

ir

)
(12)

C = Concat
(

f 1
m, f 2

m, f 3
m

)
, (13)

where wpi
rgb and wpi

ir denote the stream scaler weights of each stream in phase i, f i
m denotes

fused features by using stream scaler, and Concat denotes the feature concatenation function.
As depicted in Figure 7, the concatenated features are used to predict the position and

class of the object using the detection module. As in other approaches, we designed the
detection module by applying YOLO v7 [4].

The structures of each phase are described in Figure 8. In Phase 0, the features
are extracted by four convolutional layers from each image. The extracted features are
extracted to another size of features to exploit the different scale features to improve the
performance. In another phase, the max-pooling layer and more convolutional layers are
employed to reduce the model parameters and inference time while maintaining the model
representability. The extracted features are concatenated in the concatenation layer and
aggregated by the convolutional layer.

The step-by-step block diagram of an application of Infusion-Net, as shown in Figure 9.
The RGB and IR images are obtained by each measurement, such as from the RGB and
IR camera. In general, the resolution of an RGB image is higher than that of an IR image.
Hence, the images are aligned to match the position of the objects; then, aligned images
are inputted into Infusion-Net. In Infusion-Net, the features of each stream are gradually
fused with inter- and intra- weights and HFA. The features of each phase are utilized in the



Mathematics 2022, 10, 3966 10 of 16

detection module. The detection module predicts the class and position of objects in the
input image.

Figure 8. Structure of each phase in the Infusion-Net.

Figure 9. Step-by-step block diagram of an application of Infusion-Net.

4. Experiments and Analysis
4.1. Experimental Setup
4.1.1. Dataset

In the real world, the resolution of an RGB image is commonly higher than that of
an IR image. As the positions of objects are mismatched, object detection models suffer
performance degradation in multispectral object detection tasks. Hence, we used the
FLIR [6] and LLVIP [7] datasets, which have RGB-IR pairs with the object position exactly
matched. The FLIR dataset [6] is a multispectral object detection dataset that includes bright
day and night scenes. The FLIR dataset consists of 5142 RGB-IR image pairs with 640 × 512
resolution. The classes of the FLIR dataset comprise people, cars, and motorcycles. In this
experiment, 4129 RGB-IR image pairs were used for model training and 1013 for evaluation.
The LLVIP [7] is a pedestrian detection dataset in a low-light night environment. The
LLVIP dataset consists of 15,487 RGB-IR image pairs, and the object positions are accurately
aligned. The resolution of the LLVIP dataset is 1280 × 1024. We split LLVIPR image pairs
into 12,025 RGB-IR pairs for model training and 3,462 RGB-IR image pairs for evaluation.

4.1.2. Metric

We used the mean average precision (mAP) to analyze the detection results, an accu-
racy metric generally used to evaluate object detection models. We employed the mAP50,
mAP75, and mAP50:95. The mAP50 indicates the mAP at the intersection over union
(IoU) threshold of 0.5. The mAP75 is the mAP at the IoU threshold of 0.75, and mAP50:95
represents the average mAP at the IoU threshold of 0.5 to 0.95, with intervals of 0.05.
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4.1.3. Environment

We implemented the proposed framework in PyTorch 1.8.0 and used Python 3.8.3, CUDA
11.2, and cuDNN 8.2.0. The experiment was performed using an AMD Ryzen 5 5600X 6-Core
Processor CPU with 32 GB of memory and an NVIDIA RTX 3090 GPU. The hyperparameters
of the framework were as follows: the initial learning rate was 10−2, the momentum was
0.937, and the weight attenuation was 0.0005. The training batch size was set to 10, and the
number of epochs was set to 100.

4.2. Comparison of Conventional and Proposed Multispectral Object Detection Methods

We set YOLOv5 [12] and YOLOv7 [4] as the baselines in this experiment. Specifically,
YOLOv7 provides SOTA accuracy and speed in the object detection task. In addition, we
conducted experiments on the mono-modality object detection models to demonstrate the
advantage of multimodality. Furthermore, we set the YOLO series-based multimodality
models as baselines; they consist of two back-bone structures, similar to the multimodality-
based models. The multimodality-based models, such as CFR [21], GAFF [23], and CFT [25],
are used to verify the Infusion-Net. Each object detection model is trained from scratch
according to their losses and training methods on FLIR and LLVIP datasets.

Tables 1 and 2 compare the Infusion-Net and other models on the FLIR and LLVIP
datasets. The Infusion-Net has 3.5% and 7.8% higher mAP50 values than the YOLOv7
mono-modality model on the FLIR and LLVIP datasets, respectively, demonstrating the
superiority of the dual-stream approach. Among the multimodality models, the Infusion-
Net performs best for mAP50, mAP75, and mAP50:95 on the FLIR and LLVIP datasets,
as listed in Tables 1 and 2. In particular, the Infusion-Net scores 1.4% higher on the FLIR
dataset and 1.1% higher on the LLVIP dataset than CFT, which has the second-best score.
The performance of the Infusion-Net proves the superiority of this approach.

Table 1. Comparison of the Infusion-Net and other models on the FLIR dataset [6].

Model Data Backbone mAP50 (%) mAP75 (%) mAP50:95 (%)

Mono-modality model

YOLOv5 [12] RGB CSPDarknet 67.8 25.9 31.8

YOLOv5 [12] IR CSPDarknet 73.9 35.7 39.5

YOLOv7 [4] RGB E-ELAN 70.2 32.7 31.6

YOLOv7 [4] IR E-ELAN 75.6 32.2 38.2

Multimodality model

halfway fusion [21] RGB + IR VGG16 71.2 - -

CFR [21] RGB + IR VGG16 72.4 - -

GAFF [23] RGB + IR ResNet18 72.9 32.9 37.5

GAFF [23] RGB + IR VGG16 72.7 30.9 37.3

YOLOv7 [4] RGB + IR E-ELAN 77.5 34.0 39.0

CFT [25] RGB + IR CFB 77.7 34.8 40.0

Infusion-Net (Ours) RGB + IR Infusion-Net 79.1 35.2 40.3

In this work, we propose an Infusion-Net that gradually fuses the features of RGB and
IR streams, depending on each fusion phase, using four HFA blocks to exploit the object
detection-relevant features of each stream. The HFA extracts HF information, which has
clear boundaries and textures of the object, and the extracted HF information is strength-
ened by the RCAB. Enhanced features are exchanged between each stream with learnable
inter- and intra-weight parameters and stream scaler weights. Using learnable weights, the
Infusion-Net enables effective feature utilization and enhancement with the fusion phase,
leading to improved object detection accuracy.
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Table 2. Comparison of the Infusion-Net and other models on the LLVIP dataset [7].

Model Data Backbone mAP50 (%) mAP75 (%) mAP50:95 (%)

Mono-modality model

YOLOv5 [12] RGB CSPDarknet 90.8 51.9 50.0

YOLOv5 [12] IR CSPDarknet 94.6 72.2 61.9

YOLOv7 [4] RGB E-ELAN 91.9 52.9 51.2

YOLOv7 [4] IR E-ELAN 96.0 72.9 63.9

Multimodality model

YOLOv5 [12] RGB + IR CSPDarknet 95.8 71.4 62.3

YOLOv7 [4] RGB + IR E-ELAN 96.9 73.1 64.4

CFT [25] RGB + IR CFB 97.5 72.9 63.6

Infusion-Net (Ours) RGB + IR Infusion-Net 98.6 73.3 64.6

To qualitatively evaluate the Infusion-Net, we compared it with CFT [25], which has
the second-best mAP50 on the FLIR and LLVIP datasets. In Figure 10, the Infusion-Net
detects a car, whereas CFT provides the missing object. As the Infusion-Net gradually fuses
the features of RGB and IR streams according to the feature level, the Infusion-Net is better
at detecting small objects than the CFT model, improving the object detection performance.
As depicted in Figure 11, the Infusion-Net detects the person, whereas CFT provides the
missing person. The visual outcomes present that Infusion-Net exploits HF information
using HFA, which shows a precise edge of the object and texture, even if the input image
exhibits dark illumination. Therefore, the Infusion-Net is robust in low-light environments.

Figure 10. Qualitative comparison of the Infusion-Net results and CFT [25] results on the FLIR
dataset. Green boxes denote missing objects.
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Figure 11. Qualitative comparison of the Infusion-Net results and CFT [25] results on the LLVIP
dataset. Green boxes denote missing objects.

4.3. Ablation Study
4.3.1. Learnable Weights

This section investigates the effects of learnable weights, such as inter- and intra-weight
parameters and stream scaler weights. Table 3 reveals that the learnable weights applied
to the Infusion-Net improve object detection performance. In particular, the Infusion-Net
exhibits the best mAP50 when all learnable weights are employed, indicating that the
proposed learnable weights provide optimal feature utilization and selectively emphasize
the features. Thus, the learnable weight approach is suitable for the multimodality model.

Table 3. Quantitative results for evaluating the effects of learnable weights on the FLIR dataset.

Intra-Weights
α

Inter-Weights
β

Scaler Weights
w

mAP50
(%)

7 7 7 77.9

7 7 O 78.6

7 O 7 78.5

O 7 7 78.0

O O O 79.1

4.3.2. Hyperparameters for High-Frequency Extraction

This section specifies how we determined the hyperparameters for HF extraction.
As listed in Table 4, the Infusion-Net exhibits the best mAP50 when hyperparameter τ
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is 0.2. In contrast, when the hyperparameter τ is 0, the Infusion-Net does not provide
the best mAP50 score because the object detection-irrelevant features are not purified.
In addition, when the hyperparameter is greater than 0.2, the object detection-relevant
features are eliminated. Thus, the Infusion-Net cannot exhibit the optimal mAP50 score,
demonstrating that the detection-relevant features, such as the edges and textures, are
included in properly extracted HF information. Hence, the proper hyperparameter is
needed to improve accuracy. In this paper, we empirically set the hyperparameter τ to 0.2.

Table 4. Quantitative results for evaluating the effects according to hyperparameter τ for the high-
frequency extraction on the FLIR dataset.

Hyperparameter
τ

mAP50
(%)

0 77.1

0.1 78.3

0.2 79.1

0.3 77.4

0.4 76.8

0.5 75.5

4.3.3. Computational Complexity

The proposed Infusion-Net consists of two backbone structures for multimodality;
hence, the proposed model requires more inference time than the mono-modality models.
Moreover, the resolution of an RGB image is higher than that of an IR image. Hence,
Infusion-Net requires the image alignment process between an RGB and IR image, unlike
other mono-modality models. Hence, Infusion-Net requires more computational complex-
ity than mono-modality models. Nevertheless, the inference time for the Infusion-Net is
30 ms, whereas the inference time for the multimodality model CFT is 78 ms, when the
resolution of the input images is 640 × 512. Even if the proposed model requires more
inference time than the mono-modality models, the Infusion-Net performs an average of
5.6% higher on mAP50 than the mono-modality models on the FLIR and LLVIP datasets.

5. Conclusions

In this paper, to obtain the benefits of each stream, we suggest the Infusion-Net, which
gradually fuses the features of RGB and IR streams, depending on the feature level. To this
end, we devised an HFA that interchanges, purifies, and reinforces the object detection-
relevant information based on the DCT and RCAB. In addition, the learnable inter- and
intra-weight parameters and stream scaler weights provide optimal feature utilization
across streams and selectively emphasize the features of the stream according to the fusion
phase. The experimental results of the proposed model reveal the best performance in
the mAP50, mAP70, and mAP50:95, with the fastest inference time, demonstrating the
effectiveness of the Infusion-Net. The visual outcomes show more exact results than other
SOTA models, demonstrating the superiority of Infusion-Net. In addition, the Infusion-Net
can be considered for various object detection applications, such as fault diagnosis [28,29],
autonomous driving [30], face attribute recognition [31,32], and smart parking in low-light
environments. In particular, our Infusion-Net can be applied to prevent accidents such as
car and pedestrian accidents at night because Infusion-Net presents a robust performance
in low-light environments. In future work, the Infusion-Net will be extended to multi-
input-based computer vision fields, such as RGB-LiDAR, RGB-Depth, and 3D images. In
addition, the super-resolution methods can be employed to improve the object detection
performance when input images are small.
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