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Abstract: In this paper, an underwater robot system with nonlinear characteristics is studied by
a backstepping method. Based on the state preservation problem of an Autonomous Underwater
Vehicle (AUV), this paper applies the backstepping probabilistic gain controller to the nonlinear
system of the AUV for the first time. Under the comprehensive influence of underwater resistance,
turbulence, and driving force, the motion of the AUV has strong coupling, strong nonlinearity, and
an unpredictable state. At this time, the system’s output feedback can solve the problem of an
unmeasurable state. In order to achieve a good control effect and extend the cruising range of the
AUV, first, this paper will select the state error to make it a new control objective. The system’s
control is transformed into the selection of system parameters, which greatly simplifies the degree of
calculation. Second, this paper introduces the concept of a stochastic backstepping control strategy,
in which the robot’s actuators work discontinuously. The actuator works only when there is a
random disturbance, and the control effect is not diminished. Finally, the backstepping probabilistic
gain controller is designed according to the nonlinear system applied to the simulation model for
verification, and the final result confirms the effect of the controller design.

Keywords: complex nonlinear systems; state keeping; Bernoulli distribution; feedback control with
backstepping; probability gain control

MSC: 93-10

1. Introduction

With the development of science and technology, ocean exploration technology has
reached an unprecedented new level. With the help of science and technology, AUVs have
been developed [1,2]. It is now possible to conduct scientific investigations on the seabed at
a depth of 10,000 m. However, AUV development is inseparable from control technology
development and progress, especially control technology progress in the nonlinear field.
Their limitations and deficiencies are known based on previously known control techniques
such as PID, robust control, and homogeneous controllers [3–6]. PID can only control
simple systems [3,4] and has little effect when handling coupled nonlinear systems. In
particular, the model and system structure are required to be exactly known. A robust
control method provides more flexibility, Taking an autonomous vehicle as an example [5,6],
the weight change of the passengers or cargo in the vehicle will cause the controlled system
to change. Such common problems pose challenges to the design of the controller, so the
designed controller must have sufficient robustness to continuously control the vehicle
over the course of these changes [7–10].

It is well-known that nonlinearities exist in all systems. For example [11–15], control
problems exist in industry, in relationships in social systems, and in biological relationships
in nature; we cannot express them with specific mathematical formulas. However, some
researchers [16,17] have simplified and approximated these systems by studying salient
relationships in the system and ignoring others considered less important. With the ad-
vancement of science and technology, researchers [18,19] found that the influence of the
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neglected nonlinearity on the whole system cannot be omitted. Therefore, it is necessary to
reconsider these characteristics, such as nonlinearity, uncertainty, and randomness. Espe-
cially a system’s nonlinear problem, which is the basis of modern control theory research,
needs to be addressed. The control problem of the AUV studied in this paper [20–22] has a
very typical nonlinear characteristic. The system’s various elements are coupled with each
other and accompanied by uncertain disturbances in the external environment. This makes
the design of the AUV control system very challenging, such as Figure 1. Existing control
theory research results contain no solutions to this problem. Some researchers [23,24] study
the robot’s motion control problem by restricting the motion of the underwater robot-like
vehicle, assuming that the AUV’s trajectory is in a plane and does not involve space motion
[25,26]. Such assumptions can simplify the motion problem from the AUV’s six degrees
of freedom to the three degrees of freedom. However, it ignores the random interference
phenomena.

(a) (b)

Figure 1. (a) Typical autonomous underwater vehicle model; (b) an autonomous underwater vehicle
underwater experiment.

On the one hand, the environment can cause a variety of nonlinear systems. Such
nonlinear disturbances are called randomly nonlinear systems. According to a recent
research paper [27,28], external random disturbances satisfy a time-invariant Bernoulli
distribution. The scope of this paper was to find a solution for the stochastic nonlinear
system. In [29], a time-invariant probability stochastic nonlinear AUV system was used to
control an AUV’s hovering. A particularly hot research topic is the design of a high-gain
observer and feedback controller in which unmeasurable states can be observed by the
high-gain observer. In this paper, we will introduce a coordinate transformation for the
output feedback controller [30] and compare the system’s real value and the observed value.
This method simplifies the computational complexity of a control system and improves
the control effectiveness. According to the calculation method, the parameter selection
can be obtained, and the design problem of the controller is transformed into a parameter
selection problem.

The objective of this paper is to consider the output of a high-gain observer in de-
veloping a stochastic control system. The main contributions of this paper include the
following:

1. The high-gain method is used to observe the system’s unmeasurable states, and the
complex nonlinear system control problem is transformed into a parameter selection
problem by introducing coordinate transformation, which simplifies the calculation
process and complexity.

2. The literature assumes that the external disturbance is randomly occurring and the
concept of a probability gain controller is introduced. With the control effect un-
changed, we convert continuous control to intermittent control. The endurance
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problem of the AUV is solved under intermittent control, saving significant energy
and extending the cruising range.

3. Based on the backstepping control method, the complex nonlinear system control
problems is decomposed into a calculation method that can perform iterative recursion.
The final controller can be calculated through the designed virtual controller.

4. An easy-to-implement probabilistic control algorithm is designed, and a Bernoulli
probability gain controller is designed. This is more lenient than traditional control
methods. In the case of simultaneous external interference, system uncertainty, and
time delay, the closed-loop system can ensure that all indices are stable. Finally, a
simulation example is used to demonstrate the effectiveness of the proposed method.

2. Description of Dynamic Modelling of a Deepwater Robot

This section mainly introduces the principle and components of the AUV. It can be
seen from Figure 2 that the AUV model is a front-drive model, which is mainly powered
by a vectored thruster at the tail. The four rudder pages at the robot’s tail are used to
change the AUV’s directions. With the right amount of propulsion, the rotation angle of
the propeller is controlled by three connecting rods to provide 360° of power.

Figure 2. Body-fixed frame and earth-fixed reference frame for underwater robot.

An underactuated underwater robot dynamics model can be expressed as the follow-
ing formula:

Mν̇ + C(ν)ν + D(ν)ν + g(ε) = F (1)

where M and C(ν) are the inertia, additional quality matrix, and Coriolis centripetal force,
respectively. D(ν) and g(ε) are the fluid damping and operation and the restoring force
of the gravity according to the buoyancy. F = [FX FY FZ FK FM FN ]

T are a series
of moments and forces; ν̇ = [u̇ ν̇ ω̇ ṗ q̇ ṙ]T are the accelerations in the body frame;
ν = [u ν ω p q r]T are velocity in roll, pitch, and yaw direction, respectively, in
the moving frame; ε = [x y z α β γ]T are surge position, sway position and heave
position, and roll angle, pitch angle, and yaw angle in the fixed frame, respectively. In the
moving frame, the accelerations of the AUV model can be decomposed into two different
parts, linear velocity ν1 = [u ν ω]T and angular velocity ν2 = [p q r]T . In the fixed-
frame, the velocity of the AUV model can be decomposed into position ε1 = [x y z]T

and orientation ε2 = [α β γ]T . In this paper, we research the AUV’s linear velocity
ν1 = [u ν ω]T and linear position ε1 = [x y z]T .
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Here, M = MRB + MA.

MRB can be expressed such as MRB=



m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG
0 0 m myG −mxG 0
0 −mzG myG Ix −Ixy −Ixz

mzG 0 −mxG −Iyx Iy −Iyz
−myG mxG 0 −Izx −Izy Iz



additional quality matrix MA can be expressed: MA=



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ
Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ
Ku̇ Kv̇ Kẇ K ṗ Kq̇ Kṙ
Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ
Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


Here, C(v) = CRB(v) + CA(v). CA(v) is fluid damping and operation matrix.

CA(v) can be expressed: CA(v)=



0 0 0 0 −a3 a2
0 0 0 a3 0 −a1
0 0 0 −a2 a1 0
0 −a3 a2 0 −b3 b2
a3 0 −a1 b3 0 −b1
−a2 a1 0 −b2 b1 0


where

a1 = Xu̇u + Xv̇v + Xẇw + Xṗ p + Xq̇q + Xṙr
a2 = Xv̇u + Yv̇v + Yẇw + Yṗ p + Yq̇q + Yṙr
a3 = Xẇu + Yẇv + Zẇw + Zṗ p + Zq̇q + Zṙr
b1 = Xṗu + Yṗv + Zṗw + K ṗ p + Kq̇q + Kṙr
b2 = Xq̇u + Yq̇v + Zq̇w + Kq̇ p + Mq̇q + Mq̇r
b3 = Xṙu + Yṙv + Zṙw + Kṙ p + Mṙq + Nṙr

Next, Formula (2) is introduced to explain the connection between the body frame and
the fixed frame:

ε̇1 = J(ε)ν1 (2)

Well-known, J(ε) is a particular matrix, which is a kinematic transformation and is in
the following form:

J(ε)=

cγcβ −sγcα + cγsβsα sγsα + cγcβsα
sγcβ cγcα + sγsβsα −cγsα + sγsβcα
−sβ cβsα cβcα


Well-known, s is the sin function, and c is the cos function. Another, ε2 = [α β γ]T

is the orientation variable, which is underfined for β = ± 90◦ and is below ± 90◦. For this,

the coordinate transformation (ε1, ν1)
µ−→ (ε1, ε̇1) is performed using (2), which yields:(

ε1
ε̇1

)
=
[

I 0
0 J(ε)

](
ε1
ν1

)
µ is the coordinate transformation. According to µ, the dynamic model of the underwater
robot can become as the following form:

Mε1 ε̈1 + Cε1 ε̇1 + Dε1 ε̇1 + gε1 = Fε1 (3)

where
Mε1 = J(ε)−T MJ(ε)−1

Cε1 = J(ε)−T
(

C(ν)−MJ(ε)−1 J̇(ε)
)

J(ε)−1

Dε1 = J(ε)−T D(ν)J(ε)−1

gε1 = J(ε)−T g(ε)

Fε1 = J(ε)−T F

(4)
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Next, a series of assumptions are introduced.

Assumption 1. The literature researches the AUV’s velocity, which is l̇ = (ẋ2 + ẏ2 + ż2)
1
2 .

Considering the system origin stations, ε1(0) = [0 0 0] and ε̇1(0) = [0 0 0].

Assumption 2. In the literature. the velocity ε1 = [x y z] and the angle ε2 = [α β γ] is
known by using different sensors(such as speed and angle sensors).

According to the features of the AUV system, we can use the dynamic model to obtain
a broad mathematical model as follows.

dl1 = l2dt + f1(t, l(t), u)dt + g1(l)dω

dl2 = udt + f2(t, l(t), u)dt + g2(l)dω

y = l1

(5)

where l = (l1, l2)T ∈ R2 are the states, u ∈ R is the input, and y ∈ R is the output. Here,
we will lead into a stochastic process: ω is an m - dimensional standard Wiener process
defined on the complete probability space (Ω, Γ, P) with Ω, Γ, and P being a sample space,
filtration, and probability measure, respectively. l2 is a state value and unmeasurable.
fi : Rn → R and gi : Rn → Rr, i = 1, 2 is a linear growth (11) and is local Lipschitz.
Meanwhile, fi(0) = 0, gi(0) = 0.

Definition 1. For a given function V ∈ C2(R2;R) associated (2), the differential operator £ is
defined as

£V(l) =
∂V(l)

∂l
f (l, t) +

1
2

Tr{gT(l, t)
∂2V(l)

∂l2 g(l, t)} (6)

Definition 2. Assume γ and γ
′

is the K∞ function, γ
′

is the derivative of γ and exists, R2(l)
meets R2(l) = RT

2 (l) > 0 for all l and is a matrix-valued function. u = α1 is a continuous
feedback control function except for the origin α(0) = 0, which can make the equilibrium point
l = 0 be probability stable, the cost function J(u) = E

(∫ ∞
0

[
s(x) + γ(|R2(l)1/2u|)

]
dτ
)

can
take the optimal value, which expresses the probability of the system (5) control problem is to be
accomplished.

Next, an inverse optimal control scheme based on probability will be given:

Lemma 1. According to the following control method:

u = α(l) = −R−1
2 (Lg2V)T `γ(|Lg2VR−1/2

2 |)
|Lg2VR−1/2

2 |2
(7)

Well-known, V(l) is the Lyapunov function, which is preselected. γ
′

is the derivative
of γ(·), which is K∞ function, and R2(l) meet R2(l) = RT

2 (l) > 0, which is a matrix
function.

u∗ = α∗(l) = − β

2
R−1

2 (Lg2V)T (γ
′
)−1(|Lg2VR−1/2

2 |)
|Lg2VR−1/2

2 |
, β ≥ 2 (8)

is able to make the cost function

J(u) = E
(∫ ∞

0

[
s(l) + β2γ

(
2
β
|R2(l)1/2u|

)]
dτ

)
(9)
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According to the system, (5) can be solved by minimizing the s(x) function, satisfying

s(l) =2β

[
`γ(|Lg2VR−1/2

2 |)− L f V − 1
2

Tr
(

gT
1

∂2V
∂l2 g1

)]
+ β(β− 2)`γ(|Lg2VR−1/2

2 |)
(10)

Assumption 3. C f , Cg ≥ 0 is a known positive constant, which satisfies the following inequality

| fi(l)| ≤ C f (|l1|+ · · ·+ |li|),
|gi(l)| ≤ Cg(|l1|+ · · ·+ |li|)

(11)

Young inequality: For any two vectors l and y, which have the same dimension.
lTy ≤ λp

p |l|p +
1

qλq |y|q, here λ > 0, p > 1, q > 1, and p−1 + q−1 = 1.
Based on the assumptions, the inverse optimization problem is solvable by designing

a smooth output feedback controller for system (5) so that the closed-loop system at the
origin is globally asymptotically stable.

3. State Keeping Probability-Dependent Gain-Scheduled Control Design

In the third section, we mainly introduce the design of the state-preserving probability
gain controller, which includes three parts. The first part is the introduction of a high-gain
observer; the second part is the introduction of backstepping control; the third part is the
gain coefficient design of a Bernoulli probability distribution controller.

3.1. High-Gain Observer Design

The system’s state measurement has been a thorny problem in the control field. Some
systems or states are unmeasurable due to the sensor’s complexity, the system’s design,
and the observer’s design. Neither can measure the data very well. This increases difficulty
for the system control. Some researchers have designed an observer to obtain all the system
states value. In this paper, a high-gain observer is introduced, which is different from the
general Lomborg observer in that the gain coefficient of the observer is a powder form,
which significantly improves the observer’s accuracy.

The state l1 is measurable; the state l2 is unmeasurable. Next, we construct an observer,
which has high gain:

˙̂l1 = l̂2 + H1K1

(
l1 − l̂1

)
,

˙̂l2 = u + H2K2

(
l1 − l̂1

)
,

(12)

In the above observers, the H > 0 and Ki > 0 are an unknown parameter and known

constants. The following matrix A=
(
−K1 1
−K2 0

)
is stable; P is a matrix, which is positive

definite and meets AT P + PA = −I. According to the system (5), we can obtain the error
equation, which can be defined as the following form:

l̃ =
(
l̃1, l̃2

)T , l̃i =
li − l̂i
Hi−1 , i = 1, 2 (13)

In line with (5) and (12), we can obtain the system error model as follows

dl̃ = HAl̃dt + F(l)dt + G(l)dω (14)

where

F(l) =
(

f1(l),
1
H

f2(l)
)T

, G(l) =

(
gT

1 (l),
1
H

gT
2 (l)

)T
(15)
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Choosing V0(l̃) = 3l̃T Pl̃ , applying | 1
Hi−1 li| ≤ | 1

Hi−1 l̂i|+ |l̃i| ,
(

∑2
i=1 ai

)2
≤ 2 ∑2

i=1 a2
i ,

H > 0 , Definition 1 and Assumption 3 , we can obtion

£V0 = 3Hl̃T
(

AT P + PA
)

l̃ + 6l̃T PF(l) + 3Tr{GT(l)PG(l)}

≤ −3H|l̃|2 + 3|l̃T P|2 + 3

(
2

∑
i=1
| fi(l)
Hi−1 |

2

+ λmax(P)
2

∑
i=1
| gi(l)
Hi−1 |

2
)

≤ −3H|l̃|2 + 3‖P‖2|l̃|2 + 3C2
f

(
2

∑
i=1

1
Hi−1

)2(
|l1|+

|l2|
H

+ · · ·+ |l2|
H1

)2

+ 3λmax(P)C2
f

(
2

∑
i=1

1
Hi−1

)2(
|l1|+

|l2|
H

+ · · ·+ |l2|
H1

)2

= −3H|l̃|2 + 3‖P‖2|l̃|2 + c1

(
|l1|+

|l2|
H

+ · · ·+ |l2|
H1

)2

≤ −3H|l̃|2 + 3‖P‖2|l̃|2 + c1

(
2

∑
i=1
| 1
Hi−1 l̂i|+

2

∑
i=1
|l̃i|
)2

= −
(

3H − 3‖P‖2 − 4c1

)
|l̃|2 + 4c1

(
l̂2
1 +

l̂2
2

H2

)

(16)

where

c1 = 3(C2
f + λmax(P)C2

g)

(
2

∑
i=1

1
Hi−1

)2

=
3(C2

f + λmax(P)C2
g)

H2

(
1

∑
i=0

(i + 1)Hi + (3− i)H2

) (17)

3.2. Output-Feedback Controller Design

The second part is the design of the output feedback controller. In the control system
of the AUV, the states are not entirely measurable. At this time, it is necessary to use
the system’s output state to design the output feedback controller. However, due to the
system’s complexity, the system’s states are firstly transformed to reduce the difficulty
and complexity of controller design. On the other hand, according to the backstepping
controller’s design characteristics, the nonlinear system’s complexity can be well consid-
ered, and the controller can be designed even when the state is not entirely measurable.
However, at the last iteration of the derivation, the dummy controller is offset, and only the
final controller is obtained.

z1 = l̃1, z2 = l̃2 − α1

(
l̂[1]
)

(18)

Well-known α1

(
l̂[1]
)

is a series of controller, which is virtual and step designed.
Step 1: defining

V1(l̃, z1) = V0(l̃) +
1
2

z2
1 (19)

According to Definition 1, Young’s inequality, and Equations (12) and (16)–(19)

£V1 ≤ −
(

3H − 3‖P‖2 − 4c1

)
|l̃|2 + 4c1

(
l̂2
1 +

l̂2
2

H2

)
+ z1(l̂2 + Hl1 l̃1)

≤ −
(

3H − 3‖P‖2 − 4c1

)
|l̃|2 + 4c1z2

1 + 4c1
l̂2
2

H2 + z1α1 + z1z2 + Hl̃2
1 +

H
4

l2
1z2

1

(20)
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Using (18) and (a + b)2 ≤ 2a2 + 2b2, choosing H ≥ 8c1, we can obtion

4c1z2
1 ≤

H
2

z2
1, 4c1

1
H2 l̂2

2 ≤ 8c1
1

H2 z2
2 + 8c1

1
H2 α2

1 (21)

In line with Equations (20) and (21), the first virtual controller has the form as follows

α1(l̂1) = −Hb1z1, b1 =
1
2
+

l2
1
4
+ 2 (22)

renders

£V1 ≤ −
(

3H − 3‖P‖2 − 4c1

)
|l̃|2 + H

(
1
2
+

l2
1
4

)
z1 + 8c1

1
H2 z2

2 + 8c1
1

H2 + z1α1 + z1z2 + Hl̃2
1

≤ −
(

2H − 3‖P‖2 − 4c1

)
|l̃|2 − (2H − 8c1b2

1)z
2
1 + 8c1

1
H2 z2

2 + z1z2

(23)

In the last step, through backstepping theory, we select the controller.

z2 = l̂2 + Hb1 l̂1

dz2 =
(

u + H2d20 l̃1 + H2d21z1 + H2d̄2,1z1 + H2d22z2

)
dt

(24)

where
di0 = li + bi−1li−1 + bi−1bi−2li−2 + · · ·+ bi−1bi−2 . . . b1l1

dij =
i−1

∏
k=j−1

b− k− bj

i−1

∏
k=j

bk, j = 1, . . . , i− 2, b0 = 0

d̄i,i−1 = bi−1bi−2 − b2
i−1, dii = bi−1

(25)

By (24), choosing the control law

u
(

l̂[2]
)
= −Hb2z2 = −M(l̂)z2 = −

2

∑
i=1

Hi

 2

∏
j=2−(i−1)

bj

l̂2−(i−1) (26)

renders

£V2 ≤ −
(

H − 3‖P‖2 − 4c1

)
|l̃|2 −

i

∑
j=1

1
H2j−2

(
H − 8c1b2

j

)
z2

j −
1

H2 Hz2
2

(27)

where

V2(l̃, z[2]) = 3l̃T Pl̃ +
2

∑
j=1

1
2H2(j−1)

z2
j (28)

M(l̂) = Hb2, b2 > 0 is a real number that satisfies (22) and does not depend on H.
The third part introduces the controller coefficients based on the Bernoulli probability
distribution. In previous research few people combined Bernoulli probability distribution
with the controller. In this paper, the author uses the Bernoulli probability distribution to
transform a continuous controller into a discrete intermittent controller. In this case, it not
only saves the energy consumption of the controller to extend the cruising range but also
reduces the calculator computing power.
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Theorem 1. The random probability distribution ξ(t) will be introduced here, which is the control
probability of the random variable distribution for the AUV and satisfies the Bernoulli distribution
as follows:

Prob{ξ(t) = 1} = E{ξ(t)} = P(t),

Prob{ξ(t) = 0} = 1− E{ξ(t)} = 1− P(t),
(29)

In the above Formula (29), when ξ(l) is a constant proportional distribution, its value
range is the interval [P1, P2], where P1 and P2 are the minimum and maximum values
of ξ(l), respectively. For the convenience of calculation in this article, we assume that
parameter ξ(t) is irrelevant.

In this paper, we are interested in designing a probability gain controller as follows:

u(l) = K(P)l(t), (30)

For Formula (30), the parameter K(P) is the controller gain, which can be designed as
follows:

K(P) = K0 + P(t)Ku, (31)

Remark 1. The controller’s gain includes K0, Ku, and the time-invariant parameter P(t). In this
paper, the controller will be regarded as a fixed value. It is less conservative than the other controller.
The gain filtering problem has attracted many researchers’ attention. Due to the special structure
of the controller gain, this gain controller deserves special attention. The constant gains of the
controllers K0 and Ku are obtained using this paper’s main results. The Bernoulli probability gain is
introduced into the backstepping controller as a stochastic gain, which solves the stochastic problem
and the complexity of controller design.

3.3. Stability Analysis of Stochastic Nonlinear System

Theorem 2. Where H∗1 ≥ 0, and H > H∗1 are constants, system (5) satisfies Assumption 3.
Finally, (8) and (26) are as follows:

Conclusion:

(1) The system has initial stations (l0, l̂0); system (5), (8), and (26) is unique.
(2) Initially, the system is stable based on probability.
(3) Control law

u∗ = α∗(l̂) = −βHb2z2, β ≥ 2 (32)

makes the system stable. The cost function as follows

J(u) = E
(∫ ∞

0

[
s(l̃, l̂) +

1
H2 M−1(l̂)u2

]
dτ

)
(33)

is minimum. The well-known function s(l̃, l̂) and Equation (10) have the same circumscrip-
tion, and l̂ = (l̂1, l̂2)T , f̄ (l̃, l̂) = ((HAl̃)T + FT(l), Hs1 l̃1 + l̂2, H2s2 l̃)T , g̃1(l̃, l̂) = (GT(l), 0),
ḡ2(l̃, l̂) = (0, 1)T , V = V2

Proof. According to dii = bi−1 and Equations (22) and (25), we can obtion bi > bi−1, b0 =
0, bi > 1(i = 1, 2). According to max{4c1, 8c1, 8c1b2

1} = 8c1b2
1. If

H > 8c1b2
1 + 3‖P‖2 (34)

is found. In line with Theorem 1, Equation (27), and Equation (28), the above conclusions
(1) and (2) are found.

When i = 1, by researching Equations (34), (17), and (22) and the literature, we can
obtain c1 which relies on H and b1 which does not rely on H. It is well-known that H >
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24(C2
f +λmax(P)C2

g)

H2

(
∑1

i=0(i + 1)Hi + (3− i)H2
)

b2
1 + 3‖P‖2 is equivalent to

the following.

H3 >24(C2
f + λmax(P)C2

g)b
2
1

(
i

∑
i=0

(i + 1)Hi + (3− i)H2

)
+ 3‖P‖2H2 (35)

renders

H3 +
2

∑
i=0

ai Hi > 0 (36)

When a0 = −∆, a1 = −2∆, a2 = −∆− 3‖P‖2, ∆ = 24(C2
f + λmax(P)C2

g)b2
1. Now, we

discuss selecting the H∗1 in two cases:

(i) If there is at least one positive real number in H1, H2, H3, choose H∗1 = max1≤i≤3{Hi}
to be the largest real root.

H = 8c1b2
1 + 3‖P‖2 = 24(C2

f + λmax(P)C2
g)b

2
1(1 +

1
H
)2 + 3‖P‖2 (37)

(ii) Otherwise, select H∗1 = 0, where H∗1 ≥ 0 must be held, so (31) isfound for any H > H∗1 .
The next step is to certify conclusion (3). Equations (12) and (14) can be expressed(

dl̃
dl̂

)
= f̄ (l̃, l̂)dt + ḡ1(l̃, l̂)dω + ḡ2(l̃, l̂)udt (38)

By choosing γ(r) = 1
2H2 r2, we can obtain (γ

′
)−1(r) = H2r and `γ(r) = 1

2 H2r2,
according to (7), (37), and V = V2 and can obtain

u = α(l̂) = −R−1
2 (l̂)

1
H2 z2

1
2

H2 = −1
2

R−1
2 (l̂)z2 (39)

choosing R2(l̂) = (2M(l̂))−1 = 1
2Hb2

, which can obtain u = −M(l̂)z2. It and Equation (26)
have the same shape. In line with conclusion (2) and Lemma 1, the controller can be
expressed as follows

u∗ = α∗(l̂) = − β

2
R−1

2 (l̂)
1

H2 z2
1
2

H2 = − β

2
R−1

2 (l̂)z2 = βα(l̂), β ≥ 2 (40)

minimizes the cost function.

Remark 2. In [8,31,32], the author studied the robust controller and the observer design for
uncertain time-delay systems. In this part of the stability analysis, we can obtain the optimal
solution controller form. According to the nonlinear system (5) satisfying the assumptions and
theorems, the optimal value of the brother parameters can be obtained by introducing the cost
function. Moreover, H is the optimal value we obtained through stability analysis, where the value
of H can be further reduced so that the constraints of the entire controller become smaller. Finally,
through proof, the optimal value can be obtained under the guidance of theory. Under the theory
with the most controllers, the designed probability gain controller can be more relaxed, and it can
adapt to many more nonlinear systems and expand the application range of the controller.

4. Underwater Robot Transportation Model Example

Remark 3. In this section, this paper calculates the numerical simulations in which stochastic
noise is used instead of the AUV’s external stochastic disturbances [33]. However, in a realistic
environment, such noise disturbances do not exist, and such an approach is idealized.
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Consider the following stochastic nonlinear system:

l̇1 = l2 +
1

10
l1l2 +

1
10

l1l2ω̇

l̇2 = u +
1
10

l2sinl1 +
1

10
l2sinl1ω̇

y = l1

(41)

Assumption 3 was found. Here, we choose C f =
1

10 and Cg = 1
10 and the high-gain

observer as follows
˙̂l1 = l̂2 + H(l1 − l̂1)
˙̂l2 = u + H2(l1 − l̂1)

(42)

Selected parameters are K1 = K2 = 1; the H > 0 is the unknown and real number

gain, which can be obtained. By circumscription of l̃1 = l1− l̂1 and l̃2 = l2−l̂2
H , the following

is obtained:

dl̃ = HAl̃dt + F(l)dt + G(l)dω, l̃ = (l̃1, l̃2)T

F(l) =
(

1
10

l2sinl1,
1

10
(l1l2)

1
2

)T

G(l) =
(

1
10

l2sinl1,
1

10
(l1l2)

1
2

)T

(43)

Introduction,
z1 = l̂1
z2 = l̂2 − α1(l̂1)

(44)

According to the theorem and controller law proposed, we can obtain the probabil-
ity controller.

α1(l̂1) = −Hb1z1, b1 =
1
2
+

1
4
+ 2 = 2.75, H ≥ 8c1 (45)

u = −Hb2z2, b2 =
d2

20
4

+
d2

21
4

+ d22 + 2 = 19.03 (46)

Meanwhile,

c1 =
3

100
(1 + λmax(P))

(
1 +

1
H

)2
(47)

P =
(

0 − 1
2

− 1
2 1

)
, ‖P‖ =

√
6

2 , λmax(P) = 1+
√

2
2 , d20 = 1 + b1 = 3.75, d21 = 1− b2

1 =

−6.56, d22 = b1 = 2.75. In this part, by using Theorem 1 for a specific AUV control
system described in Figure 2, we can lay out a Bernoulli probability controller as follows:
u = −K(P)Hb2z2. We selected the unknown parameters as H > H∗1 = 9.9609 .

4.1. Simple State Keeping Results in the Presence of Underwater Stochastic Disturbances

In line with the above analysis, according to the proposed strategy, we conduct a sim-
ulation to prove the effectiveness. Figures 3–5 are the simulation results. [l1(0), l2(0), l̂1(0),
l̂2(0)]T = [5, 0, 0, 0]T are the chosen initial conditions.
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(a) (b)

Figure 3. (a) State l1 under probabilistic gain controller; (b) state l2 under probabilistic gain controller.

(a) (b)

Figure 4. (a) Observer l1 under probabilistic gain controller; (b) observer l2 under probabilistic
gain controller.

(a) (b)

Figure 5. (a) Time-varying probability distribution; (b) controller u under probabilistic
gain controller.

4.2. Without the Probability Gain Simulation Results in the Presence of Underwater Stochastic
Disturbances

In this section, we will compare the probability gain simulation results with the
ordinary nonlinear backstepping control. From Figures 6–8, it can be seen that there are
random disturbances in the state and observed values of the system, and the probability
distribution observer can eliminate and suppress the disturbance very well.
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(a) (b)

Figure 6. (a) State l1 without probabilistic gain controller; (b) state l2 without probabilistic gain
controller.

(a) (b)

Figure 7. (a) Observer l1 without probabilistic gain controller; (b) observer l2 without probabilistic
gain controller.

Figure 8. Controller u without probabilistic gain controller.

By comparing Figures 3–5 and Figures 6–8, we can see that in the absence of the
Bernoulli probability controller, the system’s state will be affected by external interference,
and there will still be fluctuations in the state under the action of the controller. After the
addition of the Bernoulli probability controller, the simulation results from Figures 3–5
strongly prove that the probability gain controller can achieve the effect of eliminating
external interference, and the time and efficiency of the controller are not affected under
the action of the probability controller. Finally, by comparing with the PID control effect
Figures 9 and 10, we can reduce the control time from 10 s to 2 s. However, due to the
enhanced control effect, the peak consumption of this controller increases from 4 to 200,
and the increase of the controller consumption is within our tolerance range. Nevertheless,
the controller’s action time was reduced from 15 s to less than 1 s.
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(a) (b)

Figure 9. (a) State l1 under PID controller; (b) state l2 under PID controller.

Figure 10. Controller u under PID controller.

5. Concluding and Future Prospects

According to the simulation results, the system’s unmeasurable states can be observed
using a high-gain observer, and the complex nonlinear control problem is transformed into
a parameter selection problem by introducing coordinate transformation, which simplifies
the calculation process and complexity. The paper assumes that the external disturbance
randomly occurs, and the concept of a probability controller is introduced. With the control
effect unchanged, it can convert continuous control to intermittent control. The endurance
problem of the AUV is solved under intermittent control. The control method significantly
saves energy and extends the cruising range. Based on the backstepping control method,
the complex nonlinear controller is decomposed into a computational method that can
perform iterative recursion. The final controller can be calculated through the designed
virtual controller. An easy-to-implement probabilistic control algorithm is designed, and
a Bernoulli probability gain controller with constant parameters and time invariance is
designed. This is more lenient than traditional control methods. In the case of simultaneous
external interference, system uncertainty, and time delay, the closed-loop system can
ensure that all states are stable. Finally, a simulation example is used to demonstrate the
effectiveness of the proposed design method.

In this research, the continuous system is mainly studied, which limits the application
scope of the probability gain controller because the information obtained in the actual
project and the execution of the command are discrete information. The next step in our
research is to discretize continuous systems so that the probability gain control method
can be applied to discrete systems; on the other hand, it is aimed at the simplified AUV
system. This article mainly considers three degrees of freedom, which is different from
actual engineering. Another direction is to satisfy the six-degree-of-freedom controller
when the controller realizes practical engineering applications.
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