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Abstract: The effective thermal conductivity (ETC) of soil is an essential parameter for the design
and unhindered operation of underground energy transportation and storage systems. Various
experimental, empirical, semi-empirical, mathematical, and numerical methods have been tried in
the past, but lack either accuracy or are computationally cumbersome. The recent developments in
computer science provided a new computational approach, the neural networks, which are easy to
implement, faster, versatile, and reasonably accurate. In this study, we present three classes of neural
networks based on different network constructions, learning and computational strategies to predict
the ETC of the soil. A total of 384 data points are collected from literature, and the three networks,
Artificial neural network (ANN), group method of data handling (GMDH) and gene expression
programming (GEP), are constructed and trained. The best accuracy of each network is measured
with the coefficient of determination (R2) and found to be 91.6, 83.2 and 80.5 for ANN, GMDH and
GEP, respectively. Furthermore, two sands with 80% and 99% quartz content are measured, and the
best performing network from each class of ANN, GMDH and GEP is independently validated. The
GEP model provided the best estimate for 99% quartz sand and GMDH with 80%.

Keywords: effective thermal conductivity; artificial neural network; group method of data handling;
gene expression programming; artificial intelligence

MSC: 68T07

1. Introduction

Loose granular matter such as soil consists of three phases, i.e., one solid phase (grain)
and two fluid phases (air, water) [1,2]. Combination of these phases quantifies the ability
of the granular media to allow heat transport. The ability is coined as the “apparent” or
“effective” thermal conductivity (ETC) of the granular media and plays an important role
in geo-environmental engineering, earth and planetary science, and composite engineering
applications [3–6]. The effective thermal conductivity (ETC) of soils is influenced by many
different factors such as saturation, dry density, particle size, gradation, mineralogical
composition, packing geometry, temperature and particle bonding. The pore shape, size
orientation and spatial arrangement of pores, too, have nonlinear dependency on ETC [7,8].
In the past decade, primarily three different approaches have been put forward to estimate
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ETC, namely, experimental measurement, empirical or theoretical calculation and numerical
modelling. The experimental measurements are classified into two categories: the steady
state and transient method. The steady approach establishes linear temperature gradient in
the vertical direction with a known heat flux to measure the ETC [9]. The transient menthod
works on the principle of a linear heat source where heat flux and needle temperature are
measured simultaneously to estimate the ETC [10]. The experimental methods are lengthy,
costly, limited, and only available in certain conditions [11]. Especially for unsaturated soil,
it is difficult to control porosity and moisture content simultaneously. For the steady-state
method, the effect of moisture distribution and moisture migration along with evaporation
add to this misery due to longer experimental times [12]. Therefore, in recent years, a
significant number of prediction models have been proposed based on mathematical and
numerical modelling [13]. The mathematical models for the effective thermal conductivity
of unsaturated soil are classified into the following three methods: (1) the theoretical
models, (2) the mixing models, and (3) the empirical models. The theoretical models are
developed by the oversimplification of the heat transfer process in unsaturated soil with
assumptions such as single and uniform particle shape, series, and a parallel and mix-
mode model for heat transfer [14]. These formulas are very complex and it is difficult to
determine the controlling and constitutive parameters [15]. Mixing models are developed
using the prognostic models of the other basic fields such as the electrical and flow fields.
A similar analogy is applied to compute ETC without considering the size, shape, geometry,
mineralogy, temperature, stress, and particle bonding [16]. Various matematical fuctions
are used with empirical and semi-emperical models to fit the experimental data among
saturation, porosity and thermal conductivity. These equations are limited in scope and are
valid only for the materials they are developed for and the boundary conditions at which
the measurements for the model are performed [1,17]. The estimates of the ETC with hard
computation come in two flavours: the continuum approaches and the discrete approaches.
The continuum approaches are the finite element method (FEM) [18], the boundary element
method (BEM) [19] and the finite difference method (FDM) [20], etc. The continuum-based
methods solved the partial differential equations which are posed for the whole domain
with the discretization technique. The continuum-based approach fails to capture the
complex granular physics due the inherited continuum assumption used for deriving
the partial differential equation based on homogenisation techniques [21]. The discrete
approaches are the discrete or distinct element method [22], lattice element method [23],
and random pipe network model [24]. These modelling techniques build the model from
many discrete entities and then multibody interactions are solved in the form of linear
system of equations [25]. The discrete methods represent the granular media which is lost
in the continuum-based methods [23]. The lattice element method has certain advantages
in terms of computation time, ease of granular assembly generation, and inclusion of basic
granular heat transport physics, over the other discrete methods; however, some progress
has recently been made to overcome the computational time with GPU acceleration [26].

Artificial intelligence and machine learning have been aaplied in the past in different
forms considering supervised learning and various regression analyses, such as, linear
and nonlinear, gaussian process, decision tree, support vector machine learning, ensem-
ble learning, extree gradient boost, improved firefly algorithm, BPNN-gnetic algortihm,
random forest, multivariance linear regression, adapting boostig and ANN [27,28].

The ANN models are applied in various forms considering the deep neural network
using forward multi-layer perception conception [29,30]. Some noteworthy work shows the
application of the method but only two input parameters, namely, the saturation and poros-
ity, are included and the mineralogical factor is missing in all the previous studies [31–34].
However, the ANN-based networks require a significant amount of well-conditioned data
for good accuracy of results [35,36]. In addition, the network is unable to provide a working
equation which is easy to implement for practical engineering work [37]. Therefore, another
class of neural network, gene expression programming (GEP), is also implemented in this
study, which uses an evolutionary genetic algorithm for the computational purpose [38].
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The GEP applies a simple encoding method and chromosomes to solve complex problems.
A chromosome is made up of many genes and are connected with one another by a linking
mathematical function. The genes are given a binary signature of 0 and 1, called head
or tail. The head constitutes both functions and terminals and the tail has terminals only.
For initiation of the problem, the positive signal head is selected, and the tail length is
computed directly [39]. The distinct advantage of GEP is the ability to formulate a simple
mathematical function from the input variable that can be used as a predictive model for
estimation of ETC [40]. In a recent study, GEP is employed for the prediction of ETC of soil
from a training database constructed from the literature. The work shows the significance
of each considered input parameter and ranked them with sensitivity analysis [41].

The limitation of both ANN and GEP is the amount of data required to train the
model and the parameters required as input for the accuracy of the predicted results [42].
The group method of data handling (GMDH) has the advantage to phase out the less
influential parameters, thus reducing the demand for training data and parameters, thus
reducing the complexity of the network[43–45]. The GMDH is implemented to estimate
the thermal conductivity of sand considering porosity, saturation and particle shape [46].

The various regression methods and machine-learning techniques provide good esti-
mates of thermal conductivity but are black-box models unable to provide a mathematical
equation and requiring a significant amount of data for training, testing and validation.
Therefore, in the present work, we selected three independent approaches based on merits
such as the ANN which provides accurate estimates, the GEP which is able to provide a
mathematical equation and GMDH which has superior learning ability with a relatively
small database. A sizeable dataset is prepared from the reported literature and is used for
training, testing and validation. Two environmental factors, namely, soil moisture content
and porosity and one mineralogical component, the quartz content, is considered from
the pool of variables affecting the thermal conductivity. The developed networks are then
used to predict the thermal conductivity of two sands varying in quartz mineral content
compacted at different densities and plotted against the measured results.

2. Material and Method

For training, validation and verification of the models, a total of 384 measurements
were collected from literature [1,17,23,47,48]. The database consists of a variety of soil types
from sedimentary to volcanic in nature. Figure 1 shows the values of thermal conductivity
plotted against the degree of saturation and porosity. The quartz content of each sample is
plotted with the colour bar ranging between 0.1 to 1. The plot clearly shows the positive
correlations between thermal conductivity and degree of saturation. However, as the
porosity increases, the pores hinder the heat flow and, thus, the thermal conductivity of the
soil decreases. Again, a positive correlation is visible between the quartz content of the soil
and the thermal conductivity. It is also shown in the graph that degree of saturation is the
most significant factor controlling the variability, and the quartz content has the least effect
among the variables considered here. The observation confirms the parameter sensitivity
analysis performed by Zhang and Xue [41] with GEP, where they showed the significance
of each parameter considered here.

The collected database shown in Figure 1 was used for training, validation and testing,
and different error calculations (see Equations (6)–(8)) were performed to check the accuracy
of the methods. However, to further test the model independent data set, two sand samples
were measured with the KD2Pro transient needle device with 80% and 99% quartz content.
The physical and thermal properties of the sand are reported elsewhere [49].

Networks with two and three input parameters were created for each network type.
Furthermore, the three input network were trained with all the data set and only those
with quartz contents of more than 50%, as it has a significant control over the thermal
conductivity [50]. The two networks with three variations were marked with the follow-
ing nomenclature.
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Network-I: Two input parameters (n and Sr) and all the data set for training, testing
and validation.

Network-I I: Three input parameters (n, Sr and mq) and only data set with more than
50% quartz content for training, testing and validation.

Network-I I I: Three input parameters (n, Sr and mq) and all data set for training,
testing and validation.

Figure 1. The thermal conductivity database with varying degrees of saturation and porosity used
for training, testing and validation of models. The variation in quartz content of the sample is shown
with the legend colour bar ranging from 0.1 to 1.

2.1. Artificial Neural Networks (ANN)

The working of an ANN is like that of a human brain. The human brain is composed
of billions of nerve cells called neurons. They are connected to another thousand cells by
axons. The ANNs are composed of multiple nodes connected by links. It can be said to be
a set of algorithms created to prepare the network with numerous layers proficiently. Feed-
forward multi-layer perceptron (MLP) is constructed to make the neural network work.
Usually, an MLP is a numerical mapping that yields an output from a set of inputs [35,51].
The study utilizes the regression analysis model to predict the output. It includes mul-
tiple input variables and a continuous target variable fed into the network. It forms a
relationship among these variables to make the model predict an outcome analytically [52].
The schematics of various components of ANN are shown in Figure 2.

Figure 2. An artificial neural network with multiple hidden layers.

Network Construction and Implementation of ANN

The neural network training starts with all the neurons being connected by a random
weight and an initializer. This random weight assignment makes the early predictions
distant from the actual values. The network weights are updated using an optimizer, and it
is passed through the neural network again. This repetitive process of updating weights
is called the training of the neural network. A loss function is considered to analyze the
training process. A neural network is said to be finally trained when this loss function
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helps identify the best configuration of the network with the minimum loss. In Figure 2,
red connections between neurons show the activated links, and the black connection
offers the connection which was not activated. The mean square error (MSE) estimator
between the actual and predicted values were chosen for the loss function. To further
minimize the loss function, stochastic gradient decent (SGD) algorithm was used. The other
loss function optimizer is batch gradient descent (BGD), which can reduce computation
time [53]. Based on our previous experiences, we used SGD over BGD, which updates the
weights incrementally for each training sample. To optimize the network, we used the
back-propagation method. The most commonly used activation functions are the sigmoid,
relu and softmax functions. However, the tanh function was our preferred function based
on our previous results, as it gives better training performances [54]. Equation (1) shows
the zero-centred tanh function ranging from −1 to 1.

f (x) =
ex − e−x

ex + e−x (1)

The final layer, which has only one neuron, is called the output layer. It is employed
with an identity function to show the values received from the previous layer without
changing its weights [23]. We used the optimal number of epochs to train the model and
avoid over-or under-fitting. A single epoch is a full complete iteration of the neural network.
Under-fitting could be overcome by training the network on more epochs and increasing the
number of neurons with the hidden layers in the neural network. Conversely, over-fitting
appears when a neural network is trained excessively, making the model learn the data
instead of generalising it. It usually happens while trying to minimise the error between
training and testing data, resulting in a severe validation error of the model. To overcome
over-fitting, cross-validation techniques such as K-Fold and regularization techniques can
be used [55,56]. However, we used the early stopping method [57] to find an optimal
network due to very limited data set of values. It can be seen from our results that when
we trained more than the optimal network, it started to show. This is shown in the results
from when we tried training, with more differences in training and testing errors.

The inputs of ANN are porosity (n), saturation (Sr) and quartz content (mq), and the
output is the thermal conductivity (k) of the sand. Three different ANNs Network I,
Network II and Network III are built as explained in the Section 2.

The data set is divided into calibration and validation data for each sample. The work-
ing steps of the ANN model are explained with a flow chart shown in Figure 3.

Figure 3. The flowchart of the learning cycle for training the ANN.
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2.2. Group Method of Data Handling (GMDH)
2.2.1. Introduction

The group method of data handling (GMDH) was first introduced by Ivakhnenko
as a proper approach for detecting nonlinear systems [43]. GMDH is a self-organising
neural network proposed by link. It can be used to model problems with multiple inputs
and a single output. The group method data handling (GMDH)-based neural network
is similar to ANN but has its differences; ANN has predetermined connections, layers,
and neurons in those layers, whereas in GMDH-based neural network, the structure of the
network is chosen by the algorithm itself. The GMDH-based neural network, due to its
inherent advantages, finds its application in a broad spectrum of domains. It unburdens
the researchers from optimising hyper-parameters for identifying the number of layers
in a neural network or the number of neurons in it. Many regression problems have
been addressed using GMDH based in various engineering and science application as
well [44,45].

2.2.2. Network Construction and Implementation of GMDH

The GMDH method uses the polynomial transfer functions to relate the input to
output with sucessive layers of neurons. In the GMDH network, the neurons depend upon
the number of input parameters and the layers are stacked one after the other until the
model reaches its maximum accuracy. The connections between the neurons of one layer to
neurons of the other layer are chosen to optimise the reliability and accuracy of the network.
Each layer is constructed by a neuron which accepts two inputs, applies a polynomial
function and spits out an output as shown in the Figure 4 and Equation (2).

Figure 4. Basic structure of neuron in GMDH-based neural network.

Y = f (a, b) (2)

The network then uses the minimisation of the difference between the true value (Y)
and the expected value f (a, b) as following

i=1

∑
N
[ f (a, b)−Y)]2 ⇒ min (3)

The polynomial relationship between input (a, b) and output Y is taken linearly here
considering the size and complexity of the data set (see Equation (4)).

f (a, b) = C0 + C1 ∗ a + C2 ∗ b2 + C3 ∗ a ∗ b. (4)

To calculate the coefficients or weights (C0, C1, C2 and C3) we use Lagrange interpola-
tion as given in the equation below

∑m
i=1 1 ∑m

i=1 a ∑m
i=1 b ∑m

i=1 a·b
∑m

i=1 a ∑m
i=1 a2 ∑m

i=1 a·b ∑m
i=1 a2·b

∑m
i=1 b ∑m

i=1 a·b ∑m
i=1 b2 ∑m

i=1 a·b2

∑m
i=1 a·b ∑m

i=1 a2·b ∑m
i=1 a·b2 ∑m

i=1 a2·b2




C0
C1
C2
C3

 =


∑m

i=1 Y
∑m

i=1 a·Y
∑m

i=1 b·Y
∑m

i=1 a·b·Y

 (5)
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The first layer (input layer) has neurons equal to the number of input parameters.
In the first hidden layer after the input layer, each neuron in the network accepts the output
of two neurons from the previous layer as its inputs. Therefore, the number of neurons
in this layer is a function of the number of neurons in the previous layer. This function
definition is

n ∗ (n− 1)/2 (6)

where n is the number of neurons in the previous layer. This construction of subsequent
layers in the network continues in the same fashion.

Each and every neuron in the hidden layer uses a hypothesis defined as a hyper-
parameter of the algorithm. After forming a layer, the hypothesis of each neuron is tested.
Based on their performance, they are sorted and the output of top-performing neurons is
propagated to the next layer. These outputs are used to form the next layer and the same
process of forming layers is continued until the addition of layers no longer improves the
performance, or until just a single neuron is left.

The three networks, Network-I, Network-I I and Network-I I I, are implemented here
as well and network was trained and tested.

The available data set was divided into training and test subsets with a ratio of 80/20.
During training, the network stopped at the 4th layer as the 5th layer started to over-fit.
The graphical representation of the network is shown in Figure 5. The working steps of the
GMDH network are shown in Figure 6.

Figure 5. GMDH Model with three inputs and one output.

Figure 6. The training steps of the GMDH network.
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2.3. Gene Expression Programming (GEP)

Gene expression programming (GEP) is an evolutionary algorithm for automatic
generation of computer programs and mathematical models. The concept was given by
Ferreira [38]. GEP is a special field of evolutionary computation that aims at building pro-
grams automatically to solve problems. It uses simple linear chromosomes of fixed length
to encode genetic information. Expression trees can be produced from the chromosomes
of fixed length through its genotype/phenotype expression system. An example of an
expression tree for Equation (7) is displayed in Figure 7.

p + q ∗ r (7)

Figure 7. The expression tree of Equation (7).

Experiments have been conducted to show the cogency of gene expression program-
ming over other conventional methods for prediction. A similar study was conducted to
determine the thermal conductivity using gene expression programming in [41]. Many ex-
periments have shown that GEP is more efficient than GP (genetic programming), and that
GEP-evolved trees are smaller than GP-evolved trees.

Network Construction and Implementation of GEP

Gene expression programming is a complete genotype/phenotype system that evolves
computer programmes contained in fixed-length linear chromosomes. As the expression of
each gene always results in valid programmes, the structure of linear chromosomes permits
the unrestricted and productive (in the sense that no invalid phenotypes occur) operation
of major genetic operators such as mutation, transposition, and recombination.

Symbolic regression is a machine-learning technique or regression analysis that seeks
to find an underlying mathematical expression that accurately captures the relationship
between variables in a dataset. Genetic programming or gene expression programming are
the most common methods for solving symbolic regression (GEP). Constant coefficients are
common in mathematical models, which presents a problem for GEP. To address the issue,
The GEP-RNC technique uses a common way to handle numerical constants by adding
another Dc domain to the genes that are dedicated to the random numerical constant
(RNC) evolution.

The flowchart for GEP is shown in Figure 8 [38,40]. The first population’s chromosomes
are generated at random. The chromosomes are then expressed and each individual’s
fitness is determined using a fitness function. Individuals are then chosen based on
their ability to reproduce with alterations, resulting in offspring with new characteristics.
Individuals from this new generation go through the same developmental process as their
predecessors: genome expression, interaction with the selective environment, and alteration
of reproduction. Replication, mutation, transposition and recombination is performed in the
reproduction phase. The process is repeated until a solution is found or for a predetermined
number of generations.
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Figure 8. The model working steps of the GEP network.

We used the geppy framework to implement the GEP-RNC algorithm on our dataset.
Geppy is an evolutionary algorithm framework specially designed for gene expression
programming in python. Geppy is built on top of the excellent evolutionary computation
framework DEAP [42] for rapid prototyping and testing of ideas with GEP.

2.4. Error Calculation and Model Selection

Three standard errors are used for computing the accuracy of each neural network
for predicting thermal conductivity: the mean square error (MSE), mean absolute error
(MAE) and the coefficient of determination (R2). The difference of MSE was chosen as the
loss function [53].

MSE =
1
n

n

∑
i=0

(Yi − Ŷi)
2 × 100 (8)

MAE =
1
n

n

∑
t=0
|Yi − Ŷi| × 100 (9)

R2 = 1− ∑n
i=0 (Yi − Ŷi)

2

∑n
i=0 (Yi −Y)2

× 100 (10)

Yi is the predicted thermal conductivity value, Y is the mean value and Ŷi is the
measured value. n is the number of measurements.
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3. Results and Discussion

The three networks, namely, NetworkI, NetworkI I and NetworkI I I, as explained in
Section 2, are the setup of each type of model. The standard errors were computed, and the
best performing model was used to compute the thermal conductivity of two independent
samples. The following sections explain the training, testing and validation of each neural
network and the intricacies and advantages of each network.

3.1. ANN Results

The three different ANN Network I, Network I I and Network I I I were built consid-
ering the two (n, Sr) or three (n, Sr, mq) available inputs and one output k. The earlier
implementation of ANN is limited in most cases with one single hidden layer and, thus, is
limited to accurately predicting for the training data [27,29–33,51]. In addition, no details
are provided for the depth of the layers and number of neurons of all the tried combi-
nations. Here, we implemented the ANN based on deep neural network (DNN) feed
forward multilayer perceptron (MLP). The neurons in each layer are connected with the
corresponding weight factor and activation function. Each neuron is assigned a random
initial value. In the subsequent step, weights were updated to minimise the error margin
to reach the training output value. Many different combinations of two, three, and four
layers of neurons were considered, with neuron numbers ranging between 4 to 16. Sim-
ilar and dissimilar numbers of neurons werealso considered, resulting in a considerable
number of networks. Only the ten best-performing networks are shown here, for brevity.
The model training data is classified into two subsets for training and testing with a ratio
of 4:1. However, the approach usually runs into a problem known as over f itting [29,32],
and, to avoid this, the training data set was further divided into two parts with a ratio of
70:30. The data is subdivided into training, validation, and testing sets, making it easier to
cross-validate the model. The implementation involves the use of Keras—a deep-learning
python library. It provides an easy-to-use, excellent suite of deep-learning functions. Model
weight parameters were optimised using the Adam optimiser. This optimiser computes the
adaptive learning rate of each parameter. The epoch size for training varied from 400 to
800, and the batch size was fixed to 10.

Table 1 shows the Network I ANN model with two inputs (n, Sr) and variables: number
of neurons and hidden layers. From Table 1, it is visible that the network with three hidden
layers with 8-6-8 neurons produces the least error. Tables 2 and 3 show the data from
Network-I I and Network-I I I with three input parameters (n, Sr, mq). At first, all the data
considered for training the optimal network found had a 4-4-4 configuration. In the second
attempt, the data with more than 50% mq was considered to reduce the data size. Again,
the same 4-4-4 network produced the best results. Although the network depth and the
number of neurons remain the same in both cases, the training epochs were reduced to half
to 400, and the mean difference error margin increased significantly to above 2% (Table 3).

Table 1. Training, testing and validation results considering Network-I. Epochs = 800 and batch
size = 10.

S. No. Layers Neurons
R2 % MSE % (W/m·K)2 MAE % (W/m·K) ∆ MSE % (W/m·K)2

Train Test Validation Train Test Validation Train Test Validation Testing–Training

1 3 8 = 6 = 8 67.118 75.093 65.331 16.520 16.549 15.6 30.086 32.143 31.0 0.029

2 3 6 = 8 = 8 67.285 73.786 66.995 16.436 17.418 14.9 30.190 33.125 30.4 0.982

3 3 8 = 8 = 6 67.735 74.113 67.209 16.210 17.201 14.8 30.188 32.723 30.7 0.991

4 4 8 = 8 = 8 = 8 69.935 74.739 66.704 15.105 16.784 15.0 28.916 31.819 30.1 1.680

5 3 8 = 8 = 8 68.812 73.638 65.356 15.669 17.516 15.6 29.403 33.125 30.9 1.847

6 3 10 = 10 = 10 70.100 74.010 65.235 15.022 17.269 15.7 28.875 33.230 30.4 2.247

7 4 6 = 6 = 6 = 6 70.148 73.563 67.593 14.998 17.566 14.6 28.929 33.262 29.6 2.569

8 3 12 = 12 = 12 70.971 72.473 66.783 14.585 18.291 15.0 28.809 34.069 30.2 3.706

9 4 10 = 10 = 10 = 10 72.888 70.334 64.322 13.621 19.711 16.1 27.216 34.383 30.7 6.090

10 4 12 = 12 = 12 = 12 73.905 68.801 61.769 13.110 20.730 17.2 27.002 36.278 31.3 7.620
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Table 2. Training, testing and validation results considering Network-I I.

S. No. Layers Neurons
R2 % MSE % (W/m·K)2 MAE % (W/m·K) ∆ MSE % (W/m·K)2

Train Test Validation Train Test Validation Train Test Validation Testing–Training

1 3 4 = 4 = 4 89.692 91.896 85.526 5.179 5.385 6.5 16.516 16.963 19.6 0.206

2 4 4 = 4 = 4 = 4 89.521 90.886 84.545 5.265 6.056 7.0 16.453 19.214 20.0 0.791

3 3 4 = 6 = 8 90.421 89.204 83.664 4.813 7.174 7.4 15.518 19.133 20.4 2.361

4 3 8 = 8 = 8 91.412 89.644 84.187 4.313 6.880 7.1 14.413 18.713 19.9 2.567

5 3 6 = 6 = 6 91.620 88.532 82.275 4.210 7.620 8.0 14.630 19.444 20.7 3.409

6 3 8 = 8 = 8 92.594 88.792 82.880 3.720 7.447 7.7 13.027 18.307 20.2 3.727

7 3 8 = 6 = 4 92.309 87.197 83.838 3.864 8.507 7.3 13.713 19.750 19.9 4.643

8 4 6 = 6 = 6 = 6 92.710 85.047 84.174 3.662 9.936 7.1 13.514 21.562 18.9 6.273

9 3 10 = 10 = 10 94.562 83.302 80.606 2.732 11.095 8.7 11.398 21.644 20.8 8.363

10 3 12=12=12 95.219 80.201 74.088 2.402 13.156 11.7 10.552 23.912 22.2 10.754

Table 3. Training, testing and validation results considering Network-I I I.

S. No. Layers Neurons
R2 % MSE % (W/m·K)2 MAE % (W/m·K) ∆ MSE % (W/m·K)2

Train Test Validation Train Test Validation Train Test Validation Testing–Training

1 3 4 = 4 = 4 89.222 80.189 69.103 6.524 8.380 14.4 19.263 23.078 28.1 1.855

2 3 2 = 2 = 2 87.090 76.474 73.645 7.815 9.951 12.2 21.162 24.863 25.9 2.136

3 3 4 = 4 = 4 90.698 81.269 72.012 5.631 7.923 13.0 17.451 22.585 27.5 2.292

4 3 8 = 8 = 8 92.176 83.306 77.968 4.736 7.061 10.2 15.542 20.768 22.0 2.325

5 3 6 = 6 = 6 92.270 83.216 72.986 4.679 7.099 12.5 15.543 20.959 24.9 2.420

6 4 6 = 6 = 6 = 6 92.904 83.681 76.047 4.295 6.903 11.1 14.769 19.915 23.3 2.607

7 3 8 = 8 = 8 93.542 84.249 71.868 3.909 6.662 13.1 13.886 19.583 24.5 2.753

8 3 8 = 6 = 6 93.097 83.004 68.001 4.179 7.189 14.9 14.633 20.194 26.0 3.010

9 3 10 = 10 = 10 93.533 83.110 70.193 3.915 7.144 13.8 13.980 20.366 24.3 3.230

10 3 12 = 12 = 12 94.867 76.508 73.505 3.107 9.937 12.3 12.430 24.307 22.2 6.830

3.2. GMDH Results

The reported work of the GMDH application to compute the ETC is limited to
Rizvi et al. [46], where 80 measurements of four different sandy soils were used for training
and testing. Soil porosity, saturation and particle size were considered as inputs. The result
shows good accuracy for quartz sand but fails to provide reasonable results for other
mineralogical compositions. The present work incorporates quartz content as model input,
thus improving the model prediction.

GMDH algorithms are characterised by their self-organising property, in which sorting
is performed on neurons of a layer. The complexity increases layer after layer gradually
until we reach a stopping condition and have the best solution to our objective function.
The polynomial mapping functions (quadratic functions) are used in each neuron and fitted
by the least-squares method.

The data set was divided into a ratio of 80:20. The standard errors were computed
to check the accuracy of the network. The Network-I with two inputs showed lower
confidence in results. The best performing Network I I with all training data performed the
best with an R2 value of 83.2 and MSE of 0.086. The results of all the three networks are
given in the Table 4.

Table 4. The errors resulting from different GMDH models.

Serial No. R2 % MSE % (W/m·K)2 MAE % (W/m·K)

Network-I 78.9 27.60 24.02

Network-I I 83.2 22.60 20.60

Network-I I I 81.6 29.19 22.90
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3.3. GEP Results

The GEP model to compute the ETC is limited to only one previous study where
saturation, porosity, quartz content and temperature are considered [41]. The model
was trained, and an equation was proposed, but it cannot provide good results at lower
saturation (Equation (11)). The model predicts zero thermal conductivity at zero saturation,
which is not correct. The model proposed here provides reasonable results for the full range
of saturation.

k = (2Sr)
n(0.6−Sr)·

√
Sr

n(n−Sr+2.79)
·
(

1
4
(

6.58 + T
2

)
1
3 +

mq

16
+ 0.49

)
(11)

The dataset was divided into an 80:20 ratio for training and test set. The three expres-
sion trees were constructed from Network-I, Network-I I and Network-I I I.

Firstly, different GEP RNC model configuration parameters were decided, including
the primitive set. The values of different parameters are displayed in Table 5.

Table 5. GEP model configuration and parameters.

Parameter Values

Function set +, −, *, /, sin, cos, tan
Head length 7

Number of genes 2
RNC array length 10

Mutation rate 0.065
Inverse rate 0.1

One-point recombination rate 0.3
Two-point recombination rate 0.3

Population size 200
Number of generations 110

The GEP-RNC algorithm was implemented on the three networks using the configura-
tion given in Table 5, and the following equations and expression trees were obtained.

The GEP expression for Network-I is shown in Figure 9a, and the corresponding
equation is given by Equation (9).

k =
0.211

n
(n cos (

n
Sr + sin (10)

) + tan (n + Sr− 8) + 10)− 2.842 (12)

(a) (b) (c)
Figure 9. The GEP Expression tree from three configurations of input data: (a) expression tree for
Network-I, (b) expression tree for Network-I I, and (c) expression tree for Network-I I I.
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The GEP expression for Network-I I is shown in Figure 9b, and the corresponding
equation is given by Equation (10).

k = 0.142(9− 3n) sin (Sr) tan mq − 0.997 cos (−mq +
mq

n
+ Sr) + 1.121 (13)

The GEP expression for Network− I I I is shown in Figure 9c and the corresponding
equation is given by Equation (11).

k = 2.781mqSr tan (cos (sin (Sr))) + 2.781 cos (n + cos (cos (
cos (3)

mq
)))− 0.157 (14)

The standard error were calculated and are reported in the Table 6.

Table 6. GEP model error calculation of each network.

Objective
R2 % MSE % (W/m·K)2 MAE % (W/m·K)

Train Test Train Test Train Test

I 84.6759 76.7418 8.0559 11.1374 20.4339 24.0244

II 69.5608 55.0665 16.0020 21.5169 31.3082 33.8458

III 80.5164 79.1439 10.4814 12.7152 23.8305 29.7945

To test the developed equations, the measurement performed with sand with 80%
quartz content (mq) was used. The result is plotted in Figure 10a. The Equation (9) corre-
sponding to Network-I with two inputs shows a linear trend. The equation fails to predict
the behaviour at lower and higher saturations and the nonlinear dependency of saturation
on the thermal conductivity value.
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Figure 10. Thermal conductivity predection based on GEP. (a) Thermal conductivity estimation from
Equations (12)–(14) plotted against experiment result for mq of 0.8 (b) with values of mq ranging
between 0.5–1.0 in Equation (14) and experiment result of mq 0.8 and 0.99 of two different sands.

Network-I I showed a significant improvement when adding one more input param-
eter and can show nonlinear behaviour at a lower saturation range but flipped to linear
behaviour at higher saturations (see Figure 10a and Equation (10)).

Equation (11) corresponding to Network-I I I showed typical nonlinear behaviour and
a good correlation at lower and middle saturation regions (see Equation (10), Figure 10a)
but failed at higher saturations. However, the performance of Network-I I I is better
than Network-I I despite being only trained with mq values greater than 0.5. Therefore,
Equation (10) corresponding to Network-I I was considered for further computation.

To test the performance of Equation (10), one additional experimental value was added
to the study with an mq value of 99%. The quartz content of Equation (10) was varied
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between 0.5 to 1.0 with an interval of 0.1, and the lines were plotted. The equation showed
good correlation for both 80% and 99% quartz content.

3.4. Comparison among Methods

The best performing network of each method was chosen and used to predict the
thermal conductivity of two different sands with mq values of 0.9 and 0.8. The ANN showed
good agreement for sand with a mq value of 0.9; however, the accuracy dropped marginally
for mq of 0.8 (Figure 11b). The GEP equation from Netwrok I I I showed a good agreement
at mid-range saturations for mq 0.9; however, the error at lower and higher saturations was
significant. For mq of 0.8, the prognosis depreciates at both the mid and higher saturation
ranges. The GMDH model performed well at lower saturation ranges but under-predicted
the thermal conductivity value at higher saturations for mq of 0.9. A similar trend was
observed for mq of 0.8, shown in Figure 11b, where the GMDH underperformed at higher
saturation ranges.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Saturation

0

0.5

1

1.5

2

2.5

3

3.5

T
h

e
rm

a
l 

c
o

n
d

u
c

ti
v

it
y

 (
W

/m
.K

)

GMDH

GEP

ANN

EXP m
q
=0.99

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Saturation

0

0.5

1

1.5

2

2.5

T
h

e
rm

a
l 

c
o

n
d

u
c

ti
v

it
y

 (
W

/m
.K

)
GMDH

GEP

ANN

EXP m
q
=0.8

(b)
Figure 11. Model prediction of three different networks and experimental results (a) for quartz
content mq 0.8 (b) mq 0.99.

The above results show that the ANN network outperformed the GEP and GMDH
networks. However, due to the GEP equation’s simplicity, it has more direct application for
practical engineering applications. The GMDH model has the advantage of quick model
training with a small data set and parameter sensitivity ranking.

4. Conclusions

In this paper, we presented three neural network approaches to estimate the thermal
conductivity of the soil. The network models were chosen based on accuracy, training
speed and data requirement, input parameter sensitivity marker and ability to present a
simple mathematical formula. The artificial neural network with Network-I I showed a
superior prediction ability with three inputs and MSE value of 20.6% and a R2 value of
89.6% and 91.9% for training and testing, respectively. The group method of data handling
showed the best result with Network-I I as well; however, the R2 value depreciated to 83.2%
and MSE to 22.6%. The gene expression programming provided the best fitting equation
with Network-I I I with an MSE value of 12.0% and R2 value of 80.5% and 79.1% for training
and testing, respectively. The networks could be improved by providing more dispersed
data to avoid bias. Further studies will incorporate the effect of temperature on soil thermal
conductivity and shall be reported elsewhere. The method presented here is generic and
could be applied with minor changes to any other field of study.
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Abbreviations
The following abbreviations are used in this manuscript:

ETC Effective thermal conductivity
ANN Artificial neural network
GMDH Group method of data handling
GEP Gene expression programming
FEM Finite element method
BEM Boundary element method
FDM Finite difference method
MLP Multi-layer perceptron
MSE Mean square error
SGD Stochastic gradient decent
BGD Batch gradient descent
GP Genetic programming
RNC Random numerical constant
MAE Mean absolute error
R2 Coefficient of determination
n Porosity
Sr Degree of saturation
k Thermal conductivity
mq Quartz content
T Temperature
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