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Abstract: We consider a sequence of i.i.d. random variables, (ξ) = (ξi)i=0,1,2,..., Eξ0 = 0, Eξ2
0 = 1,

and subordinate it by a doubly stochastic Poisson process Π(λt), where λ ≥ 0 is a random variable
and Π is a standard Poisson process. The subordinated continuous time process ψ(t) = ξΠ(λt) is
known as the PSI-process. Elements of the triplet (Π, λ, (ξ)) are supposed to be independent. For
sums of n, independent copies of such processes, normalized by

√
n, we establish a functional limit

theorem in the Skorokhod space D[0, T], for any T > 0, under the assumption E|ξ0|2h < ∞ for some
h > 1/γ2. Here, γ ∈ (0, 1] reflects the tail behavior of the distribution of λ, in particular, γ ≡ 1 when
Eλ < ∞. The limit process is a stationary Gaussian process with the covariance function Ee−λu,
u ≥ 0. As a sample application, we construct a martingale from the PSI-process and establish a
convergence of normalized cumulative sums of such i.i.d. martingales.

Keywords: functional limit theorem; Poisson stochastic index process; pseudo-Poisson process;
random intensity

MSC: 60F17; 60G10; 60G44

1. Introduction

The Poisson Stochastic Index process (PSI-process) represents a special kind of a
random process when the discrete time of a random sequence is replaced by the continuous
time of a “counting” process of a Poisson type.

Throughout this paper, we consider the triplet {Π, λ, (ξ)} of jointly independent
components defined on a probability space {Ω,F ,P}. Here, Π is a standard Poisson
process on R+ := {t ∈ R : t ≥ 0}, λ is an almost surely (a.s.) non-negative random
variable, which plays a role of random intensity, and (ξ) denotes a random sequence
ξ0, ξ1, . . . of independent and identically distributed (i.i.d.) random variables. Let us define
a PSI-process in the following way:

ψ(t; λ) ≡ ψ(t) := ξΠ(λt), t ∈ R+ . (1)

The mechanism of PSI-processes is reduced to sequential replacements of terms of
the “driven” sequence (ξ) at arrival times of the “driving” doubly stochastic Poisson
process Π(λt).

Let us introduce a “natural” filtration F ≡ (Ft)t∈R+
, generated by the PSI-process

Ft := σ{Π(λs), s ≤ t; ξ0, . . . ξk, k ≤ Π(λt) } ⊂ F . (2)

Note that if the distribution of ξ0 has no atoms, then the natural filtration F coincides
with a filtration, which is generated by a compound Poisson type process with the random
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intensity λ: Y(t) := ∑
Π(λt)
k=0 ξk starting at the random point ξ0. (In the case when ξ0 has

an atom at 0, some jumps of Π(λt) may be “missed” in Y, the process Y is known as a
stuttering compound Poisson process. A similar phenomenon happens with a PSI-process
when ξ0 has any atom, not necessarily at 0. For details we refer to [1].)

PSI-processes may have a lot of interpretations. For instance, in insurance models and
their applications: while a compound Poisson process Y(t) is monitoring the cumulative
value of claims up to a current time t, the corresponding PSI-process ψ(t) is monitoring the
last claim.

Another interpretation arises in models of information channels. Here, (ξ) plays a role
of random loads on an information channel. The driving doubly stochastic Poisson process
Π(λt) affects (ξ) in the following manner. At arrival points of the driving process Π(λt),
the current term of (ξ) is replaced with the next term.

In view of these interpretations, as well as from a point of view of the classical
probability theory, it makes sense to consider sums of independent PSI-processes. In
this paper, we confine ourselves to the case when all terms in these sums are identically
distributed PSI-processes and when the terms of the driven sequences have a finite second
moment. Without loss of generality, we assume that Eξ0 = 0 and Eξ2

0 = 1. Let ψ(k),
k = 1, 2, . . . , denote independent copies of ψ. Note that the Poisson processes in the
definition (1) are also independent in different copies, as well as the time change factors

λk
d
= λ, for any k ∈ N. Introduce

ζn(t) :=
1√
n

n

∑
k=1

ψ(k)(t; λk), n ∈ N, t ≥ 0, (3)

the normalized cumulative sum. Note that ζn is a stationary process for any n.
When one of the processes ψ(1), . . . , ψ(n) changes its value, all the values of other

processes remain the same a.s. Hence, the change mechanism behind the sums of type (3)
can be described as a projection of some information from past to future and replacement
of other information with new independent values. This can be opposed to autoregression
schemes, which are based on contractions of information. This mechanism of projection
survives after a passage to the limit as n→ ∞. Hence, if the limit exists in some sense, it
has to be described by so-called “trawl” or “upstairs represented” processes introduced by
O. E. Barndorf-Nielsen [2,3] and R. Wolpert, M.Taqqu [4], respectively. A relationship of
PSI-processes with trawl processes is discussed briefly in [5].

Our main result is a functional limit theorem for normalized cumulative sums (3)
(Theorem 1): random processes ζn weakly converge, as n → ∞, in the Skorokhod space
of càdlàg functions defined on a compact [0, T], T > 0. The limit process ζ is Gaussian,
centered, stationary, and its covariance function is Lλ(|t− s|), s, t ∈ R+, where Lλ denotes
the Laplace transform of the random intensity λ. In a simpler case of non-random intensity
λ, the analogous functional limit theorem has been established by the second author in [6].
In this case, the limit is necessarily an Ornstein–Uhlenbeck process. Introducing a random
intensity significantly widens the class of possible limiting processes but makes a proof
of the corresponding functional limit theorem more involved. Our method of proof is
essentially based on a detailed analysis of a modulus of continuity for the PSI-process.

In our research, we came upon the following interesting phenomena, which occurs
if Eλ = +∞. Then, the fatter the tail of λ is, the more moments of ξ0 are needed for the
relative compactness of the family (ζn)n∈N. When Eλ < ∞, our method of proof requires
just a condition E|ξ0|2+ε < ∞, for some ε > 0.

As an example of a functional of the PSI-process, we construct a martingale adapted to
the natural filtration (Ft) generated by the PSI-process defined in (2). Consider a pathwise
integrated PSI-process

Ψ(t) :=
∫ t

0
ψ(s)ds (4)

and define a so-called M-process associated with the PSI-process as



Mathematics 2022, 10, 3955 3 of 17

M(t; λ) ≡ M(t) := λΨ(t) + ψ(t)− ξ0, t ≥ 0 . (5)

Suppose that λ is a positive constant and Eξ0 = 0. Then, M(t) is an (Ft)-martingale,
starting at the origin. The proof presented in Section 3 is reduced to a direct calculation and
exploits the fact that the pair (Ψ, ψ) is an R2-valued Markov process (moreover, a strong
Markov process with respect to (Ft)).

This example shows that the PSI-process ψ(t) is the stationary solution of the Langevin
equation driven by the martingale M(t):

dψ(t) = −λψ(t) + dM(t). (6)

As one of the consequences of our main result, we obtain as a limit the classical
martingale

√
2λW(t), t ≥ 0, which replaces M(t) in (6). Here and below, W(t) is a standard

Brownian motion.
Remark that if λ is a non-degenerate random variable, then M(t; λ) is not measurable

with respect to Ft, and hence, it is not an (Ft)-martingale. However, if we supplement F0
with σ(λ) to generate an initially enlarged filtration (Fλ

t ), then the M-process becomes
a local martingale with respect to the new adjusted filtration. If Eλ < ∞, then it is a
martingale (see Proposition 2).

Suppose now as usual that Eξ2
0 = 1. Direct application of Theorem VIII.3.46 [7] (p. 481)

allows us to obtain a functional limit theorem for the martingale M(t), i.e., for

Mn :=
1√
n

n

∑
i=1

M(i)(t), (7)

where M(i)(t), i = 1, 2, . . . , are independent copies of M(t). Here, the convergence takes
place in the Skorokhod space, and the limit process is

√
2EλW(t), t ≥ 0.

The rest of the paper is organized as follows. In Section 2, we introduce some notation
and formulate our main result, Theorem 1. In Section 3, the M-process described above is
studied in some details, as an example of the application of Theorem 1. Another example
of the PSI-process such that the normalized cumulative sums do not converge in the
Skorokhod space is constructed in Section 4 in order to show that some conditions are
indeed necessary in a functional limit theorem. Section 5 collects some auxiliary facts about
PSI-processes and their modulus of continuity. In Section 6, we study sums of PSI-processes
and prove our main result. We finish the article with some conclusions in Section 7.

2. Main Results

Let (ξ) = (ξ0, ξ1, . . . ) be a sequence of random variables. Consider an independent of
(ξ) standard Poisson process Π(t), t ≥ 0. Then, one can subordinate the sequence by the
Poisson process to obtain a continuous time process

ψ(t) = ξΠ(t), t ≥ 0.

Consider also a non-negative random variable λ, which is independent of (ξ) and
Π. The time-changed Poisson process Π(λt) is a Poisson process with random intensity,
also known as (a specific case of) a Cox process or a doubly stochastic Poisson process. We
consider the PSI-process with the random time-change

ψ(t; λ) = ξΠ(λt), t ≥ 0. (8)

We call ψ(t; λ) the Poisson stochastic index process, or PSI-process for short.
It turns out that if random variables ξi, i = 0, 1, . . . , are uncorrelated and have zero

expectations and unit variances, then the covariance function for ψ(t; λ) is equal to the
Laplace transform of λ

Lλ(u) = E e−λu, u ≥ 0. (9)
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Lemma 1. Let (ξ) = (ξ0, ξ1, . . . ) be a sequence of uncorrelated random variables with Eξi ≡ 0
and Eξ2

i ≡ 1. Let λ be a non-negative random variable and Π(t) be a standard Poisson process.
Suppose that (ξ), λ, and Π are mutually independent. Then, for any s, t ≥ 0

Cov
(
ψ(s; λ), ψ(t; λ)

)
= Lλ(|t− s|).

In particular, ψ is a wide sense stationary process.

Proof. First note that Eψ(s, λ) = 0 since any Eξi = 0. Hence, Cov
(
ψ(s; λ), ψ(t; λ)

)
=

Eψ(s; λ)ψ(t; λ). Suppose without loss of generality that 0 ≤ s ≤ t. Given λ, one has

E(ψ(s; λ)ψ(t; λ)|λ) = E
(

ξΠ(λs)ξΠ(λt)
∣∣λ)

= E
(
1{Π(λs) = Π(λt)}

∣∣λ)
= E

(
1{Π(λ(t− s)) = 0}

∣∣λ)
= e−λ(t−s).

Here and below, 1{A} denotes the indicator of an event A. We used the assumption
that E ξiξ j = δij, the Kronecker delta, and also the stationarity of the increments of the
Poisson process. Taking expectation with respect to λ yields the result.

Remark 1. Unlike [8], we allow λ to have an atom at 0, which implies that limu→∞ Lλ(u) =
P(λ = 0) > 0.

Corollary 1. Let the triplet (Π, λ, (ξ)) satisfy the assumptions of Lemma 1. Then, the processes
(ζn) defined in (3) as normalized cumulative sums of independent copies of ψ(t; λ) converge in
the sense of finite dimensional distributions (f.d.d.), as n→ ∞, to a stationary centered Gaussian
process ζ(t) with the covariance function Cov(ζ(s), ζ(t)) = Lλ(|t− s|), s, t ∈ R+.

Proof. This is an immediate consequence of the central limit theorem (CLT) for vectors.
Indeed, for any fixed time moments 0 ≤ t1 < . . . < td, the finite-dimensional distribu-
tions of

(
ψ(k)(t1; λk), . . . , ψ(k)(td; λk)

)
are i.i.d. for different k and have zero mean and the

covariation matrix
B =

(
Lλ(|ti − tj|)

)d
i,j=1 .

Lemma 1 emphasizes a special role played by the Laplace transform Lλ in the study of
PSI-processes with random intensities. We will need asymptotics of the Laplace transform
Lλ in the right neighborhood of 0.

Assumption 1. For some γ ∈ (0, 1] and any ε > 0, the Laplace transform (9) of λ satisfies

1− Lλ(s) = o(sγ−ε), s ↓ 0. (10)

It is well known that (10) holds with γ = 1 if Eλ < ∞ or with γ ∈ (0, 1] if the tail
P(λ > x) of λ varies regularly of index −γ at x → ∞, see, e.g., [9] (Theorem 8.1.6).

Below, we shall always suppose that terms of the sequence (ξ) are i.i.d., hence uncor-
related, and satisfy the assumptions of Lemma 1. By Corollary 1, random processes (ζn)
have a limit ζ as n→ ∞ but in the rather weak f.d.d. sense. The aim of this paper is to es-
tablish a more strong result, a functional limit theorem for (ζn) in an appropriate functional
space. If Assumption 1 holds, then the covariance function of the limiting process ζ(t)
behaves in a controllable way at 0, and ζ(t) has a version with almost surely continuous
paths because γ > 0 in (10), see, e.g., [10] (§9.2). Our main result is that, under additional
moment assumptions E|ξ0|2h < ∞ for some h > 1/(γ2) (where γ is the exponent in (10)),
the convergence indeed takes place in the Skorokhod space D[0, T], for any T > 0.
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Theorem 1. Consider a triplet
(
Π, λ, (ξ)

)
that consists of a standard Poisson process Π, a non-

negative random variable λ satisfying Assumption 1, and a sequence (ξ) = (ξ0, ξ1, . . . ) of i.i.d.
random variables such that Eξ0 = 0 and Eξ2

0 = 1. Elements of the triplet are supposed to be
independent and to satisfy the condition

E|ξ0|2h < ∞ for some h >
1

γ2 . (11)

Let
(
Πk, λk, (ξ(k))

)
, k = 1, 2, . . . , be a sequence of independent copies of the triplet

(
Π, λ, (ξ)

)
,

ψ(k) ≡ ψ(k)(t; λk) be the PSI-process (1) constructed from the k-th triplet, and ζn be defined by (3).
Then, for any T > 0, the sequence of stochastic processes (ζn(t)) converges in the Skorokhod space
D[0, T], as n→ ∞, to a zero mean stationary Gaussian process ζ(t) with the covariance function
E ζ(s)ζ(t) = Lλ(|s− t|), s, t ∈ [0, T].

Remark 2. Nowadays, it is common to consider a weak convergence in the space D[0, ∞). Due
to specific features of our model (stationary of ζn for every n, continuity of ζ), this implies a weak
convergence in D[0, T] for all T > 0. Since we essentially use the results from Billingsley’s book [11]
that deals with D[0, T], we prefer to formulate our results in D[0, T], T > 0, as in Theorem 1.

We prove Theorem 1 in Section 6 and now proceed with studying some of
its consequences.

3. Example: A PSI-Martingale

Recall the definition (2) of the natural filtration F given in the Introduction. Note that
since PSI-processes (with non-random λ) belong to a so-called class of “Pseudo-Poisson
processes” [12] (Ch. X), they have the Markov property with the following transition
probabilities: for x ∈ R; t, u ∈ R+,

P(ψ(t + u) ≤ x| ψ(t) = x0) = P(Π(λu) > 0)P(ξ0 ≤ x) + P(Π(λu) = 0)1{x0 ≤ x}

=
(

1− e−λu
)
P(ξ0 ≤ x) + e−λu1{x0 ≤ x} .

Denote the pathwise integrated PSI-process Ψ(t) =
∫ t

0 ψ(s)ds. Note that a pair (Ψ, ψ)

is an R2-valued Markov process, although Ψ itself is not Markovian.

Proposition 1 (The PSI-martingale). Assume that ξ0, ξ1, . . . are i.i.d. and Eξ0 = 0. Then,
for a non-random λ > 0, the stochastic process M(t) defined in (5) is a starting at the origin
F-martingale for t ∈ R+.

Proof. Let us introduce a slightly modified M-process

M(t) := λΨ(t) + ψ(t) = M(t) + ξ0.

First, we show that it is an F-martingale starting at the random point ξ0. Since the pair
(Ψ(t), ψ(t)) is a Markov process adapted to the filtration (Ft), andM(t) is determined by
(Ψ(t), ψ(t)), we have

E(M(t + u)|Ft) = E(M(t + u)|Ψ(t), ψ(t)), ∀u, t ≥ 0 . (12)

Let 0 < T1 < T2 < · · · be jump times of the driving Poisson process Π(λt). Denote the
random period θ(t) = min{Tk : Tk > t} − t; that is the time for which the Poisson process
Π(λs) does not change after time t. For each fixed t, the period θ(t) has the exponential
distribution with the intensity λ. Using this notation, we can calculate
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E(ψ(t + u)|Ψ(t), ψ(t)) = ψ(t)E 1{θ(t) > u} = ψ(t) e−λu, (13)

E(Ψ(t + u)|Ψ(t), ψ(t)) = Ψ(t) + ψ(t)E min{θ(t), u} = Ψ(t) + ψ(t)
1− e−λu

λ
. (14)

Multiplying (14) by λ and adding (13), we obtain E(M(t + u)|Ψ(t), ψ(t)) = M(t),
which proves the assertion aboutM(t) due to (12).

Now, the claim of Proposition 1 easily follows from σ(Ψ(t), ψ(t)) ⊂ Ft
and E(ξ0|Ft) = ξ0.

As it has been mentioned in the Introduction, for a random non-degenerate λ, the
process M(t) is not Ft-measurable, and the filtration F should be augmented by σ(λ):

Fλ
t := σ{Π(λs), s ≤ t; ξ0, . . . ξk, k ≤ Π(λt); λ }; Fλ := (Fλ

t )t∈R+
. (15)

The following analog of Proposition 1 holds, but the proof is more tricky.

Proposition 2 (The PSI-martingale with random intensity). Assume that (ξ) = (ξ0, ξ1, . . .)
is a sequence of i.i.d. random variables with Eξ0 = 0, Π = Π(t) is a standard Poisson process,
a random variable λ is positive a.s.; λ, (ξ), and Π are independent. Then, the stochastic process
M(t; λ), t ≥ 0, defined in (5) is a local martingale with respect to Fλ. If Eλ < ∞, then M(t) is
a martingale.

Proof. Let 0 < τ1 < τ2 < . . . be jump times of the Poisson process Π(t) and Tk := τk/λ
corresponding jump times of the process Π(λt). Recall that filtrations F = (Ft)t≥0 and
Fλ = (Fλ

t )t≥0 are defined in (2) and (15), respectively. It is easy to check that a set A ∈ F
belongs to Ft (resp. to Fλ

t ), t ≥ 0, if and only if A ∩ {Tk ≤ t < Tk+1} = A ∩ {Π(λt) =
k} ∈ Gk (resp. A ∩ {Tk ≤ t < Tk+1} ∈ Gλ

k ) for every k = 0, 1, . . . . Here,

Gk := σ{T1, . . . , Tk; ξ0, . . . ξk } = σ{τ1, . . . , τk; ξ0, . . . ξk },

the latter equality being held if λ = const, and

Gλ
k := σ{T1, . . . , Tk; ξ0, . . . ξk; λ } = σ{τ1, . . . , τk; ξ0, . . . ξk; λ }.

In particular, the filtrations (Ft)t≥0 and (Fλ
t )t≥0 are right-continuous.

First, we calculate the Fλ-compensator of the locally integrable process

Π(λt) =
∞

∑
n=1

1{t ≥ Tn}.

Since, for λ = const, Π(λt) is a Poisson process with intensity λ, its F-compensator is
λt. This means that Π(λt)− λt is an F-martingale. Denoting N(t) := Π(t)− t, this can be
written as

E
{(

N(λt)− N(λs)
)
1{Π(λs) = k} f (τ1, . . . , τk; ξ0, . . . ξk)

}
= 0

for every 0 ≤ s < t, k = 0, 1, . . . , and any bounded Borel function f from R2k+1 in R.
Consider now the case of random λ. Note that E

(
Π(λt)1{λ ≤ k}

)
≤ kt < ∞ for any t and

k ≥ 1. This allows us to take a conditional expectation given λ in the expression below,
where f is as above and g is a bounded measurable function from R to R:

E
{(

N(λt)− N(λs)
)
1{Π(λs) = k} f (τ1, . . . , τk; ξ0, . . . ξk)g(λ)1{λ ≤ k}

}
= EE

{(
N(λt)− N(λs)

)
1{Π(λs) = k} f (τ1, . . . , τk; ξ0, . . . ξk)g(λ)1{λ ≤ k}

∣∣∣λ} = 0.
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This means

0 = E
{(

N(λt)− N(λs)
)
1{λ ≤ k}

∣∣∣Fλ
s

}
= E

(
N(λt ∧ σk)− N(λs ∧ σk)

∣∣Fλ
s
)
,

where σk = 0 if λ > k and σk = +∞ otherwise. We conclude that N(λt) is an Fλ-local
martingale, and λt is the Fλ-compensator of Π(λt).

The same proof shows that

K(λt) :=
∞

∑
n=1

ξn1{t ≥ Tn}

is an Fλ-local martingale. Indeed, it is a compound Poisson process with zero mean;
hence, it itself is an F-martingale for a deterministic λ. To ensure that the corresponding
expectation is finite, we note that E

(
K(λt)1{λ ≤ k}

)
≤ ∑∞

n=1 E|ξn|P(t ≥ Tn, λ ≤ k) ≤
E|ξ0|E

(
Π(λt)1{λ ≤ k}

)
< ∞.

The final step of the proof is to determine the Fλ-compensator of the process

J(λt) :=
∞

∑
n=1

ξn−11{t ≥ Tn}

We can represent J(λt) as the pathwise Lebesgue–Stieltjes integral of a predictable
process

H(λt) :=
∞

∑
n=1

ξn−11{Tn−1 < t ≤ Tn}

with respect to Π(λt). Note that the integral process∫
(0,t]

H(λt)dΠ(λt)

is a process with Fλ-locally integrable variation because its variation up to σk is estimated
from above similarly to K(λt). This allows us to conclude that the Fλ-compensator of J(λt)
is the Lebesgue–Stieltjes integral process of H(λt) with respect to the Fλ-compensator of
Π(λt), see, e.g., Theorem 2.21 (2) in [13], i.e., the Fλ-compensator of J(λt) equals∫

(0,t]
H(λt)λdt = λΨ(t).

Summarizing, we obtain that the Fλ-compensator of

ψ(t)− ξ0 =
∞

∑
n=1

(ξn − ξn−1)1{t ≥ Tn} = K(λt)− J(λt),

that is −λΨ(t).
Finally, the quadratic variation of M is

[M, M]t =
∞

∑
k=1

(ξk − ξk−1)
21{Tk ≤ t} . (16)

Hence, if Eλ < ∞,

E([M, M]t)
1/2 ≤ E

∞

∑
k=1
|ξk − ξk−1|1{Tk ≤ t}

≤ 2E|ξ0|E
∞

∑
k=1

1{Tk ≤ t} ≤ 2E|ξ0|EΠ(λt) = 2tE|ξ0|Eλ.

Therefore, M(t) is a martingale according to Davis’ inequality (see [14] (Ch. 9)).
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If we assume also that Eξ2
0 = 1, then the Fλ-martingale M(t) has EM(t)2 < ∞ for

all t ∈ R+. Its quadratic variation is calculated in (16). The variance of M(t) can then be
calculated as follows:

Var M(t) = E [M, M]t = E
∞

∑
k=1

(ξk − ξk−1)
21{Tk ≤ t} = E(ξ1 − ξ0)

2 EΠ(λt) = 2tEλ .

If Eλ < ∞ (in particular, if λ is not random), then the variance of M(t) is finite for
any t ∈ R+. Hence, direct application of Theorem VIII.3.46 [7] (p. 481) allows us to obtain
a functional limit theorem for properly normalized sums of independent copies M(i)(t),
i = 1, 2, . . . , of the martingale M(t), i.e., for the processes

Mn(t) :=
1√
n

n

∑
i=1

M(i)(t), n = 1, 2, . . . , t ≥ 0.

Here, the convergence takes place in the Skorokhod space, and the limit process is√
2EλW(t), where W(t), t ≥ 0, is a standard Brownian motion.

Assume now that λ > 0 is non-random. It is easy to see that the mapping (ψ(t))t∈[0,T] 7→
(M(t))t∈[0,T] is continuous in the Skorokhod space D[0, T], for any T > 0. Hence, as a
corollary of Theorem 1, we reconstruct the above result that the convergence Mn →

√
2λW

takes place in the Skorokhod space, under the condition that E|ξ0|2+ε < ∞, for some ε > 0.

4. Counterexample: Diverging Sums

For β > 1, denote µβ = β
β−1 and consider a function

fβ(x) =

{
β(x + µβ)

−β−1, x ≥ −1/(β− 1),
0, x < −1/(β− 1)

of x ∈ R. This is a probability density. Let ξ be a random variable with this density, then,
by the choice of µβ the mean Eξ = 0 for any β > 1, and Var ξ = β

(β−2)(β−1)2 < ∞ for
any β > 2. Moreover, all absolute moments of non-negative order less than β exist, while
E|ξ|β = ∞. The tail distribution function is P

(
ξ > x

)
= (x + µβ)

−β for x ≥ −1/(β− 1).
Let (ξ) = (ξ0, ξ1, . . . ) be a sequence of i.i.d. random variables distributed as ξ.

For α > 0, let λ be independent of (ξ) and have the tail distribution function P
(
λ >

x
)
= (x + 1)−α for x ≥ 0. The Laplace transform of λ can be expressed in terms of the

(upper) incomplete Gamma function function

Γ(α, x) =
∫ ∞

x
e−yyα−1dy.

By a simple change of variables, we obtain

Lλ(s) = E e−sλ = αessαΓ(−α, s), s > 0. (17)

The asymptotics of Lλ(s) as s ↓ 0 can be read, say, from Theorem 8.1.6 [9] (p. 333): as
s ↓ 0,

1− Lλ(s) ∼


Γ(1− α)sα, α ∈ (0, 1),
s log 1

s , α = 1,
s

α−1 . α > 1.

Hence, λ satisfies Assumption 1 with γ = min{α, 1}.
Let Π(t) be a standard Poisson process, independent of both (ξ) and λ. Define a

PSI-process ψ(t; λ) with the random intensity λ as in (1).
Consider independent copies ψ(k)(t; λk), k = 1, 2, . . . , where λk are independent

copies of λ, and let (ζn(t)) be their normalized cumulative sums, as in (3). The CLT for
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vectors implies that, for β > 2 and α > 0, in terms of finite-dimensional distributions, the
processes (ζn) converge, as n → ∞, to a stationary centered Gaussian process with the
covariance function β(β − 2)−1(β − 1)−2Lλ(u), u ≥ 0. We claim that, nevertheless, for
certain parameters α > 0 and β > 2, the functional limit theorem cannot hold true for these
(ζn). The proof is based on the following technical result.

Proposition 3. One can find n0 such that for any n ≥ n0, with probability not less than 1/16, one
of the PSI-processes ψ(1)(t; λ1), . . . , ψ(n)(t, λn) has a jump of size at least n1/(αβ), for t ∈ [0, 1].

Proof. Define for n = 1, 2,. . .

µn := max{λ1. . . . , λn}.

The cumulative distribution function of µn is

Fn(x) := P
(
µn ≤ x

)
=
(
1− (x + 1)−α

)n, x ≥ 0.

Notice that limn→∞ Fn(n1/α) = e−1. Hence, for large enough n, there exists κ ∈
{1, . . . , n} such that λκ ≥ n1/α with probability not less than 1/2. Since Πκ is independent
of λκ and the Poisson distribution is asymptotically symmetric around its mean as the
parameter becomes large, we may claim that P(Πκ(λκ) > n1/α|λκ ≥ n1/α) > 1/3. Hence,
with probability not less than 1/6 among PSI-process ψ(1), . . . , ψ(n), at least one process
ψ(κ) engages more than n1/α random variables (ξ

(κ)
i ) on the time interval [0, 1]; that is,

Πκ(λκ) ≥ m := bn1/αc+ 1. Here and below for x ∈ R, we denote bxc = max{n ∈ Z : n ≤
x} the floor function.

Consider now ηκ,m := max{ξ(κ)1 , . . . , ξ
(κ)
m }. For any fixed n, they are i.i.d. and have

the cumulative distribution function

Gm(x) := P
(
ηκ,m ≤ x

)
=
(
1− (x + µβ)

−β
)m, x > −1/(β− 1),

and ηκ,m > m1/β with probability not less than 1/2 for all m large enough, because
Gm(m1/β) =

(
1− (m1/β + µβ)

−β
)m → e−1 as m→ ∞. This maximum is attained on some

ξ
(κ)
j , and with probability 3/4 at least one of ξ

(κ)
j−1 and ξ

(κ)
j+1 is less than 21/β − µβ < 0. (We

neglect a situation when the maximum is attained for j = 1 or j = m, which happens with
the probability 2/m, see, e.g., [15].) It means that, for large m, ψ(κ)(t, λκ) has at least one
jump greater than m1/β, with probability at least 3/8.

Combining the above estimates and using the independence between Π(λκt) and
the corresponding driven sequence (ξ(κ)), we see that, with probability not less than
1/16, the process ψ(κ)(t; λκ), t ∈ [0, 1], has a jump of size at least m1/β ≥ n1/(αβ), for all
n ≥ n0 = n0(α, β).

Since all these PSI-processes jump at different moments of time a.s., the jump of any
process is not compensated by other PSI-processes and makes a contribution to ζn. If
αβ ≤ 2, then after the scaling by

√
n in (3), the size of the jump that exists according to

Proposition 3 exceeds n1/(αβ)−1/2 6→ 0 as n→ ∞. Hence, the limit in the Skorokhod space
D[0, 1], if it exists, should have jumps with positive probability. However, it is well known
that the stationary Gaussian process with the covariance function const · Lλ(u), u ≥ 0,
where Lλ(u) is given by (17), has a continuous modification a.s. This contradiction shows
that the convergence ζn → ζ cannot take place in D[0, 1] as n→ ∞.

Remark 3. The considered counterexample suggests that the correct condition for the functional
limit theorem could be E|ξ0|2h < ∞ for some h > 1/γ. Theorem 1 is proved under the more
restrictive condition h > 1/γ2. In the case Eλ < ∞, Assumption 1 holds with γ = 1, so both
inequalities become h > 1. In the more interesting case Eλ = ∞, we conjecture that the less
restrictive inequality h > 1/γ should be enough. The only place in our proof where we need
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h > 1/γ2 is Lemma 4, which is proved with a straightforward and rather rough approach. A more
sophisticated technique is needed to show that the same or similar result holds if h > 1/γ.

5. Modulus of Continuity for PSI-Processes with Random Intensity

We need to bound the probability of large changes of the PSI-process with random
intensity. The following result builds a base for such bounds.

Proposition 4. Consider a PSI-process ψ defined by (1). Then, for any fixed δ > 0,

P
(

sup
0≤t≤δ

|ψ(t; λ)− ψ(0; λ)| ≥ r
)
=
∫ ∞

−∞

[
1− Lλ

(
δ(1− F(x + r) + F(x− r))

)]
dF(x) (18)

at least for all r > 0 such that F(x) and F(x + r) have no common discontinuity points.

Proof. Suppose first that λ is fixed. If there are no jumps of Π(λt) on [0, δ] 3 t, then
ψ(t; λ) = ψ(0, λ) = ξ0 for all t ∈ [0, δ]. If Π(λt) has k > 0 jumps on [0, δ], then

sup
0≤t≤δ

|ψ(t; λ)− ψ(0; λ)| = max{|ξ1 − ξ0|, . . . , |ξk − ξ0|}.

Since (ξi) are i.i.d., conditioning on the value of ξ0 = x, we obtain

P
(
max{|ξ1 − ξ0|, . . . , |ξk − ξ0|} < r

)
=
∫ ∞

−∞
P
(
|ξ1 − x| < r

)kdF(x)

and if F(x) and F(x + r) have no common discontinuities as functions of x, it implies

P
(
max{|ξ1 − ξ0|, . . . , |ξk − ξ0|} ≥ r

)
= 1−

∫ ∞

−∞

(
F(x + r)− F(x− r)

)kdF(x).

For a fixed λ, the process Π(λt) has k jumps on [0, δ] with probability (λδ)k

k! e−λδ, so by
the law of total probability,

P
(

sup
0≤s≤δ

∣∣ψ(s; λ)− ψ(0; λ)
∣∣ ≥ r

∣∣∣ λ
)

=
∞

∑
k=1

(
1−

∫ ∞

−∞

(
F(x + r)− F(x− r)

)kdF(x)
) (λδ)k

k!
e−λδ

= 1− e−λδ − e−λδ
∫ ∞

−∞

(
exp

(
λδ
(

F(x + r)− F(x− r)
))
− 1
)

dF(x)

=
∫ ∞

−∞

(
1− exp

(
−λδ

(
1− F(x + r) + F(x− r)

)))
dF(x),

where changing the order of summation and integration is justified by Fubini’s theorem,
and the last line follows by simple manipulations using

∫ ∞
−∞ dF(x) = 1. The claim (18)

follows by taking expectation with respect to λ, and again, the order of integration can be
changed by Fubini’s theorem.

The equality (18) easily implies a bound for the probability in the left-hand part of (18)
in terms of the so-called concentration function of a random variable ξ defined as

Qξ(r) = sup
x∈R

P(x ≤ ξ ≤ x + r).

The straightforward calculation shows that (18) implies that

P
(

sup
0≤t≤δ

|ψ(t; λ)− ψ(0; λ)| ≥ r
)
≤ 1− Lλ

(
δ(1−Qξ0(2r))

)
. (19)
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However, we need a more explicit bound. To obtain such bound, we analyze the
behavior of the Laplace transform Lλ(s) for small s. It is postulated in Assumption 1, but
for applications, it is convenient to obtain an explicit inequality. It can always be done by
slightly reducing the power of s.

Lemma 2. If λ satisfies Assumption 1, then for any ε ∈ (0, γ), there exists a constant C > 0
such that

0 ≤ 1− Lλ(s) ≤ Csγ−ε, s ≥ 0. (20)

Proof. Since (1− Lλ(s))s−γ+ε → 0 as s ↓ 0, according to (10), the inequality (20) holds
with C = 1 when s ∈ [0, s0) for some sufficiently small s0 = s0(γ, ε, Lλ). The inequality for
s ≥ s0 can be fulfilled by increasing C if necessary.

A combination of the above statements gives an estimate for the probability of big
changes of the PSI-process with random intensity on a small interval, provided that we
can bound the tail probability for an individual random variable ξ0, say under some
moment assumptions.

Proposition 5. Suppose that the PSI-process ψ(t; λ) with the random intensity λ defined by (1)
satisfies the assumptions of Proposition 4, that λ satisfies Assumption 1, and that E|ξ0|2h < ∞
for some h > 0. Then, for any ε ∈ (0, γ), there exists a constant C > 0 such that for all r > 0
and δ ∈ [0, 1]

P
(

sup
0≤t≤δ

|ψ(t; λ)− ψ(0; λ)| ≥ r
)
≤ Cδγ−εr−2h(γ−ε). (21)

Proof. Denote for short m2h := E|ξ0|2h < ∞ by assumption. Take r > 0, then for any
|x| < r/2

1− F(x + r) + F(x− r) = P
(
ξ0 ≤ x− r or ξ0 > x + r

)
≤ P

(
|ξ0| ≥ r/2

)
≤ 22hm2h

r2h

by Markov’s inequality. Thus, since Lλ does not increase

∫ r/2

−r/2

[
1− Lλ

(
δ(1− F(x + r) + F(x− r))

)]
dF(x) ≤ 1− Lλ

(
4hm2h δr−2h). (22)

On the other hand, 1− Lλ

(
δ(1− F(x + r) + F(x− r))

)
≤ 1− Lλ(δ) for any x ∈ R and

r ≥ 0. Hence, for any ε > 0, again by the Markov inequality applied to |ξ0|2h(γ−ε), one has

(∫ −r/2

−∞
+
∫ ∞

r/2

)[
1− Lλ

(
δ(1− F(x + r) + F(x− r))

)]
dF(x)

≤ (1− Lλ(δ))P
(
|ξ0| ≥ r/2

)
≤ (1− Lλ(δ))

22h(γ−ε)m2h(γ−ε)

r2h(γ−ε)
. (23)

Combining (22) and (23) and using Lemma 2, we obtain the result.

6. Sums of PSI-Processes

Since the limit of the normalized cumulative sums (ζn) is an a.s. continuous stochastic
process, we can use Theorem 15.5 from Billingsley’s book [11] (p. 127), which gives the
conditions for convergence of processes from the Skorokhod space D[0, 1] to a process with
realizations lying in C[0, 1] a.s., in terms of the modulus of continuity

ωζ(δ) = sup
s,t∈[0,1]
|s−t|≤δ

{|ζ(s)− ζ(t)|}. (24)

It claims that if
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(i) for any ε > 0 there exists t such that P
(
|ζn(0)| > t

)
≤ ε for all n ≥ 1;

(ii) for any positive ε and w there exist δ ∈ (0, 1) and n0 such that

P
(
ωζn(δ) ≥ w

)
≤ ε, n ≥ n0; (25)

(iii) (ζn) converges weakly in terms of finite-dimensional distributions to some random
function ζ as n→ ∞,

then (ζn) converges to ζ as n→ ∞, in D[0, 1] and ζ is continuous a.s.
In order to bound ωζn in probability, Billingsley suggests to use a corollary to

Theorem 8.3 in the same book, which can be formulated as follows. Suppose that ζ
is some random element in D[0, 1], then for any δ > 0 and w > 0

P
(
ωζ(δ) ≥ 3w

)
≤
b1/δc−1

∑
i=0

P
(

sup
t∈[iδ,(i+1)δ]

∣∣ζ(t)− ζ(iδ)
∣∣ ≥ w

)
. (26)

The sum (26) can be estimated efficiently in our settings because ζn is stationary by
construction for any n. Hence, all the probabilities in the sum (26) are the same and

P
(
ωζn(δ) ≥ 3w

)
≤ 1

δ
P
(

sup
t∈[0,δ]

∣∣ζn(t)− ζn(0)
∣∣ ≥ w

)
. (27)

Remark 4. Actually, the events whose probabilities are added in the right-hand side of (26) are
dependent since for a large n and a small δ, an appearance of a big (≥ ε) jump of ζn on [0, δ] suggests
that there are many jumps of some ψ(i)(t; λi), and hence, the correspondent λi is large; so it is
probable that there would be many jumps on other intervals and a probability of a big jump is not
too small. Perhaps this observation can be used to find a better bound than the union bound (27),
but we have not used it.

In order to check assumption (ii) of Billingsley’s theorem, we apply the following
two-stage procedure. We use (27) to bound the “global” probability of jumps greater than
w on some interval of the length δ. We aim to show that for any w > 0 and ε > 0, one can
find positive C, τ, and δ such that

P
(

sup
t∈[0,δ]

∣∣ζn(t)− ζn(0)
∣∣ ≥ w

)
≤ Cδ1+τ and Cδτ < ε (28)

for all n greater than some n0. To this end, we first show that one can find positive C, τ, δ,
and n0 such that (28) holds for n = n0 and then analyze the local structure of ζn to show
that (28) actually holds for all n ≥ n0.

Our analysis of supt∈[0,δ]

∣∣ζn(t)− ζn(0)
∣∣ is based on the results of Section 5. Consider

the Poisson processes with random intensity Πi(λit), i = 1, . . . , n, used in the construction
of ψ(1), . . . , ψ(n), and denote κn(δ) the (random) number of these processes that have at
least one jump on [0, δ]:

κn(δ) :=
n

∑
i=1

1{Πi(λiδ) > 0} . (29)

This is a binomial random variable with n trials and the success probability

p1 ≡ p1(δ) := 1− Lλ(δ). (30)

Lemma 2 provides an upper bound for p1(δ). We are interested just in the case when
p1(δ) is small compared to 1/n, that is, when E κn(δ) is small. Then, the probability that
κn(δ) ≥ b decays fast enough even for an appropriately chosen but fixed b.

Lemma 3. Let λ satisfy Assumption 1. Then, for any a > 1/γ, b > a/(aγ− 1) and c > 0, one
can find positive τ and δ0 such that for all n satisfying nδ1/a ≤ c, it holds
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P
(
κn(δ) ≥ b

)
≤ δ1+τ , δ ∈ (0, δ0).

Proof. The well-known Chernoff bound [16] (Theorem 2.1) ensures that for any t ≥ 0,

P
(
κn(δ) ≥ np1(δ) + t

)
≤ exp

(
− f
(
t/(np1(δ))

)
np1(δ)

)
, (31)

where f (x) = (1 + x) log(1 + x)− x. For a > 1/γ, Lemma 2 along with the assumption
nδ1/a ≤ c guarantee that np1(δ) ≤ Cδγ−1/a−ε for any ε ∈ (0, γ) and some C (which may
depend on ε). Taking ε < γ− 1/a yields np1(δ) → 0 as δ ↓ 0. Plugging t = b− np1(δ),
which is positive for small δ, into (31) gives

logP
(
κn(δ) ≥ b

)
≤ − f

(
(b/(np1(δ))− 1

)
np1(δ)

= −b(log b− 1) + b log(np1(δ))− np1(δ)

≤ −b(log b− 1− log c) + b(γ− 1/a− ε) log δ.

Restricting ε further to be less than γ− 1/a− 1/b, which is positive by the assumptions,
implies that the coefficient of log δ, that is b(γ− 1/a− ε), is bigger than 1, and Lemma 3
is proved.

Lemma 4. Suppose that the random λ satisfies Assumption 1 and that E|ξ0|2h < ∞ for some
h > 1/γ2. Let 0 < c1 < c2 < ∞. Then for any a ∈ (1/γ, (hγ− 1)/(1− γ)) (with the right
bound understood as ∞ if γ = 1) and for any fixed w > 0, there exist positive δ0 and τ such that
for all n ∈ [c1δ−1/a, c2δ−1/a]

P
(

sup
t∈[0,δ]

|ζn(t)− ζn(0)| ≥ w
)
≤ δ1+τ , δ ∈ (0, δ0]. (32)

Proof. Let a > 1/γ and w > 0 be fixed. Denote for short δ = n−a. By the law of
total probability,

P
(

sup
t∈[0,δ]

|ζn(t)− ζn(0)| ≥ w
)

=
n

∑
k=0

P
(

sup
t∈[0,δ]

|ζn(t)− ζn(0)| ≥ w
∣∣ κn(δ) = k

)
P
(
κn(δ) = k

)
≤

b−1

∑
k=1

P
(

sup
t∈[0,δ]

|ζn(t)− ζn(0)| ≥ w
∣∣ κn(δ) = k

)
P
(
κn(δ) = k

)
+ P

(
κn(δ) ≥ b

)
(33)

for any integer b ≥ 2. Consider an event κn(δ) = k ≥ 1, which means that not more than
some k of n processes ψ(1), . . . , ψ(n) jump on [0, δ], and other n− k processes are constant.
Then, supt∈[0,δ] |ζn(t)− ζn(0)| ≥ w implies that at least one of k PSI-processes that jumps
on [0, δ] changes by more than w

√
n/k. So, for k ≥ 1,

P
(

sup
t∈[0,δ]

|ζn(t)− ζn(0)| ≥ w
∣∣ κn(δ) = k

)
≤ kP

(
sup

t∈[0,δ]
|ψ(t; λ)− ψ(0; λ)| ≥ w

√
n/k

∣∣ Π(λ·) jumps on [0, δ]
)

=
k
p1

P
(

sup
t∈[0,δ]

|ψ(t; λ)− ψ(0; λ)| ≥ w
√

n/k
)
. (34)

Proposition 5 provides a bound for the probability in the right-hand part of (34), and
since κn(δ) has the binomial distribution with the parameters n and p1, using the total
probability formula, we continue (33) as
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P
(

sup
t∈[0,δ]

|ζn(t)− ζn(0)| ≥ w
)

≤
b−1

∑
k=1

kP
(

sup
t∈[0,δ]

|ψ(t; λ)− ψ(0; λ)| ≥ w
√

n/k
)(n

k

)
pk−1

1 (1− p1)
n−k + P

(
κn(δ) ≥ b

)
≤ C

b−1

∑
k=1

k
(

n
k

)( k2hδk

w2hnh

)γ−ε
+ P

(
κn(δ) ≥ b

)
(35)

for any ε ∈ (0, γ), h > 0 such that E|ξ0|2h < ∞, and some C depending on the choice of ε,
where the last inequality follows from Proposition 5.

Suppose now that h > 1/γ2. Then 1/γ < (hγ − 1)/(1− γ), where the right part
is understood as ∞ if γ = 1. Choose a ∈ (1/γ, (hγ − 1)/(1− γ)) and an integer b >
a/(aγ− 1). Then, by Lemma 3, there exists a positive τ such that P

(
κn(δ) ≥ b

)
≤ δ1+τ for

small enough δ. Bounds c1δ−1/a ≤ n ≤ c2δ−1/a give

k
(

n
k

)( k2hδk

w2hnh

)γ−ε
≤ k2h(γ−ε)

(k− 1)!w2h(γ−ε)

nkδk(γ−ε)

nh(γ−ε)
≤

ck
2k2h(γ−ε)

ch(γ−ε)
1 w2h(γ−ε)

δk(γ−ε−1/a)+h(γ−ε)/a.

Choosing ε < γ − 1/a ensures that the power of δ is minimal for k = 1, and the
inequality a < (hγ− 1)/(1− γ) guarantees that for k = 1 this power γ + (hγ− 1)/a−
(1 + h/a)ε > 1 for small enough ε; thus, (32) follows from (35).

The estimates that are used in the proof of Lemma 4 essentially rely on the relation
between δ and n. Therefore, this argument cannot be used to provide a bound (28) uniformly
for all n ≥ n0. In order to obtain such bound, we apply the technique close to the one used
in Billingsley’s book [11] (Ch. 12). If we impose some moment condition on ξ0, then the
following bound holds:

Lemma 5. Suppose that Eξ0 = 0, Eξ2
0 = 1 and E|ξ0|2h < ∞ for some h > 1. Then, for some

constant C > 0 and for all n = 1, 2, . . . and 0 ≤ s < t ≤ 1

E
∣∣ζn(t)− ζn(s)

∣∣2h ≤ C max{p1(t− s)h, p1(t− s)n1−h}, (36)

where p1(·) is defined by (30).

Proof. Due to stationarity of ζn for each n, it is enough to consider the case s = 0. For any
t ≥ 0, we can represent the increment ζn(t)− ζn(0) as a sum of i.i.d. random variables

ζn(t)− ζn(0)
d
=

1√
n

n

∑
i=1

ηi , (37)

ηi
d
=
(
ξ1 − ξ0

)
1{Π(λt) > 0} . (38)

Each summand ηi has a symmetric distribution, and two factors in the right-hand part
of (38) are independent. By Rosenthal’s inequality (see, e.g., [17] (Th. 2.9)), we obtain

E
∣∣ζn(t)− ζn(0)

∣∣2h ≤ Cn−h max
{(

Var
n

∑
i=1

ηi

)h
, nE|η1|2h

}
(39)

for some constant C > 0. Both moments can be easily evaluated. Since the summands
are i.i.d.,

Var
n

∑
i=1

ηi = n Var η1 = np1(t)Var(ξ1 − ξ0) = 2np1(t),

because E 1{Π(λt) > 0} = p1(t). Similarly,

E|η1|2h = p1(t)E |ξ1 − ξ0|2h.
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Plugging these two values into (39), we readily obtain (36), maybe with another
constant C than in (39).

Corollary 2. Suppose that Assumption 1 holds, and h > 1/γ in the settings of Lemma 5. Then,
for any fixed w > 0, one can find positive δ1 and τ such that for all n ≥ (t− s)−(γ+1)/(h+1) it
holds

P
(∣∣ζn(t)− ζn(s)

∣∣ ≥ w
)
≤ (t− s)1+τ , t− s ∈ (0, δ1]. (40)

Proof. By the Markov inequality, we have

P
(∣∣ζn(t)− ζn(s)

∣∣ ≥ w
)
≤ E

∣∣ζn(t)− ζn(s)
∣∣2hw−2h, 0 ≤ s < t ≤ 1.

Lemma 5 gives a bound for the right-hand side in terms of p1(t− s) and n. Lemma 2
provides the upper bound for p1(t− s), and the condition on n imposed in the claim implies
n−1 ≤ (t− s)(γ+1)/(h+1). Hence, for any ε > 0, there exists a constant C′ > 0 such that for
all 0 ≤ s < t ≤ 1

P
(∣∣ζn(t)− ζn(s)

∣∣ ≥ w
)
≤ C′max

{
(t− s)h(γ−ε), (t− s)γ−ε+(h−1)(γ+1)/(h+1)}.

Taking ε = (hγ − 1)/(h + 1), which is positive by the assumptions, makes both
exponents above equal: h(γ− ε) = γ− ε + (h− 1)(γ + 1)/(h + 1) = 1 + ε. Hence, this
choice of ε yields (40) with τ = ε for all 0 ≤ s < t ≤ 1, but with a constant in the right-hand
side of the inequality. Reducing to t− s lying in a proper interval (0, δ1] allows us to get rid
of the constant.

Proof of Theorem 1. Without loss of generality, we may assume T = 1 (otherwise perform
a non-random time change t 7→ t/T). We need to show that the conditions of Theorem 15.5
of [11] (recalled in the beginning of Section 6) hold. Condition (iii) was already verified
(see Corollary 1), and it implies condition (i). So it remains to check condition (ii), which
follows from (28).

Suppose that we are given positive ε and w and want to find δ and n0 such that (25)
holds. Lemma 4 applied with c1 = 1/2, c2 = 2 implies that for some positive δ0, τ and any
a ∈ (1/γ, (hγ− 1)/(1− γ)) inequality (32) holds for δ ∈ (0, δ0]. Corollary 2 guarantees
that for some positive δ1, inequality (40) holds for n sufficiently large and δ ∈ (0, δ1], and
in our application below, the lower bound on n will be fulfilled if a < (h + 1)/(γ + 1).
Choose some a ∈ (1/γ, min{(hγ− 1)/(1− γ), (h+ 1)/(γ+ 1)}) (this interval is not empty
if h > 1/γ2), fix a positive δ ≤ min{δ0, δ1} and let n0 = bδ−1/ac.

For this choice of parameters, Lemma 4 (again with c1 = 1/2, c2 = 2) ensures
that (28) holds for all n ∈ [n0, 2n0]. Suppose now that n > 2n0 and let m = bnaδc.
(Note that a > 1/γ ≥ 1, so m ≥ 2 if n > 2n0.) Then for c1 = 1/2, c2 = 2 we have
n ∈ [c1(δ/m)−1/a, c2(δ/m)−1/a], so (32) holds with δ/m instead of δ, implying that for any
i = 1, . . . , m

P
(

sup
t∈[δ(i−1)/m,δi/m]

∣∣ζn(t)− ζn(δ(i− 1)/m)
∣∣ ≥ w

)
≤ (δ/m)1+τ , (41)

due to the stationarity of ζn. Let

Zm(δ) := max
i=1,...,m

{∣∣ζn(δi/m)− ζn(0)
∣∣}.

Take s = iδ/m and t = jδ/m for some 0 ≤ i < j ≤ m. Now, we aim to apply
Corollary 2 for these s and t. Note that t − s ∈ (0, δ1) by the choice of δ, so it remains
to check that the assumption n ≥ (t − s)−(γ+1)/(h+1) holds. Indeed, t − s ≥ δ/m and
m/δ ≤ na; thus, (t − s)−(γ+1)/(h+1) ≤ na(γ+1)/(h+1) < n by the choice of a. Hence,
Corollary 2 implies
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P
(∣∣ζn(jδ/m)− ζn(iδ/m)

∣∣ ≥ w
)
≤
(
(j− i)δ/m

)1+τ′

for some τ′ > 0. Hence, Theorem 12.2 from Billingsley’s book [11] implies that

P
(
Zm(δ) ≥ w

)
≤ Kδ1+τ′ (42)

for some K > 0, which depends on τ′ but not on δ.
Suppose now that Zm(δ) < w and supt∈[δ(i−1)/m,δi/m]

∣∣ζn(t)− ζn(δ(i − 1)/m)
∣∣ < w

for all i = 1, . . . , m. Then, supt∈[0,δ] |ζn(t)− ζn(0)| < 2w by the triangle inequality. Hence,

P
(

sup
t∈[0,δ]

|ζn(t)− ζn(0)| ≥ 2w
)

≤ P
(
Zm(δ) ≥ w

)
+ mP

(
sup

t∈[0,δ/m]

∣∣ζn(t)− ζn(0)
∣∣ ≥ w

)
≤ (K + 1)δ1+τ1

with τ1 = min{τ, τ′}, by inequalities (41) and (42). This argument works for any δ ≤
min{δ0, δ1}, with δ0 and δ1 given by Lemma 4 and Corollary 2, and choosing δ > 0 small
enough, one can guarantee that (K + 1)δτ1 ≤ ε. This proves (28) (with 2w instead of w, but
w > 0 is arbitrary) for all n ≥ n0, and the claim follows by application of Theorem 15.5
from Billingsley’s book [11].

7. Conclusions

The functional limit theorem for normalized cumulative sums of PSI-processes
(Theorem 1) can be used in opposite directions. The PSI-processes are very simple, and
some results can be obtained directly for their sums and imply the corresponding facts
for the limiting stationary Gaussian process ζ. On the other hand, the theory of stationary
Gaussian processes has been deeply developed in the last few decades, and some results
of this theory can have consequences for the pre-limiting processes (ζn), which model a
number of real life phenomena.

When γ < 1 in Assumption 1, there is some gap between the conditions implied by
the counterexample of Section 4, that is E|ξ0|2/γ+ε < ∞ for some ε > 0, and the actual
condition E|ξ0|2/γ2+ε < ∞ (see (11)) under which Theorem 1 is proven. Also, if Eλ < ∞,
it is still unclear if just the finiteness of the variance Eξ2

0 < ∞ would be sufficient for the
convergence in the Skorokhod space.
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