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Abstract: Traditional data-driven intelligent fault diagnosis methods have been successfully de-
veloped under the closed set assumption (CSA). CSA-based fault diagnosis assumes that the fault
types in the test set are consistent with that in the training set, which can achieve high accuracy,
but this is generally not valid in real-world industrial applications where the collection of data in
industrial applications is often limited. As it is unrealistic to assume that the training set will cover
all fault types, the application of the fault classifier may fail when the test set contains unknown
fault types because the probability of input samples belonging to unknown types cannot be obtained.
To solve the problem of how unknown fault types may be accurately identified, this paper further
studies the open set assumption (OSA) fault diagnosis. We propose an open set convolutional neural
network (OS-CNN) method and apply our OS-CNN model to an improved OpenMax method as a
deep network to accurately detect unknown fault types. The overall performance was significantly
improved as our OS-CNN model was able to effectively tighten the boundary of known classes
and limit the open-space risk for the OpenMax method based on distance modeling. The overall
effectiveness of the proposed method was verified by experimental studies based on four different
bearing datasets. Compared with state-of-the-art OSA fault diagnosis method, our method cannot
only realize the correct classification of the known fault classes, but it can also accurately detect the
unknown fault classes.

Keywords: open set fault diagnosis; attenuation probability model; extreme value theory; convolution
neural network; open space risk

MSC: 68T07

1. Introduction

Rolling element bearings in mechanical parts play a vital role [1] in the field of modern
industrial machinery. According to relevant information, among the types of mechanical
failures, about 30 percent of the faults are caused by the failure of rolling bearings. To avoid
expensive maintenance costs, huge economic losses, and even life safety problems caused
by the failure of mechanical parts, the technology of equipment condition monitoring and
fault diagnosis based on vibration signals are widely concerned. At present, as a research
hotspot in the field of mechanical fault diagnosis, many mature bearing fault diagnosis
technologies have been formed in the actual scene.

In the 1990s, various shallow machine learning models were successively proposed,
such as support vector machines (SVM), K-nearest neighbor (KNN), Bayesian classifiers,
decision trees and artificial neural networks (ANN). These early efforts were instrumental
in pushing fault diagnosis into the era of artificial intelligence. A number of intelligent
fault diagnosis methods have emerged, including methods based on expert systems [2],
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methods based on neural networks (NNs) [3], methods based on SVM [4], and other
artificial intelligent methods [5]. An important aspect of these shallow learning methods is
that as they rely on manual feature selection to identify the health status of the machine,
the quality of selected features become the bottleneck of the overall system performance.
In contrast to traditional shallow learning, deep learning (DL) has the important capability
of feature learning. DL directly learns from raw data by constructing a nonlinear neural
network with multiple hidden layers which automatically extract features and abstract them
layer by layer, thus mapping the samples from the original feature space to a new feature
space which improves the accuracy of classification or prediction. This indicates that the
"deep model" is the mean, and "feature learning" is the goal. Compared with traditionally
manually constructed features, features learned by deep models can better capture the
rich internal information in the data through feature learning. The DL models that are
mainly used in the field of intelligent fault diagnosis include autoencoder (AE) [6,7], deep
belief network (DBN) [8,9], convolutional neural network (CNN) [10,11], recurrent neural
network (RNN), and deep residual network (DRN) [12]. Among these, deep intelligent
fault diagnosis models based on CNN and AE are the most popular. Generally, these
methods take advantage of the feature extraction of DL models, and connect a classifier
to the last layer of DL models to realize fault diagnosis, such as SoftMax, SVM, random
forest, etc.

Most current intelligent fault diagnosis models are DL methods based on the closed
set assumption (CSA), which assumes that the fault types in the training and test data share
the same class features. However, the methods under this assumption have superior fault
detection performance in the field of fault diagnosis. Moreover, since the training set cannot
contain all fault types, this assumption is not valid in practical industrial applications as it
is often unrealistic or even impossible to ensure that the training set will contain all possible
fault types. Firstly, manually labeling all fault types during the training phase is expensive
can be error-prone. Secondly, the process of vibration signal collection is time-consuming,
and it is difficult to collect all types of fault data in a limited time. Moreover, some types
of fault may not even occur during training data collection. DL models based on the
CSA will misclassify it into the fault type defined by the training set when a previously
unseen type of fault appears in the test set. In order to solve this problem, it is necessary
to develop an open set assumption (OSA)-based method for fault diagnosis that cannot
only correctly classify the known classes (KCs) but can also identify the unknown class
(UC). Figure 1 provides a comparison between CSA and OSA classification. Figure 1a
shows the distribution of the original dataset, including KC (labeled as 1, 2, 3, 4) and UC
(labeled as ?). KC appears in both the training and testing phases, while UC only appears
in the testing phase. As shown in Figure 1b,c, dotted lines and circles represent decision
boundaries, respectively. The classifier classifies all points in the decision boundary into
one class to divide different classes. Figure 1b shows that the traditional CSA classification
method only considers the empirical risk and cannot deal with the open space risk. The
classifier misclassifies the new category as KC, i.e., the existence of UC will introduce errors
in classification decision making, so it is particularly important to limit the risk of open
space. In contrast, as shown in Figure 1c, the decision boundaries of the OSA classification
method is able to limit the range of KC(1, 2, 3, 4) and exclude UC(?). Hence, the UC(?)
can be rejected instead of being misclassified as KC(1, 2, 3, 4). The OSA classification
method combines empirical risk and open space risk which considers the space beyond the
reasonable support of KCs. To improve the rejection ability of UC, it is necessary to further
limit the open space risk and ensure that the open space risk is minimized.
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(a) (b) (c)

Figure 1. The comparison of CSA classification and OSA classification: (a) Distribution of the original
dataset; (b) Based on CSA classification method; and (c) Based on OSA classification method.

The OSA-based classification method has been studied in many fields, mainly in the
field of face recognition [13], security field [14], text classification [15,16], and network
traffic [17], etc. However, there are few studies on OSA-based methods in the field of
industrial bearings [18,19], and their experimental data are insufficient, so there is still
much room to improve the rejection ability of UC. Therefore, it is urgent to explore a
bearing fault diagnosis method based on OSA. This shows that research based on OSA
classification methods is an extremely important development.

The main contributions of this paper can be summarized in the following three aspects:

(1) A comprehensive experimental task is set up and applied to the field of OSA-bearing
fault diagnosis, in which the test tag set includes all the training tag sets and UC. To
make the experimental content more sufficient, this paper uses multiple combinations
of four datasets, and proves the effectiveness of the method through 84 experiments.
The experimental results exceed other state-of-the-art method results.

(2) For the proposed OS-CNN model, the last layer uses multiple sigmoid functions
to replace a single SoftMax function to limit the risk of open space, which has a
certain novelty in the application of bearing fault diagnosis. The experiments show
that this method is not only effective for the OSA problem but can also improve the
convergence speed and the accuracy of final classification for the CSA problem.

(3) By visualizing the distribution of the activation vectors of the penultimate layer of the
bearing samples, it was found that the OpenMax method is insufficient in correcting
the activation vectors. Since the distribution of the activation vectors is not all positive,
the UC is misclassified as the KC. Based on this, this paper uses the exponential
function to improve, so that the activation vector is above the positive value, i.e., the
revised activation vector is more realistic. It is verified that the proposed method has
better performance than the existing methods in identifying UC on four datasets.

The rest of this paper is organized as follows. Section 2 introduces the existing related
work of the OSA. In Section 3, the OSA fault diagnosis method proposed in this paper is
introduced in detail. In Section 4, the experimental settings of four datasets are described
in detail and the experimental results are analyzed. The conclusions are drawn in Section 5.

2. Related Work

At present, there have been many studies based on the OSA classification problem. In
terms of traditional machine learning methods such as SVM, Scheireret et al. [20] changed
the traditional CSA, introduced a novel 1-vs.-set machine, and defined the combination of
empirical risk and open risk as a constraint minimization problem, which was successfully
applied to OSA classification. To further limit the open risk problem, Scheireret et al. [21]
established a compact abating probability (CAP) model and considered nonlinear kernel
functions, combining extreme value theory (EVT) [22] with two separate SVMs and pro-
posed a Weibull-calibrated SVM (W-SVM) model. Jainet et al. [23] continued to use the
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EVT method to model the positive training samples of the decision boundary, thereby
proposing the PI-SVM algorithm. PI-SVM limits open risk by using a threshold-based
classification scheme, but the choice of threshold is also an issue. To solve this problem,
Scherreiket et al. [24] introduced the probabilistic open set SVM (POS-SVM) classifier,
which maps the output of SVM to probability. Based on minimizing the risk of an open set,
the threshold is applied to determine whether the sample belongs to the training class or
should be rejected, which provides better performance in distinguishing KCs from UC.

Since distance plays a vital role in limiting the open set risk, many classical meth-
ods were proposed in this area. Nearest class mean (NCM) [25] as a traditional dis-
tance method has many extensions. The method of nearest class mean metric learning
(NCMML) [26] method extends the NCM approach, by using low-rank Markov distance
instead of Euclidean distance to obtain better results. Bendale and Boult [27] proposed
the nearest non-outlier (NNO) algorithm by extending the NCM classifier which can effec-
tively evolve the model, detect outliers, and manage the risks of open space. Furthermore,
Junioret et al. [28] further introduced an open set version of the nearest neighbor classifier
(OSNN), which extended the nearest neighbor (NN) classifier by comparing the similarity
threshold with the most similar class, and has good stability.

While DL was mostly used in traditional CSA, there have been explorations into the
field of OSA with promising results. Traditional DL classifiers usually use SoftMax to
calculate the classification probability, but this method cannot identify unknown samples
and simply classify them as KCs. To solve this problem, Bendale and Boult [29] introduced
a new model layer, OpenMax. Firstly, the penultimate activation vector value is extracted
to calculate the average activation vector of each category, and the distance between it and
the positive training sample is calculated. Then, the Weibull distribution of each class is
obtained by distance fitting. The activation vector of the sample is further revised according
to the Weibull distribution, and the calculation of the pseudo activation vector of UC is
provided. Finally, the probability of the input sample belonging to a KC or UC is calculated.
Shuet et al. [15] proposed a new method based on DL, which uses multiple sigmoid
functions instead of the single SoftMax function in the last layer to limit the risk of open
space. Kardan and Stanley [30] proposed a new standard neural network structure, called
a competitive overcomplete output layer (COOL) neural network to solve the problem of
the overgeneralization of neural networks in regions far from training data. Then, inspired
by the OpenMax method, Prakhyaet et al. [16] studied the applicability of OpenMax in
open set text classification and achieved good results in the classification of novel sample
classes. Yoshihashi et al. [31] proposed the classification–reconstruction learning for open
set recognition (CROSR). Its training network is used for joint classification and input data
reconstruction, which is robust to UC detection without affecting the classification accuracy
of KCs. Osa and Patel [32] proposed an open set recognition algorithm based on class
conditioned auto-encoders, which adopted novel training and testing methods and used
EVT to model reconstruction errors and to find the threshold to identify KCs or UC.

Given that the OSA method has made promising progress in other application do-
mains, this paper designs an effective solution to the practical problem of OSA-bearing
fault diagnosis.

3. Method
3.1. Problem Description

Considering the actual industrial machinery application scenario, the training set and
test set are not consistent. Bearing faults may occur on the inner ring, outer ring, ball,
and cage, but fault symptoms (e.g., pitting, wear, and fracture) and fault sizes may be
different. As a result, the fault type of the test phase is unpredictable and may contain
one or more unknown fault modes. It is thus important that a practical fault diagnosis
model has the ability to detect UC. This paper defines the OSA fault diagnosis problem
as follows: the label sets of the training data contain K classes, called KCs, the label sets
of the test data contain L classes, where K KCs defined in training set and L− K UC, and
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all UC are classified as (K + 1)− th class. The dataset is defined as follows: the training
data Dtrain = {(x1, y1), ..., (xm, ym)} consist of m labeled data, yi(i = 1, ..., m) belongs to one
of the K KCs, and the test data Dtest = {x1, ..., xn} consist of n unlabeled data. Our goal is
that the classifier eliminates UC without reducing the classification accuracy of KCs, i.e.,
the shared tag sets are classified into K KCs, and the unknown sample is classified into
(K + 1)− th class.

The method proposed in this paper is divided into the following three parts. Firstly,
the overall framework of the OS-CNN model is described in detail, and its effectiveness is
verified by comparison with other situations (Section 3.2). Secondly, it illustrates how to
establish the Weibull model for known fault modes to measure the weight of abnormal class
(Section 3.3). Finally, the test samples are input into the trained OS-CNN model to evaluate
the Weibull distribution of the test samples for calculating the probability of belonging to K
KCs and UC (Section 3.4).

3.2. Os-Cnn Architecture for Open Set Fault Diagnosis

Compared with traditional machine learning methods, CNN has strong learning
ability and interpretability and has been widely used in the intelligent fault diagnosis of
mechanical parts. The time-domain signals or frequency-domain signals after fast Fourier
transform (FFT) [33,34] can be directly used as the input for CNN, without manual feature
extraction to obtain more advanced results. For example, Ince et al. [35] directly inputted
the original vibration signal into the 1DCNN model to detect motor faults, which greatly re-
duced the time-consuming and laborious in-feature extraction process. Sikder N. et al. [36]
used the FFT to preprocess the original signal as the input of CNN, which revealed the in-
herent characteristics of the fault and obtained high precision. Zhang J. et al. [37] converted
the original signal into the two-dimensional image as the input of CNN to automatically
complete the feature extraction and fault diagnosis process, which meets the real-time
requirements of bearing fault diagnosis. However, the current CNN method is mainly
for the CSA problem. To solve the problem of the fault category during the test being
unpredictable, this paper proposes an open set fault diagnosis model based on CNN,
called OS-CNN.

The architecture of OS-CNN is shown in Figure 2, which contains six convolution
layers and pooling layers. The FC2 layer represents K class nodes, and the sigmoid layer
represents K sigmoid functions corresponding to K KCs. To suppress the influence of
high-frequency noise on classification accuracy in bearing signals, the OS-CNN structure
proposed in the paper is similar to the WDCNN method proposed by Zhang et al. [38]. The
first layer uses a wide convolution kernel. Specifically, the size of the first convolution kernel
is 64× 1, and the size of the remaining kernels is 3× 1. The pooling type is maxpooling,
and the activation function is ReLU. In order to normalize the data, a Batch Normalization
(BN) layer is added after each convolution layer. Two fully connected (FC) layers are
used behind the convolution layer, and the node in the second fully connected layer (FC2)
corresponds to the fault type in the training set. The last layer of the model is inspired by
the deep open classification (DOC) method [16], which builds a 1-vs.-rest layer containing
K sigmoid functions for K KCs. The specific method seeks to establish K sigmoid functions
for K KCs and then converts each KC into a probability distribution in the range of [0,1] to
calculate the uncertainty measure for each class.

For m training samples in the training set Dtrain, each sample xi has a class label yi,
which contains K KCs, if the l − th sigmoid function corresponds to the fault class Cl ,
i.e., yi = Cl is a positive sample, the corresponding label is 1, all the remaining known
faults are negative samples, and the corresponding label is 0, so each sigmoid function can
construct a 1-vs.-rest training set. The model is trained with the sum of logarithmic losses
corresponding to K sigmoid functions.
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Loss =
K

∑
l=1

m

∑
i=1
−I(yi = Cl) log p(yi = Cl)

− I(yi 6= Cl) log(1− p(yi = Cl)),

(1)

where I is the indicator function, its value is 1 if yi = Cl , otherwise 0. The p(yi = Cl) is the
probability output of the l − th sigmoid function on the i− th training sample.

Figure 2. Block diagram of the OS-CNN model.

The parameters of each convolution layer and pooling layer are shown in Table 1.

Table 1. Details of the feature extractor used in the experiments.

No. Layer Type Layer Name Kernel Stride Channel Output Padding

1 Convolution Conv1 64 × 1 2 × 1 16 125(253) × 16 Yes
MaxPool 1 × 1 2 × 1 16 125(253) × 16 No

2 Convolution Conv2 3 × 1 2 × 1 32 62(126) × 32 Yes
MaxPool 1 × 1 2 × 1 32 62(126) × 32 No

3 Convolution Conv3 3 × 1 2 × 1 64 30(62) × 64 Yes
MaxPool 1 × 1 2 × 1 64 30(62) × 64 No

4 Convolution Conv4 3 × 1 2 × 1 64 14(30) × 64 Yes
MaxPool 1 × 1 2 × 1 64 14(30) × 64 No

5 Convolution Conv5 3 × 1 2 × 1 64 6(14) × 64 Yes
MaxPool 1 × 1 2 × 1 64 6(14) × 64 No

6 Convolution Conv6 3 × 1 2 × 1 64 2(6) × 64 Yes
MaxPool 1 × 1 2 × 1 64 2(6) × 64 No

3.3. Establish the Weibull Model for Known Fault Modes

To make the classifier accurately reject UC without reducing the classification accuracy
of KCs, it is necessary to combine the experience risk and open space risk for OSA fault
diagnosis. How to reduce the risk of open space is the continuous pursuit of OSA work.
Scheirer et al. [20] introduced the concept of open space risk, which is defined as the risk
related to the ‘far away’ known training sample.

To adapt to bearing fault diagnosis based on OSA, this paper applies the OS-CNN
deep network model to the OpenMax method. The OpenMax method considers the concept
of open space risk and uses EVT to define a compact attenuation probability model. The
distance distribution is evaluated by comparing the relationship between the input sample
and the known training sample.
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The OpenMax is different from the traditional method of calculating probability
through the score of the last layer but uses the eigenvalues extracted from the penultimate
layer (FC2) to estimate the distance. In this paper, the extracted value from the penultimate
layer is called the activation vector (AV).

To facilitate the explanation, the OSA fault diagnosis method is divided into two
processes (Sections 3.3 and 3.4), each process including three steps.

The first process is divided into three steps as shown in Figure 3, where the solid black
line at Conv1–Conv6 represents the trained model. The specific process for each step is
as follows.

Step 1 Input the labeled training data into the OS-CNN trained model and extract the AV
corresponding to the positive training sample. Let AVi,c denote the AV of the i− th
positive training sample of class c (c = 1,...,K) in the training set. Then, NCM is used
to calculate the mean activation vector (MAV) corresponding to each KC, denoted
as mc. The mc can be expressed as:

mc = mean(AVi,c). (2)

Step 2 In order to evaluate the relationship between the input sample and the MAV of each
class. The distance between the i− th positive sample xi and the corresponding mc
is calculated, where the distance is denoted as di,c. As for the selection of distance
calculation methods, three distance calculation methods on the bearing dataset are
compared. They are the Euclidean distance method, the cosine distance method, and
the combination of normalized Euclidean and cosine distances method, respectively.
After experimental verification, the combination of normalized Euclidean distance
and cosine distance can obtain the best performance. Therefore, the distance calcula-
tion adopts the combination of normalized Euclidean distance and cosine distances.
The di,c can be expressed as:

di,c = ‖AVi,c −mc‖. (3)

Step 3 This paper estimates the distribution of each fault class based on the EVT method.
Due to the EVT model following Weibull distribution, the libMR [39] FitHigh fitting
function is used to perform Weibull fitting on the maximum distance between posi-
tive training samples and corresponding mc to obtain the Weibull model parameters
of each KC. The Weibull fitting parameter ρc includes the shift τc, shape κc, and scale
λc, which is used to estimate the probability of outliers in the test phase. As shown
in formula (4), the tail length ηr is the selection of the r− th maximum distance.

ρc = (τc, κc, λc) = FitHigh(‖AVi,c −mc‖, ηr). (4)

Then, the Weibull cumulative distribution function (CDF) is prepared for the next
process to estimate the class of test samples. The corresponding CDFi,c is estimated by
fitting parameter ρc and distance di,c, which estimates the relationship between the i− th
training sample and c− th class. The formula is shown in (5).

CDFi,c = e
−
(
‖di,c−τc‖

λc

)κc

, (5)

The CDFi,c probability distribution visualization is similar to the KCs distribution in
Figure 4 of Section 3.4, where KC-1–KC-5 represent the distribution of KC training samples,
and the blue triangle represents the distribution of unknown samples in the test phase.
It can be found that the distribution of the known samples is a monotonically increasing
function, with an increasing distance indicating a larger the CDF value.
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Figure 3. The training phase of the proposed OSA fault diagnosis model is divided into three steps.

3.4. Test Phase Based on the OS-CNN Algorithm

The process of the test phase is shown in Figure 5, where � denotes an element-wise
product. It mainly includes the following three steps:

Step 1 Input test data into the trained model, and the AV extracted from the j − th test
sample is denoted as AVj. The dj,c represents the distance between the j− th test
sample and the mc of the c− th KC to estimate whether the input is "far" from the
known training data. The dj,c can be expressed as:

dj,c =
∥∥mc −AVj

∥∥. (6)

Step 2 To evaluate the probability that the test samples belong to outliers, the value of
CDFj,c is used to determine whether the test samples belong to the c − th KC.
Specifically, for the j− th test sample, the distance dj,c and the corresponding fitting
parameter ρc are used to calculate the CDFj,c, which measures the weight value
of the input sample that does not belong to the c− th KC, and serves as the core
for estimating the rejection of the UC. To make the distribution of test samples
more clear, the representative CDFj,c of test samples are selected for visualization.
The distribution is shown in Figure 4, where the black dot test samples represent
the distribution of CDFj,1 (j = 1, . . . , n) corresponding to the KC-1 node, i.e., it
represents the distribution between the Weibull parameters of KC-1 and the distance
from the KC-1 test sample to the first class of the feature center. Other KC samples
are visualized in the same way. For the blue triangle test samples, the CDFj,c values
calculated by the distance dj,c to each class of the feature center and the fitting
parameter ρc are concentrated near 1, indicating that it does not belong to any KC,
and one group is selected for visualization.
Because UC is included in the test samples, there are K + 1 classes in the test samples.
The (K + 1)− th class represents the UC samples, but the OS-CNN model only has
the output probability of K KCs. To calculate the probability that the input samples
belong to KC and UC, the OpenMax method is used to revise the AV of input
samples and further calculate the pseudo-AV of UC. Since the CDFj,c represents the
weight of the input sample xj that does not belong to the c− th KC, the 1− CDFj,c
measures the weight of the input sample xj belonging to the c− th KC. To be specific,
to determine whether the j− th test sample belongs to the UC or not, the OpenMax
method uses the AVj and 1−CFDj corresponding element-wise product to calculate
the revised AV. Hence, the revised AV for c− th KC is close to 0 when CDFj,c is close
to 1, indicating that the input sample is more likely to be UC, and the pseudo-AV of
UC is expected to have a larger value.
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Figure 4. Visualization of the Weibull CDF probability distribution trend for test samples.

Figure 5. The proposed OSA fault diagnosis method of the testing phase, which is divided into three
steps by the dashed line.

Although the OpenMax method obtained a superior result in [29], it is found that it
is not suitable for bearing signals through experimental verification in this paper.
Through multiple sets of experiments, it was found that the AV corresponding to the
UC samples is not completely positive due to the characteristics of vibration signals,
especially the quite clear data provided by the Case Western Reserve University
(CRWU). As shown in Figure 6, 1–600 test samples correspond to the distribution of
AV extracted from 5 KC nodes, of which 1–100 samples are KC-1, 101–200 samples
correspond to KC-2, 201–300 samples are KC-3, 301–400 samples are KC-4, 401–500
samples are KC-5, and 501–600 samples are UC. As for the distribution of bearing
signals, it can be seen that the AV distribution of the KC is relatively strong, and the
AV extraction result of some UC is distributed in negative value. In this situation, if
the input sample is a UC, its corresponding CDF value is close to 1, and the expected
pseudo-AV of the UC is larger than the revised AV of the KCs. If we continue to
use the OpenMax method to revise the AV, as shown in Formula (7), the revised
AV of the j− th test sample is denoted as ÂVj, and the pseudo-AV of the j− th test
sample is denoted as ÂV j,k+1. Since the AVj,i corresponding to UC is negative, this
will cause the pseudo-AV value AVj,k+1 of UC to be negative. However, the revised
AV value AVj of KCs is close to 0, resulting in the pseudo-AV of UC being smaller
than the revised AV of KCs, which is inconsistent with expectations, and it is easy to
misclassify UC as KCs.

ÂVj = AVj �
(
1− CDFj

)
ˆAVj,k+1 =

k

∑
i=1

AVj,iCDFj,i
(7)

Therefore, this paper improves the method [29] by using the exponential function
to ensure the monotonicity of the extracted AV distribution and make it above the
positive value.
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Figure 6. Visualization of AV distribution of the penultimate layer.

The improved revised formula of AV is expressed as:

ÂVj = eAVj � (1− CDFj)

ÂV j,k+1 =
k

∑
i=1

eAVj,i CDFj,i
(8)

Step 3 After obtaining the revised AV, the probability value corresponding to each class is
calculated to determine the category of each sample. However, UC appears in the
test phase of the OSA scenario. As a result, it is contradictory to the probability sum
of 1. To adapt the OpenMax method, the distribution probability of each test sample
belonging to a certain KC and UC is calculated, as shown in Formula (9). The revised
AV corresponding to each KC and the pseudo-AV of the UC are used as molecules,
and its sum as a denominator, which meets the requirement of a probability sum of 1.
Hence, the ability to reject input is provided when UC (y = K + 1) has a maximum
probability.

P̂(y = c | xj) =
ÂV j,c

∑k+1
i=1 ÂV j,i

(9)

As shown in Figure 7a,b, this paper visualizes the probability value distribution of the
revised AV before and after improvement. As shown in Figure 7a, it is easy to misclassify
unknown samples into KCs. As shown in Figure 7b, it can clearly be seen that KCs and UC
completed the correct distribution of KCs and UC, which verifies the effectiveness of the
method used in this paper.

(a) (b)

Figure 7. (a) Visualization of the revised AV probability distribution before improvement. (b) Visual-
ization of the revised AV probability distribution after improvement.
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4. Experimental Results and Discussion
4.1. Dataset Description

This paper collects four different types of bearing datasets: the Case Western Reserve
University (CWRU) dataset, Jiangnan University (JNU) dataset, Southeast University (SEU)
dataset, and PHM2009 dataset. These datasets have specific labels and explanations. The
detailed information is shown in Tables 2–5.
CWRU Bearing Dataset The basic layout of the test rig is shown in Figure 8. It consists of a
2 hp motor (left), a torque transducer/encoder (center), and a dynamometer (right). Further
details regarding the test rig can be found on the CWRU Bearing Data Center website [40].
Vibration signals were collected from the drive end of a motor in the test rig under four
different states: (1) normal condition (NO); (2) inner-race fault (IF); (3) outer-race fault (OF);
and (4) ball fault (BF). For IF, OF, and BF cases, vibration signals for three different severity
levels (0.007 inches, 0.014 inches, and 0.021 inches) were separately collected, respectively.
The sampling frequency was 12 kHz and the signals were collected under four working
conditions with different motor loads and rotating speeds, i.e., Load0 = 0 hp/1797 rpm,
Load1 = 1 hp/1772 rpm, Load2 = 2 hp/1750 rpm and Load3 = 3 hp/1730 rpm. The CRWU
dataset settings are shown in Table 2.

Figure 8. CWRU bearing test rig [40].

JNU Bearing Dataset The JNU bearing dataset was provided by Jiangnan University.
The JNU dataset content can be downloaded from [41], and more detailed information can
be obtained from [42]. It was collected at three different speeds of 600 rmp, 800 rmp, and
1000 rmp, and the acquisition frequency was 50 kHz. Each working condition included
four bearing states: (1) NO; (2) IF; (3) OF; and (4) BF. More detailed information about the
data description is shown in Table 3.
SEU Bearing Dataset The SEU gearbox dataset was provided by Southeast University.
The whole experimental equipment is shown in Figure 9, with the dataset content available
for download from [43] and more details from [44]. The dataset was acquired by the
Dynamic Transmission System Dynamic Simulator (DDS), and contains two sub-datasets,
namely the bearing dataset and the gear dataset. Under two different working conditions,
the speed-load configuration (RS-LC, respectively) was set to 20 Hz-0 vs. and 30 Hz-2 v,
and the vibration signal was collected at a frequency of 12 kHz. There were four bearing
states under each operating condition: (1) NO; (2) IF; (3) OF; and (4) BF. In each file, there
were eight lines of vibration signal, whilst this paper uses the second line of vibration
signals. The basic layout of the experimental setup is shown in Figure 9. Details are shown
in Table 4.
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Figure 9. Experimental setup for the SEU dataset [44].

PHM2009 Bearing Dataset The PHM2009 gearbox fault data were representative of
generic industrial gearbox data, which contain three shafts, four gears, and six bearings.
For each health condition, the data were synchronously collected by the accelerometer
installed on the input and output shaft mounting plates at 30 Hz, 35 Hz, 40 Hz, 45 Hz, and
50 Hz shaft speed under high and low load, with a sampling frequency of 66.67 kHz and
an acquisition time of 4 s [45]. The dataset category consists of six different fault conditions.
The schematic of the gearbox used to collect the data is shown in Figure 10. The PHM2009
dataset more detailed information can be obtained from [46]. In this paper, only the input
channel of the vibration signals of the helical gearbox under low load is used to evaluate
the capability of the proposed method [47]. The PHM2009 dataset settings are shown in
Table 5.

(a) (b) (c)

Figure 10. The gearbox used in PHM 2009 Challenge Data: (a) gearbox schematic; (b) gearbox
apparatus; and (c) gearbox inside [45].

4.2. Evaluation Metrics

This section presents the evaluation criteria used for the dataset and detailed experi-
mental results.

In order to evaluate the performance of the proposed method in OSA scenarios, the
diagnosis results of KCs, UC and comprehensive performance corresponding to each task
were mainly evaluated. In the following experiments, this paper named the classification
result of KC as K and the diagnosis result of UC as U. Their results represent the accuracy
of the tests and the ability to reject unknown samples. Moreover, the F1score was used
as a comprehensive evaluation standard, which was the harmonic average of P and R,
representing accuracy and recall rate, respectively. The definition is

F1score = 2× P× R
P + R

, (10)

where P represents the actual number of positive samples in the predicted positive samples;
R indicates how many of the positive samples are correctly predicted. For the multi-class
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classification task in this paper, the evaluation of F1Macro was renamed F1. The final multi-
class classification comprehensive evaluation result F1 was obtained by calculating the P
and R of each class and averaging them. The formula is expressed as

F1 =
1

n + 1

n+1

∑
i=1

(F1score )i. (11)

4.3. Experimental Setup and Parameter Settings

The original time-domain vibration data are first converted into the frequency domain
by FFT. The main reason is that the frequency domain information is usually more sen-
sitive to the health status of the machine and can generally obtain better fault diagnosis
performance. For the CWRU dataset, JNU dataset, and SEU dataset, a vibration signal with
a length of 4098 is originally selected from the original signals, and then FFT is executed
to generate 4098 Fourier coefficients. Since the coefficients are symmetrical, each sample
has 2049 coefficients. For the PHM2009 dataset, the vibration signals are first divided into
6144 sampling points as data segments [48], and then FFT is performed to generate 4097
coefficients for each sample [47].

To verify the effectiveness of the proposed method, this paper sets multiple tasks to
evaluate the ability of the proposed method to detect and classify test samples. Each task
includes a training set and a test set. The training set is the labeled KCs, and the test set
is the unlabeled data, including KCs and UC. The multi-task settings of the four datasets
are as follows: the training set of the CWRU dataset is set based on the absence of fault
type and fault size. The first three tasks lack a fault type, i.e., IF, OF or BF. The last three
tasks lack a fault size, i.e., they are missing a fault size of 7 inches, 14 inches, or 21 inches.
The training sets of the JNU, SEU, and PHM2009 datasets are based on the lack of one or
two or three fault categories, respectively. The test set is unlabeled data, including training
label set and UC that do not appear in the training set. In all task experiments, 70 percent
of the training set is used for training, and the remaining samples are used for testing to
evaluate the performance of the training model. It is worth noting that because the number
of training set samples for all tasks is not consistent, the given batch size is 32 when the
number of training set samples is large, and the batch size given is 16 when the number of
training samples is small.

The task setting details of each dataset are shown in the following Tables 2–5.

Table 2. The information of the CWRU and specific task settings.

Dataset Class Label 0 1 2 3 4 5 6 7 8 9

CWRU
Fault Type NO IF IF IF BF BF BF OF OF OF
Fault Size (Inches) 0 7 14 21 7 14 21 7 14 21
Load (hp) 0, 1, 2, 3

Task Experimental setup Training label set Test label set
C0

Missing fault type
0, 1, 2, 3, 4, 5, 6 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

C1 0, 1, 2, 3, 7, 8, 9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
C2 0, 4, 5, 6, 7, 8, 9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
C3

Missing fault size
0, 1, 2, 4, 5, 7, 8 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

C4 0, 2, 3, 5, 6, 8, 9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
C5 0, 1, 3, 4, 6, 7, 9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
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Table 3. The information of the JNU and specific task settings.

Dataset Class Label 0 1 2 3

JNU Fault Type NO IF BF OF
Fault Speed (rmp) 600, 800, 1000

Task Experimental setup Training label set Test label set
J0

An unknown class
0, 1, 2 0, 1, 2, 3

J1 0, 2, 3 0, 1, 2, 3
J2 0, 1, 3 0, 1, 2, 3
J3

Two unknown classes
0, 1 0, 1, 2, 3

J4 0, 2 0, 1, 2, 3
J5 0, 3 0, 1, 2, 3

Table 4. The information of the SEU and specific task settings.

Dataset Class Label 0 1 2 3

SEU Fault Type NO IF OF BF
RS-LC 20 Hz-0 V, 30 Hz-2 V

Task Experimental setup Training label set Test label set
S0

An unknown class
0, 1, 2 0, 1, 2, 3

S1 0, 2, 3 0, 1, 2, 3
S2 0, 1, 3 0, 1, 2, 3
S3

Two unknown classes
0, 1 0, 1, 2, 3

S4 0, 2 0, 1, 2, 3
S5 0, 3 0, 1, 2, 3

Due to the importance of the Weibull distribution calculation, the setting of tail size
(Tailsize) length is critical for the experimental results. When Tailsize = 1, it does not
conform to the distribution, so the experiment starts with Tailsize = 2 in this paper. After
a large number of experiments on each dataset, this paper gives the accuracy histogram
corresponding to a different Tailsize in each dataset to obtain the optimal selection of
Tailsize corresponding to each dataset. For the CWRU dataset, the SEU dataset, and the
PHM09 dataset, the best performance can be obtained when Tailsize = 2. For the JNU
dataset, the best performance can be obtained when Tailsize = 23. The specific results of a
different Tailsize corresponding to each dataset are shown in Figures 11–14.

Table 5. The information of the PHM2009 and specific task settings.

Category Gear Bearing Shaft
Labels 24T Others Input Shaft:Output Side Idler Shaft:Output

Side
Others Input Output

0 Good Good Good Good Good Good Good
1 Chipped Good Good Good Good Good Good
2 Broken Good Combination Inner Good Bent Shaft Good
3 Good Good Combination Ball Good Imbalance Good
4 Broken Good Good Inner Good Good Good
5 Good Good Good Good Good Bent shaft Good

Task load Experimental setup Training label set Test label set
p0 An unknown class 0, 1, 2, 4, 5 0, 1, 2, 3, 4, 5
p1 0, 1, 3, 5 0, 1, 2, 3, 4, 5
p2 ALL (30 hz, 35 hz, Two unknown class 0, 1, 4, 5 0, 1, 2, 3, 4, 5
p3 40 hz, 45 hz, 50 hz) 0, 1, 5 0, 1, 2, 3, 4, 5
p4 Three fault class 0, 1, 4 0, 1, 2, 3, 4, 5
p5 0, 3, 5 0, 1, 2, 4, 5, 6
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Figure 11. The relationship between the tailsize value and precision of the CWRU dataset.

Figure 12. The relationship between the tailsize value and precision of the JNU dataset.

Figure 13. The relationship between the tailsize value and precision of the SEU dataset.

Figure 14. The relationship between the tailsize value and precision of the PHM2009 dataset.

4.4. Experimental Results on Datasets

Table 6 shows the classification accuracy of the four datasets on different tasks. To
reduce the potential influence of random results, all experimental results were averaged for
10 trials.

(1) Results Analysis on Different Datasets
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Based on the literature, the CWRU dataset is generally easier to diagnose faults with
relatively distinct features. However, the PHM09 dataset is more practical and challenging,
and there is significant signal noise in the condition monitoring data of other datasets
relative to the CWRU dataset. As a result, the test accuracy of other datasets is lower than
that of the CWRU dataset.

The classification accuracy of the six tasks in the CWRU dataset is shown in Table 6. It
can be seen that the classification accuracy of the proposed method in this paper is more
than 99% for KCs, and the detection accuracy of UC reaches 100%. In other words, the
recognition of KCs also achieves good results when unknown data can be fully recognized.
Experimental results show that the method used in this paper outperforms other existing
methods in each diagnostic task of CWRU data. The experimental results of the JNU
dataset on six tasks are shown in Table 7, the classification results of KCs are close to
100%, and the classification results of UC are all above 92%. Similarly, the experimental
results of the SEU dataset on six tasks are shown in Table 8, and it can be seen that the
classification accuracy of KCs is nearly 99% on all diagnostic tasks. The detection accuracy
of UC under different tasks is higher than 99% except that the S2 task under 20HZ-0V is
close to 94%. Compared with the results of other methods, the proposed method is more
advanced. The experimental results of the PHM2009 dataset on six tasks are shown in Table
9, the classification accuracy for KCs is close to 100%, and the recognition accuracy results
for UC are mostly above 90%. However, there are a few tasks in which the recognition
of UC does not achieve the expected results. For example, the detection result of task 4
for UC is approximately 55% in the case of working condition 45 HZ, and the detection
result of task 4 for UC is approximately 60% in the case of working condition 50 HZ. More
detailed results can be viewed in the table. Based on the results of the above datasets, the
effectiveness of the proposed method is verified.

From the above experiments, it can be observed that in the OSA task, our proposed
method is not only able to effectively identify UC, but it also does not affect the classification
accuracy of KCs. The experimental results validated the effectiveness of the proposed
method. However, the results of a few tasks have shown some volatility or randomness.
Therefore, there is still a need to explore more robust open set detection algorithms or
improvements in the future.

(2) Feature Visualization

In order to intuitively observe the performance of the proposed CNN architecture, this
paper uses the t-SNE visualization method to compare three situations on a task of PHM09
(a), (b), and (c), JNU (d), (e), and (f), and SEU (g), (h), and (i) datasets. The (a), (d), and (g)
show FFT data visualization. The (b), (e), and (h) show that the last layer of the model uses
the SoftMax function to visualize the eigenvalues extracted from the FC2 layer. The (c),
(f), and (i) show that the last layer of the model uses a sigmoid function to visualize the
eigenvalues extracted from the FC2 layer. The specific description of the dataset is shown
in Table 5. In the first situation, FFT data are directly used for visualization. As shown in
Figure 15a, the sample points of KC-2 and KC-3, KC-4 and KC-5 are mixed, respectively.
In the second situation, FFT data are processed by the traditional CNN with a SoftMax
layer. As illustrated in Figure 15b, although this method can correctly distinguish most
samples, there is a small overlap between KC-3 and KC-4 samples. In the third situation,
the last layer of the model consists of five 1-vs.-rest classifiers. It can be found that the
KCs are completely classified in Figure 15c. The visualization results of the other two
datasets also showed similar results. Furthermore, the method adopts multiple sigmoid
functions instead of a single SoftMax function, which can make the distance between
samples within the same fault type smaller and the distance between different fault types
larger—effectively reducing the risk of open space.
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Table 6. Experimental results of the CRWU dataset.

Task/Condition 0 hp 1 hp 2 hp 3 hp
K U F1 K U F1 K U F1 K U F1

C0 0.9993 1.0000 0.9996 0.9994 1.0000 0.9997 0.9997 1.0000 0.9998 0.9993 1.0000 0.9996
C1 0.9993 1.0000 0.9996 0.9996 1.0000 0.9997 0.9996 1.0000 0.9997 0.9994 1.0000 0.9997
C2 0.9996 1.0000 0.9997 0.9993 1.0000 0.9996 0.9993 1.0000 0.9996 0.9996 1.0000 0.9997
C3 0.9999 1.0000 0.9999 0.9993 1.0000 0.9996 0.9997 1.0000 0.9998 0.9999 1.0000 0.9999
C4 0.9996 1.0000 0.9997 0.9993 1.0000 0.9996 0.9994 1.0000 0.9997 0.9994 1.0000 0.9997
C5 0.9993 1.0000 0.9996 0.9993 1.0000 0.9996 0.9994 1.0000 0.9997 0.9993 1.0000 0.9996

Table 7. Experimental results of the JNU dataset.

Task/Condition 600 rmp 800 rmp 1000 rmp
K U F1 K U F1 K U F1

J0 0.9990 0.9990 0.9990 0.9990 0.9850 0.9955 0.9987 0.9940 0.9975
J1 0.9983 0.9820 0.9942 0.9987 0.9810 0.9940 0.9975 0.9980 0.9944
J2 0.9940 1.0000 0.9955 0.9940 1.0000 0.9955 0.9967 1.0000 0.9975
J3 0.9865 0.9565 0.9729 0.9995 0.9840 0.9919 0.9990 0.9589 0.9767
J4 0.9990 0.9580 0.9790 0.9995 0.9425 0.9721 0.9995 0.9220 0.9621
J5 0.9985 0.9330 0.9671 0.9980 0.9910 0.9951 0.9995 0.9975 0.9985

Table 8. Experimental results of the SEU dataset.

Task/Condition 20 Hz-0 V 30 Hz-2 V
K U F1 K U F1

S0 0.9897 1.0000 0.9923 0.9900 1.0000 0.9925
S1 0.9900 1.0000 0.9925 0.9900 0.9940 0.9910
S2 0.9887 0.9440 0.9773 0.9903 1.0000 0.9928
S3 0.9940 0.9975 0.9958 0.9980 0.9970 0.9975
S4 0.9890 0.9915 0.9903 0.9935 0.9910 0.9923
S5 0.9975 0.9990 0.9982 0.9967 0.9994 0.9981

Table 9. Experimental results of the PHM2009 dataset.

Task/Condition 30 HZ 35 HZ 40 HZ 45 HZ 50 HZ
K U F1 K U F1 K U F1 K U F1 K U F1

P0 0.9976 1.0000 0.9980 0.9956 1.0000 0.9964 0.9950 1.0000 0.9959 0.9922 0.9340 0.9825 0.9958 0.9980 0.9962
P1 0.9976 1.0000 0.9986 0.9983 1.0000 0.9989 0.9970 0.9975 0.9975 0.9960 1.0000 0.9976 0.9958 0.9900 0.9945
P2 0.9993 1.0000 0.9836 0.9985 0.9430 0.9826 0.9983 0.9125 0.9738 0.9950 0.8085 0.9439 0.9983 0.7653 0.9338
P3 0.9987 0.9977 0.9982 0.9967 0.9957 0.9962 0.9987 0.9917 0.9909 0.9637 0.8663 0.9136 0.9970 0.9903 0.9938
P4 0.9977 0.9277 0.9660 0.9993 0.9287 0.9663 0.9996 0.7440 0.8838 0.9993 0.5493 0.8023 0.9993 0.6040 0.8243
P5 0.9997 0.9987 0.9992 0.9987 0.9863 0.9927 0.9990 0.8990 0.9536 0.9993 0.7267 0.8874 0.9990 0.8563 0.9357

4.5. Comparison Methods

In this section, we verifiy the effectiveness and superiority of the proposed method
by comparing the performances of 1DCNN+EVT [18], DVAEC [19], and DOC [16] as
reported in their corresponding literature. Table 10 shows the comparative results on four
experimental tasks of the CWRU dataset in the literature [18]. The experimental results
show that our method is better than other methods in the three evaluation indicators,
especially for the recognition of UC, and can achieve a detection accuracy of almost 100%
for all four tasks. In short, our method showed superior performance in terms of both KC
classification accuracy and UC detection accuracy.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 15. The t—SNE visualization compares three situations on a task of PHM09 (a–c); JNU ((d–f);
and SEU (g–i).

Table 11 shows the evaluation results of experiments on three experimental scenarios
of the SEU dataset in the paper [19]. The speed load configuration of the SEU dataset
was set to 30Hz-2V. The experimental results, in terms of the evaluation indicator F1, are
compared with the three state-of-the-art methods in the literature [19]. We achieved the
same performance in scenario 2. For the experimental results of the other two scenar-
ios, the proposed method is superior to the standard detection method and can achieve
99% accuracy.
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Table 10. Novelty detection performance of CRWU.

Tasks 1DCNN+KNN 1DCNN+SVDD OpenMax 1DCNN+EVT Proposed
ALL ALL* UNK ALL ALL* UNK ALL ALL* UNK ALL ALL* UNK ALL ALL* UNK

C0 74.0 82.1 58.2 88.1 93.5 77.4 89.4 99.0 71.7 95.0 96.9 91.4 99.6 99.4 1.0
C1 87.1 92.3 66.6 94.0 96.5 84.5 93.3 99.0 84.0 97.7 97.7 98.1 99.6 99.4 1.0
C2 78.5 96.0 35.3 89.0 99.6 62.7 90.6 99.0 70.5 90.4 98.9 69.4 99.6 99.4 1.0
C3 80.4 87.7 55.5 88.6 96.0 63.5 96.0 99.0 90.0 91.3 95.0 78.5 99.5 99.2 1.0

Average 80.0 89.5 53.9 89.9 96.4 70.0 92.3 99.0 79.1 93.6 97.1 84.4 99.6 99.4 1.0

Table 11. Novelty detection performance of SEU.

Tasks OCSVM CAE OpenMax DVAEC Proposed
F1 F1 F1 F1 F1

Scenario 1 0.35 0.86 0.97 0.99 0.99
Scenario 2 0.41 0.77 0.98 0.80 0.98
Scenario 3 0.43 0.65 0.98 0.87 0.99
Average 0.40 0.76 0.98 0.89 0.99

To further verify the performance of the proposed method, we also implemented the
code of the DOC method [16] in the literature. Figure 16 shows that the comprehensive
results of three different methods are compared on four datasets. The first method (shown
in blue) used multiple sigmoid functions to replace a single SoftMax function at the last
layer of the model and then applied it to the improved OpenMax method, i.e., the method
proposed in this paper. The second method (shown in orange) used SoftMax function as the
output layer of the last layer of the model. The third method (shown in green) used DOC,
and to ensure the consistency of the experiment, CNN in the DOC method is modified
to the model proposed in this paper. It can be seen from Figure 16 that our proposed
method not only has better accuracy but also has better convergence than the other two
methods in the comprehensive result F1. This shows that the proposed method noticeably
outperforms those of the other two methods, which further verifies the superiority of our
proposed method for OSA-based bearing fault diagnosis. The code is implemented in
https://github.com/zccguess/OS-CNN.

(a) (b)

Figure 16. Cont.

https://github.com/zccguess/OS-CNN


Mathematics 2022, 10, 3953 20 of 22

Figure 16. The experimental results of three methods on four datasets: (a) CRWU; (b) JNU; (c) SEU;
and (d) PHM.

5. Conclusions

This paper proposed an open-set bearing fault diagnosis algorithm based on OS-CNN,
which solves the problem of the practical need to effectively identify new fault categories in
the actual industrial environment. Extensive experimental results on four bearing datasets
demonstrated that our proposed method provides more accurate diagnosis results than
state-of-the-art OSA methods for rolling bearing fault. Overall, our proposed method not
only accurately detects UC, but also ensures the accuracy of KC classification results. As
the real-world scenarios of bearing fault diagnosis can be much more complex than what
we considered in this paper, our proposal can be further improved through the following
aspects. First, as our experiments were carried out under a single working condition, it
is necessary to extend the proposed method to work under multiple working conditions.
Second, in addition to UC detection, for practical usage, we also need to develop further
methods for the model library to be continuously updated through expert marking and
incremental learning, to realize the continuous detection ability without retraining.
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