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Abstract: Presenting and describing a temporal series of air pollution data with longer time lengths
provides more concise information and is, in fact, one of the simplest techniques of data reduction in
a time series. However, this process can result in the loss of important information related to data
features. Thus, the purpose of this study is to determine the type of data characteristics that might be
lost when describing data with different time lengths corresponding to a process of data reduction. In
parallel, this study proposes the application of a multifractal technique to investigate the properties
on an air pollution series with different time lengths. A case study has been carried out using an air
pollution index data in Klang, Malaysia. Results show that hourly air pollution series contain the
most informative knowledge regarding the behaviors and characteristics of air pollution, particularly
in terms of the strength of multifractality, long-term persistent correlations, and heterogeneity of
variations. On the other hand, the statistical findings found that data reduction corresponding to a
longer time length will change the multifractal properties of the original data.

Keywords: exploratory data analysis; data mining; formalization of domain knowledge; time series
behaviors; nonlinearity

MSC: 62P12; 62-07

1. Introduction

Air pollution is among the important issues that need to be addressed by all countries
due to its impact on many aspects of human life, particularly on health [1,2], economics [3,4],
and environmental sustainability [5]. This scenario is even more critical to address in urban
areas [6,7] given their dense populations and active economic activities, with needs for
sustainable development and better living welfare or infrastructure for the community.
However, dense populations and active economic activities lead to increasing air pollution
particularly due to mobile (motor vehicles) and stationary sources (power stations and
industrial fuel burning and processes) [8]. Thus, managing and controlling the adverse
effects of air pollution in urban areas always need regulation. For this purpose, the
monitoring and assessment of air pollution behaviors over time is an important task.

One of the most important processes in monitoring and assessing air pollution be-
haviors is the analysis of recorded air pollution data over time. Most of the available
literature investigates the behaviors of air pollution data using various statistical mod-
els, including the time series approach [9–12], regression technique [13,14], stochastic
analysis [15,16], distribution models [17–19], neural network and deep learning [20–22],
spatial-temporal [23–25], extreme-value analysis [26,27], and multivariate approach [28,29].
All of these methods provide valuable information about the behaviors, trends, and depen-
dency structures of air pollution characteristics. However, these commonly used statistical
models may show biases and uncertainties with regard to different temporal scales in
describing an air pollution series. With the aim to reduce biases and uncertainties, the past
and current air pollution data must be evaluated according to several relevant parame-
ters [30,31]. Thus, another approach is investigating the behavior of air pollution events by
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assessing their degree of nonlinearity and overall process complexity. This objective can be
achieved by employing nonlinear techniques, such as information entropy measures [32,33],
fractal and multifractal analysis [34,35], chaotic analysis [36], and complex networks [37]. In
parallel, this study focuses on the application of multifractal analysis to provide empirical
evidence on behaviors and characteristics of air pollution series in different time lengths by
means of fractal geometry.

The available literature related to multifractal analysis on air pollution mostly fo-
cuses on investigating the existence of multifractality characteristics and long-term cross-
correlations series within and between several locations. For example, several researchers
such as Wang et al. [30], Chen-hua et al. [38], Liu et al. [39], and Xu et al. [40] adopt the
multifractal technique to analyze the multifractal characteristics of air pollution series for
several cities in China. In general, their results found that long-range correlations and
fat-tail distribution are the main sources that reflect the characteristics of air pollution in
China. In fact, different pollutant variables are found to have a different impact on air
quality in different locations. In parallel, a similar analysis related to the investigation
of multifractality characteristics on air pollution data has also been done by researchers
around the world, such as in India [41], Mexico [42], Malaysia [43], the Caribbean basin [44],
etc. In addition, multifractal analysis has been used to find out the impact of air pollution
events related to health [45], public policy [46], meteorological factors [47], and many more.
However, there is no specific study that has been done to investigate the changing behaviors
of multifractal characteristics on air pollution data with different time lengths. Particularly,
a modified different time length corresponds to a process of data reduction. Thus, the
main contribution of this study is to fill this gap by determining the characteristics of data
that might be lost due to the process of data reduction corresponding to presenting and
describing a data series with a longer time length.

This paper is organized as follows. Section 2 describes the study area and data.
Section 3 describes the multifractal spectrum analysis technique used in this study, while
Section 4 describes the multifractality characteristics. Next, the results and discussion are
described in Section 5. In Section 6, some conclusions are drawn.

2. Study Area and Data

Klang is an urban area located at latitude 101◦26′44.023” E and longitude 3◦2′41.701” N
in Peninsular Malaysia. Figure 1 shows the specific location. Klang plays important roles
as an economic and industrial center in Malaysia, particularly as a trans-shipment port.
In fact, this area has been recognized as the 13th busiest trans-shipment port and the 16th
busiest container port in the world [48]. Among the most populated urban areas in the
country, Klang also shows a very high density of motor vehicles used. Thus, Klang is
exposed to a high risk of air pollution events compared with other areas [49]. Therefore,
considering Klang as an important city in Malaysia, the analysis and monitoring of its air
pollution behavior is highly significant and may provide useful information.
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Figure 1. (a) Map of Peninsular Malaysia with Klang identified by a red dot, (b) Map of Klang [50]. 

This study investigates the data of an air pollutant index (API) series in Klang for the 
period of 1 January 2002 to 31 August 2020. The API data are determined by integrating 
five primary pollutant variables, namely, suspended particulate matter with sizes less 
than 10 microns (PM10), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and car-
bon monoxide (CO). Figure 2 shows the details. The Department of Environment Malay-
sia uses API as an indicator of the status of air quality at a particular time. In general, a 
high API indicates poor air quality [51]. Details regarding the calculation of API data can 
be referred to in Masseran and Safari [52] and Masseran [53]. 

 
Figure 2. Process of determining the API value [53]. 

  

Figure 1. (a) Map of Peninsular Malaysia with Klang identified by a red dot, (b) Map of Klang [50].

This study investigates the data of an air pollutant index (API) series in Klang for the
period of 1 January 2002 to 31 August 2020. The API data are determined by integrating
five primary pollutant variables, namely, suspended particulate matter with sizes less than
10 microns (PM10), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and carbon
monoxide (CO). Figure 2 shows the details. The Department of Environment Malaysia uses
API as an indicator of the status of air quality at a particular time. In general, a high API
indicates poor air quality [51]. Details regarding the calculation of API data can be referred
to in Masseran and Safari [52] and Masseran [53].
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3. Multifractal Spectrum Analysis

Multifractal Detrended Fluctuation Analysis (MFDFA) is a useful method in providing
spectrum analysis on time series data. In this study, for an observed API series with the
length {y(t)}, t = 1, 2, . . . , N, the signal profile series is determined as:

Y(i) =
i

∑
t=1

(y(t)− y), i = 1, 2, . . . , N (1)

where y =
N
∑

t=1
y(t)/N is the mean. Then, a profile series Y(i) is partitioned into Ns = [N/s]

non-overlapping segments with a length s. However, if the length N is not an integral
multiple in terms of scale s, then a certain portion of data points in the profile is unused.
Given this problem, a solution construction is repeated starting from the opposite end of
the dataset [54]. Thus, a profile with a total of 2Ns segments is used in multifractal analysis.
On this basis, a local trend on each 2Ns segment needs to be determined by fitting the m-th
order of the polynomial curve, given as:

Yv(i) = â0 + â1i + â2i2 + · · ·+ âmim, i = 1, 2, . . . , s, (2)

where Yv(i) is the m-th polynomial order in segment v and is also known as an m-order of
MFDFA. Equation (2) represents the local trend function on the v-th segment polynomial
of the profile in terms of a constant (m = 0), linear (m = 1), quadratic (m = 2), or any
higher-order trends [55]. Then, the variance for each segment in v = 1, 2, . . . , Ns can be
computed as:

F2(s, v) =

s
∑

i=1
{Y[(v− 1)s + i]−Yv(i)}2

s
. (3)

Likewise, the variance for each segment in v = Ns + 1, , . . . , 2Ns can be computed as:

F2(s, v) =

s
∑

i=1
{Y[N − (v− Ns)s + i]−Yv(i)}2

s
, (4)

where Yv(i) is the fitted m-th polynomial order in segment v. Another important infor-
mation that needs to be derived is a q-order fluctuation function, which is determined by
averaging F2(s, v) over all segments. For particular cases with q = 0, the q-order fluctuation
function is obtained as:

F0(s) = exp

2Ns
∑

v=1
ln
[
F2(s, v)

]
4Ns

, (5)

while for general cases with q 6= 0, the q-order fluctuation function can be obtained as:

Fq(s) =


2Ns
∑

v=1

[
F2(s, v)

] q
2

2Ns


1
q

. (6)

Different q values have varying effects on the fluctuation functions. If q takes a
positive value, then the segment v dominates the average of Fq(s) with a large variance that
indicates a large deviation from the corresponding fit. This case implies a scale invariance
of the segments with large fluctuations as shown by positive q moments. Likewise, a scale
invariance of the segments with small fluctuations are indicated by negative q moments [55].
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4. Multifractality Characteristics

From Equations (5) and (6), if the air pollution series is found to be power-law corre-
lated with an increasing value of s, then the series follows a power-law principle that can
be described as:

Fq(s) = sh(q), (7)

where h(q) is a generalized Hurst exponent, the solution for which h(q) is obtained by
implying the ln(.) function on Equation (7). Thus, the slope of ln

[
Fq(s)

]
and ln(s) denotes

the value h(q), which provides information about the scaling behavior of the time series
under study. If the h(q) function is independent of q moments, then the series is monofractal;
if the h(q) function indicates a dependency on its q moments, then the series is multifractal.
Apart from that, h(q) can be related to the Rényi exponent by the following equation [56].

τ(q) = qh(q)− 1, (8)

where τ(q) represents the Rényi exponent. The τ(q) function indicates a nonlinear rela-
tionship on q moments for the multifractal series, whereas a linear function appears for
the monofractal series. The Rényi exponent provides information about the singularity
spectrum, f (α). By using a Legendre transformation, the relationship between τ(q) and
f (α) can be obtained as:

α =
dτ(q)

dq
, (9)

f (α) = q(α)− τ(q). (10)

Based on Equation (8–10), the singularity spectrum can be determined as:

α = h(q) + qh′(q), (11)

f (α) = q(α− h(q)) + 1, (12)

where α is a Lipschitz–Hölder exponent that represents the singularity strength [57]. For
a multifractal series, the singularity spectrum indicates a single humped function, while
the monofractal series is represented by a single point in the f (α) plane [34]. Commonly,
the complexity of the time series quantified by the measure of singularity spectra can be
described by the fourth degree of the polynomial [58], determined as:

f (α) = A + B(α− α0) + C(α− α0)
2 + D(α− α0)

3 + E(α− α0)
4, (13)

where α0 is the value corresponding to the maximum of the spectrum, while the terms A, B,
C, D, and E are coefficient parameters. The difference in terms of the singularity spectrum
can be determined as:

∆ f (α) = f (αmin)− f (αmax), (14)

where ∆ f (α) represents the differences between maximum and minimum values of the
singularity that estimate the spread of the changes in the fractal patterns. In fact, ∆ f (α)
denotes the frequency ratio of the largest to the smallest fluctuation. ∆ f (α) > 0 implies that
large fluctuations occur more frequently than small ones. Conversely, ∆ f (α) < 0 implies
that the small fluctuations occur more frequently than large ones [55].

In addition, the strength of the multifractality is reflected by the spectrum width,
which is determined as:

∆α = αmax − αmin = h(−∞)− h(∞), (15)

given that

h(q) =
1
q
− ln(aq + bq)

q ln(2)
, (a > b), (16)
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where a and b are the parameters that need estimation. Generally, a large value of ∆α
implies a stochastic dynamic character [59] and long-term series persistence [60]. Moreover,
a large or small multifractal signal can be depicted by the value of ∆α, which implies a
high or low heterogeneous signal. As described by Hou et al. [55], a signal characterized by
sudden bursts of high frequency, intermittencies, and/or irregularities is heterogeneous.
The other indices that can be used to describe the characteristics of multifractality in air
pollution series are given as:

∆αL = α0 − αmin, (17)

∆αR = αmax − α, (18)

where α0 is the maxima position in the singularity spectrum, αmax and αmin are the maxi-
mum and minimum values of the Hölder exponent, respectively. The determined values
of ∆αL and ∆αR provide information regarding the left- and right-hand branches of the
singularity spectrum curve, which describes the distribution patterns of the high and low
fluctuations, respectively [61]. Next, the deviations of the singularity spectrum curve can
be determined using the asymmetry index, given as:

R =
∆αL − ∆αR
∆αL + ∆αR

, (19)

where the index R is in the range from −1 to 1 [62]. The value of R = 0 indicates a
symmetrical singularity spectrum characteristic. If R > 0, then the series likely has a left-
hand deviation of the singularity spectrum due to a certain degree of local high fluctuations.
Conversely, a right-hand deviation with local low fluctuations is indicated by R < 0 [55].

5. Results and Discussion

In general, presenting and describing a data series with a longer time length provides
more concise information and is, in fact, one of the simplest techniques of data reduction
in a time series. However, important information related to data features may be lost.
Thus, determining the characteristics of data that might be lost due to such processes is
important. As described above, the purpose of this study is to investigate multifractal
properties on an air pollution series for different time lengths by means of fractal geometry.
Achieving this goal requires preliminary insights about the observed fluctuation of their
respected series. Thus, this study provides empirical evidence based on air pollution
index data in Klang, Malaysia. Figure 3 shows the time series plot for maximum API
in Klang corresponding to different time lengths, namely in hourly, daily, weekly, and
monthly series. In Figure 3, the information on general trends of API fluctuation is retained,
although the time lengths are rougher. However, the statistical characteristics of the API
data are changing in correspondence to different time lengths. Table 1 shows the statistics
of mean, variance, minimum, and median values, which increase in parallel with the time
length. Meanwhile, the characteristics of their skewness and kurtosis vary with different
time lengths. These scenarios show that presenting and describing a series of API data with
a higher time length might not be suitable to explain its intrinsic behavior. Thus, exploring
this issue in greater depth can be informative in investigating the API series by assessing
their degree of nonlinearity and complexity through multifractality.
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Table 1. Statistical characteristics of API data for different time lengths.

Variable Mean Variance Min. Max. Median Skewness Kurtosis

Hourly API 55.735 434.448 0 543 54 4.738 68.370
Max. Daily API 65.530 548.758 21 543 61 5.561 74.658
Max. Weekly API 83.382 1129.12 40 543 76 5.608 55.403
Max. Monthly API 105.861 2444.431 60 543 93 4.779 33.222

Figure 4 shows the properties of linear relationships in the plots of ln(s) versus ln(Fq(s))
for all q moments of different durations of maximum air pollution series, except for hourly
API with moment q = −10. The results imply the existence of power-law relationships.
In fact, as described above, the linear behavior on the logarithmic scale for moments
q = −10, 0, and 10 indicate the multifractal behaviors of the air pollution series. In addition,
as reported by Dong et al. [63], converging regression lines for different orders of q indicate
the multifractal nature of the original series. Similarly, Weerasinghe et al. [64] reported that
parallel regression lines indicate a monofractal series and that, by contrast, non-parallel
regression lines indicate a multifractal series. In Figure 4, a series of maximum daily,
weekly, and monthly APIs clearly show a significant convergence of fluctuation functions
for different orders of q. These results provide a preliminary assumption about multifractal
behavior. However, the series of hourly API indicates parallel properties between moments
of q = 0 and q = 10, while the linear relationship fails to represent the plots of ln(s) versus
ln(Fq(s)) at the moment of q = −10. This scenario is difficult to interpret as it shows no clear
pattern for multifractality.

Further investigation is carried out by analyzing the plots of Rényi/Mass exponents.
Figure 5 shows the nonlinear relationships for the hourly air pollution indices series in
Klang. As reported by da Silva et al. [56], the Rényi exponent provides information about
the relationships among τ(q) functions for different orders of q. Nonlinear relationships
imply characteristics of multifractal processes. In Figure 5, the maximum API series for all
durations indicates nonlinear relationships between the τ(q) function and their q-moment
values. Thus, multifractal properties may exist on maximum API series regardless of their
different durations. The same argument can be applied on the plots of Hurst exponents
in this study. Figure 6 clearly shows the generalized Hurst exponent plots where the h(q)
functions are nonlinearly dependent on q; their functions decrease when the value of q
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increases for all series of maximum APIs. As described by Miloş et al. [65], the decreasing
function presented by generalized the Hurst exponent reveals the presence of multifractal
behaviors. The results of Figures 5 and 6 are thus in an agreement.
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In addition, h(q) values that are larger than 0.5 indicate that the series may have
properties of long memory, with persistent large and small fluctuations. In parallel, as
previously described by Shi [66], the series also indicates nonstationary signals with a long-
range power-law correlation. By comparison, h(q) values less than 0.5 indicate that the air
pollution series may have short-term memory, with intermittent or non-persistent behaviors
in both large and small fluctuations. Furthermore, h(q) values equal to 0.5 indicate complete
random behaviors of the air pollution series. Figure 7a shows the values of ∆h(q) for API
series with different durations in Klang. Clearly, the ∆h(q) value for the hourly API series
is greater than those of any other duration, indicating that the variation in the distribution
of fluctuations for hourly air pollution indices is greater than those determined by daily,
weekly, or monthly series. In terms of air pollution behaviors, the results also imply that the
information provided by the hourly API series indicate the heterogeneity and complexity
of the temporal distribution while the other duration series represent homogeneous and
regular temporal distributions.

Apart from that, the generalized Hurst exponent plots in Figure 6 clearly show that
the h(q) function is nonlinearly dependent on q; these functions decrease when the values
of q increase for all durations of the maximum API series. In addition, the changes of h(q)
also provide information regarding the dependency of the variation of small fluctuations if
q < 0 and depend mainly on the variation of large fluctuations if q > 0. Figure 7b shows
that the ∆hq<0 value is larger than ∆hq>0 for the hourly API series. Thus, the information
provided by the hourly pollution series is highly influenced by the variations from small
fluctuations. This implies that the hourly API series are densely clustered in time domains
almost the same as the sparsely populated domains. By contrast, for the daily, weekly, or
monthly API series, the reverse scenario occurs. Their ∆hq<0 values are slightly smaller
or almost have the same magnitude with ∆hq>0. This result indicates that their variation
can be influenced by large fluctuations of air pollution. Thus, the hourly pollution series
presents densely clustered time domains that are more heterogeneous and complex than
the information based on daily, weekly, or monthly series.
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Another perfective that can be explored is the multifractal features of air pollution
series that can be determined using the concept of the singularity spectrum. Figure 8
shows the singularity spectrum f (α) plots on each maximum API series corresponding to
their Hölder exponent α. The spectrum for all the plots is not constant over all α values
and, thus, all series do not indicate monofractal characteristics. These results provide a
similar conclusion with the plots of Rényi and the generalized Hurst exponents. In fact,
the shape of f (α) confirms that the temporal dynamics of the air pollution series belong
to multifractal processes with a fourth-degree polynomial to represent the singularity
spectra that determine the complexity measures. These results provide an agreement with
results presented by several researchers regarding the multifractal characteristics of air
pollution behaviors [30,63,67]. Thus, the complexity parameters can determine a singularity
spectrum on each different API series. Table 2 presents the multifractal parameters of the
air pollution series in Klang. The parameter α0 represents the position of maxima in the
singularity spectrum. The API series with values of the exponent α0 greater than 0.5
indicate fluctuations with persistent long-term correlations, as shown by the information
provided by the hourly API series. This result means that the information on persistent
long-term correlations on the air pollution series is lost if the data are represented daily,
weekly, or monthly.

Moreover, the value of ∆α = αmax− αmin represent the spectrum width that determines
the strength of the multifractality present in the series. This value can be estimated by
extrapolating the fitted polynomial to f (αmax) = f (αmin) = 0. The hourly API series
has the greatest strength of multifractality, followed by the monthly, weekly, and daily
series. Meanwhile, the asymmetry parameter index R represents the degree of skewness of
the spectrum, where the value R = 0 indicates symmetry. R > 0 indicates properties of a
left-skewed spectrum that implies the dominance of high fluctuations, such as in the daily,
weekly, and monthly API data. R < 0 indicates a right-skewed spectrum that implies the
dominance of low fluctuations, as seen in the hourly API series.
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Table 2. Multifractal parameters air pollution series in Klang.

Duration αmin αmax α0 ∆αL ∆αR ∆α R ∆f(α)

Hourly 1.322 12.746 1.511 0.189 11.235 11.424 −0.967 −3.779
Daily 0.237 1.180 0.952 0.715 0.228 0.943 0.516 −1.490
Weekly 0.157 1.144 0.843 0.686 0.301 0.988 0.390 −1.254
Monthly 0.190 0.259 0.844 0.654 0.585 1.239 0.056 −1.107

The multifractality behaviors described above are possibly influenced by two types of
sources, namely, different long-range temporal correlations for small and large fluctuations
as well as a fat-tailed probability distribution of variations [68]. With the aim of investi-
gating the main sources of multifractality in the API data in Klang, the original series are
shuffled to remove any temporal correlations caused by long- or short-term memories in
data. However, the shuffled data retain exactly the same fluctuation distributions, meaning
they provide similar behaviors to random walk processes but present weak multifractal
properties. In Figure 8, the range of change of f (α) for the hourly API series decreases
significantly after the reshuffling of the original series. This result implies a reduction in
terms of the degree of multifractality, where shuffling the series moves the spectrum to the
left. This scenario concludes that the multifractality behaviors for the hourly API series
are caused by long-term correlations. Thus, the implication is that a nonlinear temporal
correlation is the major contributor in multifractality formation. In fact, the significantly nar-
rowed widths of spectra conclude that the multifractality is also influenced by non-normal
distribution. However, for other API series, the change of spectra for both the original and
shuffled series show no significant difference. Thus, the multifractality behaviors in these
series are already weak. Neither nonlinear temporal correlation nor fat-tail distribution
highly influence the daily, weekly, or monthly API data.

6. Conclusions

This study investigates multifractality properties on the series of maximum API in
Malaysia in different durations, namely hourly, daily, weekly, and monthly. The Multifractal
Detrended Fluctuation Analysis (MFDFA) is adopted to evaluate the fluctuations of the
maximum API series in terms of partition intervals as statistical points. On this basis,
a generalized Hurst exponent is determined to represent the power-law property of the
fluctuation function, evaluate the fluctuation singularity, and provide information on the
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complexity and persistence of the API series. The MFDFA technique is found to have
advantages in examining a higher-dimensional fractal and multifractal characteristics
hidden in an air pollution series. The results show that only the hourly API series exhibit
persistent long-term correlations as determined by a Hurst exponent value greater than 0.5.
In addition, this series also exhibits multifractality behaviors with a dominance of small
fluctuations. The other durations of the maximum API series (daily, weekly, and monthly)
show weak multifractality behaviors, indicating that the hourly API series contain the most
informative data regarding the behaviors and characteristic of air pollution events.

To summarize, this study contributes to knowledge related to multifractal behavior
changes in air pollution data series that undergo a data reduction process. In particular,
a data reduction corresponds to a longer time length and implies several consequences,
namely: (i) it changes the properties of the heterogeneity and complexity of the temporal
distribution to be more homogeneous with regular temporal distributions; (ii) the variation
of the series will be change from being densely clustered in time domains into variations
that are influenced by large fluctuations; (iii) the strength of the multifractality in the series
will be weakened; and (iv) the information about the persistent and long-term correlations
on the original series will also be lost. However, the MFDFA method is bound by some
limitations. The is MFDFA not able to reveal the asymmetric properties of multifractal
scaling behaviors that might exist in the air pollution series data. Thus, for future research,
this study recommends the adaption of asymmetric multifractal detrended fluctuation
analysis to overcome this issue.

Overall, this study contributes to a better understanding of the stochastic processes that
generate air quality variability in Malaysia. The findings can help in better understanding
the mechanisms governing the dynamics of air pollution series and in performing better
air quality assessments.
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Abbreviations
The following abbreviations are used in this manuscript:

Nomenclature
R Asymmetry index
âi Estimated polynomial coefficient
h(q) Generalized Hurst exponent
y Mean of the series
Yv(i) m-th polynomial order in segment v
Ns Non-overlapping segments with a length s
y(t) Observed data
Fq(s) q-order fluctuation function
τ(q) Rényi exponent

https://www.doe.gov.my/portalv1/en/at
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Y(i) Signal profile series
f (α) Singularity spectrum
F2(s, v) Variance for segment v
Greek symbols
α Lipschitz–Hölder exponent
α0 Maxima position in the singularity spectrum
αmax Maximum value of the Hölder exponent
αmin Minimum value of the Hölder exponent
∆αL Left-hand branch of the singularity spectrum curve
∆αR Right-hand branch of the singularity spectrum curve
∆α Spectrum width
Acronyms
API Air pollution index
CO Carbon monoxide
MFDFA Multifractal detrended fluctuation analysis
NO2 Nitrogen dioxide
O3 Ozone
SO2 Sulfur dioxide
PM10 Suspended particulate matter with size less than 10 microns
Subscripts
s Length of segment
q Fluctuation order
Superscript
v Segment of the series
m Polynomial order
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