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Abstract: Permanent magnet synchronous machines (PMSMs) have garnered increasing interest
because of their advantages such as high efficiency, high power density, wide speed range, and
fast dynamics. They have been employed recently in several industrial applications including
robotics and electric vehicles (EVs). However, PMSMs have highly nonlinear magnetic characteristics,
especially interior PMSMs, due to the existence of reluctance torque. Nonlinearity complicates not
only machine modeling but also control algorithms. An accurate machine model is the key aspect for
the prediction of machine performance as well as the development of a high-performance control
algorithm. Hence, this paper presents an accurate modelling method for PMSMs. The proposed
model method is applicable for all PMSMs, even multiphase machines. This paper considers a
fractional slot concentrated winding 12/10 interior PMSM (IPMSM) for this study to demonstrate
the effect of magnetic saturation and special harmonics. The developed model considers accurately
the magnetic saturation, mutual coupling, spatial harmonics, and iron loss effects. It utilizes finite
element analysis (FEA) to estimate the precise magnetic characteristics of IPMSM. The finite element
model is calibrated precisely using experimental measurements. The iron losses are estimated
within the simulation model as d- and q-axes current components. The model accuracy is validated
experimentally based on a 12/10 IPMSM prototype.

Keywords: permanent magnet synchronous machine; finite element analysis; calibration; magnetic
saturation; spatial harmonics; iron losses

MSC: 37M05; 00A72; 93-10

1. Introduction

Because of their superiorities permanent magnet synchronous machines (PMSMs)
have garnered increasing interest. They have high efficiency, high power density, a wide
range of operating speeds, small size and weight, and low noise [1–3]. Recently, interior
PMSMs (IPMSMs) showed the best overall performance for electric vehicles (EVs) [4,5].
IPMSMs can easily fulfil vehicle requirements with proper torque control [6,7]. However,
IPMSMs are well known for their nonlinearity and torque ripple due to their magnetic
saturation, spatial harmonics, and reluctance torque [8].

Developing and optimizing different control strategies of IPMSMs for high perfor-
mance drives rely basically on modelling accuracy. The conventional machine models
(CMMs) were introduced using fixed machine parameters regardless of the effects of sat-
uration, spatial harmonics, and iron loss. These models cannot represent accurately the
behavior of IPMSMs [3]. They can be used for initial machine designs. Therefore, sev-
eral research studies have been done involving the production of high-fidelity machine
models. The circuit-field coupled co-simulation is presented in [9–11]. This technique is
very time-consuming due to the involvement of numerical finite element (FE). In [12], the
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relationship between flux linkage and currents are fitted to be used within the simulation
in order to avoid the FE computation in simulation. However, the fitting is a very com-
plicated and time-consuming process. In [13], the modelling in the abc-reference frame
is introduced using N-dimensional look-up tables (LUTs). The abc-model allows one to
include both geometry and saturation-induced space harmonics naturally. The abc-model
can provide relatively high accuracies, while the complex expressions are circumvented.
In [14], conventional shallow neural networks (CSNN) are applied to fit torque–current
characteristics. Due to the high nonlinearity of torque–current characteristics as well as the
limited capability of CSNN to fit complex nonlinear systems, the torque and the significant
harmonics cannot be accurately modelled. To consider the torque nonlinearity and the
spatial harmonics, deep neural network are developed in [15]. However, the training of
intelligent techniques requires high skills and a large number of given data. Moreover,
measured samples are required to train the network or generate the rules.

Considerable interest has been given to the analytical models for IPMSMs. Modelling
and quantifying the source of torque ripple as part of the dq-model are proposed in [16].
In [17,18], accurate estimation of average torque, including nonlinearity effects, is presented.
In [8], with the consideration of magnetic saturation, spatial harmonics, cross-coupling,
and temperature effects, the torque and the voltage equations are derived. However,
these analytical models are very complicated for real-time implementation. In [19], an
indirect analytical method is presented for V-shaped IPMSM. It transfers the rotor into an
equivalent linear one in a polar coordinate system to analyze the magnetic field and predict
cogging torque. However, a considerable error is obtained in predicted air-gap flux density.
Moreover, the torque calculation error gradual increases with rise of current. In [20], the
flux-linkage map of IPMSM is identified by experimental tests in motoring action. However,
although this method can consider the magnetic saturation and spatial harmonics, it has a
very complicated and time-consuming procedure that involves several measurements.

For accurate modelling, the iron losses must be included as they affect output torque.
In [21,22], the iron loss analysis was derived based on FEA. In [23], the numerical calculation
of iron loss’ resistances based on FEA are presented. However, the modelling of iron loss
would be very time-consuming using FEA. Hence, analytical methods are used. In [24],
the calculation of iron loss of PMSM’s stator considering DC-biased magnetic induction is
introduced. Moreover, in [25,26], the iron losses are expressed in the form of d- and q-axes
flux linkages or currents. However, the derivation of iron loss’ coefficients still remained
unsolved. Moreover, the effect of iron loss on electromagnetic behavior of IPMSMs have to
be considered and analyzed.

This paper develops a high-fidelity and accuracy model for PMSMs. The proposed
model fits all types of PMSMs. It represents accurately the performance of real machines by
precise consideration of magnetic saturation, mutual coupling, spatial harmonics, and the
iron loss effects. First, the FEA is employed to generate the magnetic characteristics of the
tested machine. Then, these characteristics are validated experimentally. The experimental
measurements aim basically to have a precise and calibrated finite element (FE) model
that represents a real machine. The experimental measurements are very simple, and they
include the measurement of PM flux linkage and the calibration of the BH curve of the
magnetic steel material. Once, the FE model is calibrated precisely, it is used to generate
full data of the machine. Second, the FE data are processed and rearranged to produce a
simple and computationally efficient MATLAB Simulink model. Third, the effect of iron
losses is achieved analytically and integrated within the MATLAB Simulink model. This
paper considers a fractional slot concentrated winding 12/10 IPMSM. The experimental
verifications are included to prove model accuracy and flexibility.

2. Conventional Model of IPMSM

The dynamic model of IPMSM in a d-q rotor reference frame is as follows [27–29]:

vd = Rsid +
dλd
dt

− ωeλq = Rsid + Ld
did
dt

− ωeLqiq (1)
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vq = Rsiq +
dλq

dt
+ ωeλd = Rsiq + Lq

diq
dt

+ ωeLdid + ωeλPM (2)

where vd and vq, id and iq, λd and λq, and Ld and Lq are d- and q-axes components of
voltage, current, flux-linkage, and inductance, respectively. λPM depicts the flux-linkage of
permanent magnets. Rs is the stator resistance. ωe is the electrical angular speed.

The electromagnetic torque (Te) of IPMSM has two components, namely, the reluctance
torque and the magnet torque, as described in Equation (3).

Te =
3
2

piq
(
λdiq − λqid

)
=

3
2

piq
(
λPM +

(
Ld − Lq

)
id
)

(3)

where p is the pole pairs.
The mechanical equation is described by Equation (4).

dωm

dt
=

1
J
(Te − TL − Bωm) (4)

where J is the inertia, ωm is the angular speed, B is the frictional coefficient, and TL is the
load torque.

Figure 1 shows the implementation of the conventional machine model (CMM) using
Equations (1)–(4). The CMM uses a constant machine parameter. Hence, it neglects the
magnetic saturation, mutual coupling, spatial harmonics, and iron loss effect. The CMM
considers only the fundamental components and neglects harmonic fields that are the
result of magnetic saturation, slotting, and variation of permeance with rotor position. The
inaccurate model affects performance analysis and accurate prediction of drive system
performance. Moreover, it compromises control quality in maximum torque per ampere
(MTPA) and field weakening (FW) operations. Hence, an accurate model that includes
magnetic saturation, mutual coupling, spatial harmonics, and iron loss effects is necessary.
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Figure 1. The schematic of the conventional machine model.

To consider only the magnetic saturation, the d- and q-axes inductances (Ld, Lq) are
presented as functions of id and iq. The obtaining of such relationships is not an easy
task; several measurements must be conducted, which complicate the idea of obtaining a
high-accuracy model for an IPMSM [30].

3. The Proposed Machine Model

For real IPMSMs, the fluxes (λd and λq) and the electromagnetic torque (Te) are
functions of currents (id and iq) and rotor position (θi). These relationships can be written
as given by Equation (5). Such an equation considers the saturation and spatial harmonics.
Moreover, the torque components as well as the cogging torque are also considered.

The proposed machine model is developed as shown in Figure 2 considering the given
fact of Equation (5). The inputs are the voltages vd, and vq. The flux-linkages (λd and
λq) are estimated using Equation (6). The ida and iqa currents are obtained from the flux
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inverse model that is given by Equation (7). The motor torque is obtained as a function of
currents (ida, iqa) and rotor position θi. The iron losses are represented by the currents id-fe
and iq-fe. The estimation of iron losses within the model is given in a later section. Finally,
the equation of mechanical motion is used to estimate the rotor position and speed.

λd = f
(
id, iq, θi

)
; λq = g

(
id, iq, θi

)
; Te = T

(
id, iq, θi

)
(5)

λd =
∫ (

Vd − Rsid + ωλq
)
dt; λq =

∫ (
Vq − Rsiq − ωλd

)
dt (6)

id = f−1(λd, λq, θi
)
; iq = g−1(λd, λq, θi

)
(7)
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Figure 2. The schematic of the proposed IPMSM machine model.

The degree of modeling accuracy depends on calculation accuracy of magnetic charac-
teristics (λd (id, iq, θi), λq (id, iq, θi), and Te (id, iq, θi)) for the tested machine. As the IPMSM
possess high nonlinear magnetic characteristics, the estimation of λd (id, iq, θi), λq (id, iq, θi),
and Te (id, iq, θi) is not straightforward. Therefore, the FEA is employed to estimate the
magnetic characteristics for the tested 12/10 IPMSM prototype.

Figure 3 shows the machine structure. It is a 12 slot, 10 magnet pole, 3 phase IPMSM.
The rotor magnets are the V-shaped type. The stator has double layer windings for better
torque ripple reduction. The nominal parameters and dimensions of IPMSM are shown in
Table 1.
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Table 1. The major parameters and dimensions of IPMSM.

Parameter Value Parameter Value
No. of magnet poles 10 Stator outer diameter 120 mm

Number of slots 12 Height of stator pole 16 mm
Power 1200 W Air-gap length 0.5 mm

Base speed 1000 r/min Slot opening 2 mm
Rated torque 6.6 Nm Magnet dimensions 14 × 7 mm

Shaft diameter 14 mm Magnet material N40SH
Rotor outer diameter 74 mm Magnetic steel material 35WW270

3.1. Finite Element Analysis (FEA) of IPMSM

Despite the high accuracy of FEA compared to analytical methods, it needs the exact
material properties and geometrical dimensions of the tested machine [31]. The main
obstacle appears with the material properties, especially the PMs and magnetic steel
properties (BH curve). If the material properties are given precisely, the FEA can provide
very high accuracy of magnetic characteristics.

To ensure the inputted data to the FEA model represent accurately the real machine,
this paper introduces a calibration method for the FEA model. The calibration is achieved
based on the experimental measurements for the tested 12/10 IPMSM prototype. The
experimental calibration is very important, as it can consider the manufacturing effects on
both magnets and magnetic steel materials. It also can include the manufacturing tolerances
and the physical changes that are included due to the manufacturing process.

3.1.1. Calibration of FEA Model

The aims of calibration is to obtain the real material properties for the tested IPMSM.
These material properties will be inputted to the FEA model. Any error in material prop-
erties will lead to a calculation error in the magnetic characteristics of IPMSM. There-
fore, the calculation accuracy of the FEA model depends basically on the accuracy of its
inputted data.

The properties of permanent magnets (PMs) rarely coincide with the available data
in manufacturers’ datasheets. This is basically due to the manufacturing quality and
tolerances, especially for low-cost motors. Probably, it will be decreased slightly less than
the manufacturer datasheets [32]. Hence, the actual PM flux linkage must be measured
experimentally to represent the real machine precisely.

The PM flux linkage (λPM) can be measured experimentally when the machine is
working as a generator under no load. The no-load back EMF voltages are measured and
recorded, preferably at high speeds. The higher speed is preferred to have a higher voltage
on stator windings. The measurement errors in the case of a higher voltage range are
lower compared to the case of lower voltage. Hence, high speed is preferred to reduce the
measurement error in phase voltages and hence to estimate accurately the flux linkage of
permanent magnets. λPM can be estimated using Equation (8). Due to the concentrated
windings configuration, the fundamental component of phase voltage must be considered.
Hence, Fast Fourier Transform (FFT) is conducted for the phase voltage, as seen in Figure 4.

First, the machine is operated as a generator with the help of a dc motor at a speed of
1708 r/min. The high speed (greater than rated) helps to reduce voltage error and hence to
improve the measurement accuracy. The window of FFT is chosen as 5 cycles to ensure
accurate analysis, as seen in Figure 4. The analysis is conducted for three phases (A, B, and
C) to extract the average value of measured λPM that represents the real machine properly.
The differences appear to be very small and can be ignored, as illustrated in Table 2.

λPM =
Vph_peak (Fundamental)

2 ∗ π ∗ f
(8)

where f is the frequency of back EMF voltage.
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Table 2. The measured flux linkage of PMs (λPM ).

Phase A B C
Measured λPM(in mWb) 136.41 135.00 136.45

The measured average PM flux linkage (λPM) is 135.95 mWb. The FEA model is then
calibrated to produce the same flux linkage (λPM = 135.95 mWb). Hence, based on this
measured value of λPM, the coercivity of PM in the FEA model is set to 848,000 A/m
instead of 969,969 A/m from the manufacturers’ datasheets. The reduction ratio is 12.23%.

Lately, due to the huge interest of EVs, several magnetic steel materials have been
introduced. These materials have gone through several tests, including the measurement
of their BH curves. The tested motor is made from 35WW270 magnetic steel material. Its
measured BH curve is available online. This curve fits accurately with the real machine.
Hence, no calibration is needed for the BH curve of magnetic steel.

In case the BH curve data are not available in an accurate enough manner, the machine
is operated as a motor with known currents id and iq. Then, the developed motor torque
is measured and recorded. After that, the measured torque is compared to the estimated
torque from FEA under the same current values (id and iq). The difference, if it exists, is
adjusted by the BH curve of magnetic steel.

For now, the accurate coercivity of PM material is obtained. Moreover, the measured
BH curve is also available online. Now the FEA model is ready to provide the precise
magnetic characteristics for the tested machine.

A 2D FE model for the tested IPMSM is illustrated in Figure 5. The motor dimensions
are given in Table 1. The model is built in finite element method magnetics (FEMM). The
end effects of coils can be ignored due to the considerable axial length of the machine; hence,
3D analysis, which is very time consuming, is not necessary [33]. For the 2D FE model, the
recent programs for FEA make the calculation much easier and speed up computations
by static magnetic field analysis. The following assumptions are made: a zero magnetic
vector potential for the outer surface of the stator; a constant air-gap length; isotropic rotor
and stator materials; concentric stator and rotor poles; neglected core losses, MMF space
harmonics, end-winding, and skin effects; and z-directed current density and magnetic
vector potentials. Special attention is directed to the air-gap flux calculation, and a smaller
mesh size is used for it. The FEA has 24,838 nodes and 49,292 elements.

3.1.2. Results of FEA

Figure 5 shows the distribution of flux density as well as the flux lines that are
estimated from the FEA model. As noted, the highest flux densities are seen in rotor
rips and stator pole shoes. These parts are in deep saturation.
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Figure 5. The flux lines and flux density at iq = 10 A, id = −3 A, and θi = 0◦.

The results of FEA are obtained as functions of currents id and iq as well as θi. The
currents id and iq are changed from −25 to 0 A (26 points) and from 0 to 25 A (26 points),
respectively. The current step is 1A. θi is changed from 0◦ to 72◦ insteps of 1 mech◦

(73 points). Therefore, it requires (26 ∗ 26 ∗ 73 = 49,348) solutions to generate the full
magnetic characteristics for the tested machine motor. The symmetry of the magnetic
machine structure helps greatly to reduce the time and/or number of solutions either by
plotting part of the machine or by choosing part of the rotor rotation.

The inductances Ld and Lq are calculated using Equations (9) and (10), respectively.

Ld = λd−λPM
id

at iq = constant (9)

Lq =
λq
iq at id = constant (10)

Figure 6 shows the flux-linkages (λd (id, iq, θi), λq (id, iq, θi)), torque Te (id, iq, θi), and
inductances (Ld (id, iq, θi), Lq (id, iq, θi)) as functions of id, iq at θi = 0. As seen, the flux
linkages, torque, and inductances show highly nonlinear relations with currents. As seen in
Figure 6, the d- and q-axes inductances (Ld, Lq) decrease with the increase of q-axis current
iq over the full range of d-axis current id.

3.2. Production of MATLAB Simulink Model

The proposed machine model that is given in Figure 2 consists of three main parts:
first, the torque estimation Te (id, iq, θi), which is a straightforward task, as the obtained data
from FEA can be stored in the form of a 3D LUT; second, the representation of iron losses
by the currents id-fe and iq-fe, which is included in a later section; and third, the estimation
of currents id (λd, λq, θi) and iq (λd, λq, θi). As noted, this is an inverse solution for the
obtained data from FEA. The FEA gives the fluxes as functions of currents and positions.
The required the characteristics id (λd, λq, θi) and iq (λd, λq, θi) to be in the inverse form; the
currents are functions of fluxes and positions.

3.2.1. Inverse Solution of Currents versus Flux Linkages

Equation (11) is used to represent the error between required fluxes (λdo and λqo) and
actual fluxes, λd (id, iq, θi) and λq (id, iq, θi), that correspond to currents id and iq. The
currents id and iq are obtained by minimizing the objective function Fobj using an iterative
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process in which λd and λq are interpolated on FEA-calculated flux maps. Figure 7 shows
the flowchart of this process. First, the desired or commanded fluxes (λdo and λqo) are
inputted. Then, the currents (id and iq) are changed with small steps (∆id = 0.1 A and
∆iq = 0.1 A). for each value of currents (id and iq) within the iterative process, the fluxes
are estimated from the flux maps of Figure 6. Finally, the objective function is estimated
for obtained current and flux vectors, and then the currents (id and iq) that corresponds to
minimum flux error (minimum Fobj) are output as the optimal solution of currents. Figure 8
shows the obtained optimal id and iq currents after the Inverse solution of currents versus
flux linkages.

Fobj
(
id, iq

)
= min

{∣∣λd
(
id, iq, θi

)
− λdo

∣∣+ ∣∣λq
(
id, iq, θi

)
− λqo

∣∣} (11)
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The obtained id and iq currents of Figure 8 are inputted to flux maps (Figure 6a,b). The
resultant fluxes are compared to their corresponding flux values. The flux errors are shown
in Figure 9. As noted, the maximum error is very small and can be ignored. The small error
reflects the accuracy of the inverse solution and hence the accuracy of the proposed model.
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3.2.2. Estimation of Iron Losses

The iron losses per unit volume can be estimated by the well-known Bertotti formula, as a
function of frequency (f ) and maximum flux density (Bm), as given by Equation (12) [34,35]. kh,
kc, and ke are the coefficients of hysteresis, eddy current, and additional losses, respectively.
kc is calculated as a function of material conductivity (σ) and lamination thickness (kd), as
given by Equation (13).

Equation (14) is a reformulation of Equation (12). The flux densities are converted to
their corresponding flux-linkages based on machine dimensions and winding information.
The equivalent iron loss resistance (Rc) is given by Equation (16).

dPf e = kh f Bα
m + kc f 2B2

m + ke f 1.5B1.5
m (12)

kc = π2σk2
d/6 (13)

Pf e = k1

(
λ2

d + λ2
q

)
+ k2

(
λ1.5

d + λ1.5
q

)
(14)

k1 =
(
kh f + kc f 2)(Vt/A2

tc + Vy/A2
yc

)
;

k2 = ke f 1.5
(

Vt/A1.5
tc + Vy/A1.5

yc

) (15)

Rc = ω2
e /k1 (16)

where Vt and Vy, ht and hy, and At and Ay are the volumes, heights, and areas for the stator
tooth and yoke, respectively.

The equivalent circuit of an IPMSM representing iron losses Pfe and copper losses
Pcu is demonstrated in the rotor reference frame as shown in Figure 10. The iron and
copper losses are represented by the resistances Rc and Rs, respectively. ida and iqa are the
magnetizing currents. They can be calculated using Equation (17). The torque expression
in terms of ida and iqa is given by Equation (18).

ida = id − id_ f e = id −
(vd−Rs id)

Rc

iqa = iq − iq_ f e = iq −
(vq−Rs iq)

Rc

(17)

Te =
3
2

piqa
(
λPM +

(
Ld − Lq

)
ida
)

(18)
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4. Model Verification

The proposed model, shown in Figure 2, was implemented in the MATLAB/Simulink
environment. It is validated in two ways. The first was a comparison with the FEA
model, and the second was by the experimental measurements on a physical 12/10 IPMSM
prototype. Moreover, the experimental verifications were achieved in both the generator
and motor actions.
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4.1. Compared to FEA Model

To check the accuracy of proposed model, first, the Simulink model was run at a
specific operating point based on the field-oriented control (FOC) algorithm, and the
resulting current (id, iq) waveforms were extracted. These currents (id, iq) were then injected
into the FEA model to estimate the fluxes and electromagnetic torque.

The comparison was achieved at speed of 1500 r/min and stator current of 10 A.
The waveforms of current (id, iq) are as shown in Figure 11a,b. The d- and q-axes flux
linkages were estimated by the FEA model and then compared to corresponding values
calculated within the MATLAB Simulink model. The comparison is given in Figure 11c,d.
It was observed that the FEA-predicted d- and q-axes fluxed as well as the torque, as
seen in Figure 11e, and could be completely reproduced by the MATLAB Simulink model.
Note that the Simulink model required a very short time compared to FEA to produce the
same results.
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4.2. Experimental Verification as a Generator

To verify the effectiveness of the proposed Simulink model, an experimental platform
was set up, as shown in Figure 12. The drive system included a three phase inverter, an
IGBT gate-driver, current transducers (LEM LA100-P), voltage transducers (LEM LV 25-P),
a torque sensor (Lorenz DR 2112), an incremental encoder (1024 PPR), a data acquisition
board (NI 6229 DAQ), an electromagnetic brake, and a digital signal processor (C6713 DSP).
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The DSP was connected to an FPGA for better timing. The data were collected online with
the help of a daughter card using MATLAB.
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Figure 12. The practical implementation of the measurement platform.

The IPMSM was operated as a generator. It was driven by a dc motor. First, Figure 13
shows the experimental results under no load at 1708 r/min. The experimental results
showed three phases’ currents, the three phases’ voltages, and electromagnetic torque.
The average value of no-load torque, as seen in Figure 13c, was 0.39 Nm, which basically
represents iron and friction losses. The torque ripple was very noticeable. Figure 13d shows
a comparison between the measured phase voltage and the phase voltage obtained from
FEA. As observed, a perfect match is seen in Figure 13d that reflects the accuracy of the
FEA model and hence the accuracy of the proposed model.
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Second, Figure 14a–c show the experimental results under loading conditions as
a generator. The IMPSM was driven at a speed of 854 r/min, and the terminals were
connected to a resistive load. Figure 14d shows a comparison between the measured
phase voltage and the phase voltage obtained from FEA. As observed, a perfect match was
also seen.
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FE-predicted phase voltage.

Figure 15a shows a comparison between the measured torque (by a torque sensor) and
the predicted FEA torque under loading conditions of Figure 14. As seen, the torque sensor
was not fast enough to capture all the torque details. The full torque details, including
torque ripple, was well displayed by the FEA model. Moreover, Figure 15b gives the
average torque values. The difference between the measured and FEA came from the fact
that FEA does not consider iron loss effect. The FEA provides a magnetostatic solution.
The iron loss effect was not considered in the FEA model as it is usually evaluated in post
processes of most commercial FEA tools. On the other hand, the iron loss was included
within the proposed model. Hence, very good agreement was observed between the
measured torque signal and the simulated torque signal, as seen in Figure 15b.
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Table 3 shows the analysis details for torque data. As illustrated, the torque error for
the FEA model was 18.8%. Hence, the FEA model was not accurate enough to represent the
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real machine, as it neglects iron loss effect. On the contrary, the proposed Simulink model
provided a torque error of 2.13%, which may have been a result of stray losses, variation
of dc voltage, measurement errors (signal errors and quantization errors), tolerances in
machine dimensions, and degradation of material properties. Hence, the proposed model
succeeded in representing the real machine accurately.

Table 3. Summary of torque results.

Measured FEM Simulation
Average Torque (Nm) 1.505 1.222 1.537

Torque Error (Nm) - - - - - - - - 0.283 0.032
Torque Error (%) - - - - - - - - 18.80 2.12

4.3. Experimental Verification as a Motor

Finally, experimental tests for the IPMSM in motoring action were achieved based
on the FOC algorithm. The dc link voltage was set to 200 V. First, the FOC algorithm
was tested to ensure proper tracking operation. Figure 1 shows the performance of the
FOC algorithm under sudden changes of reference currents (id-ref and iq-ref). As seen in
Figure 16a,b, iq-ref changed as a triangular wave at a frequency of 20 Hz. The motor speed
was 486 r/min. As seen in Figure 16c,d, both id-ref and iq-ref changed as square waves at a
frequency of 10 Hz. The motor speed was 488 r/min. As noted, for both cases, the FOC
algorithm worked efficiently, as the motor could track the reference d- and q-axes currents
properly. Moreover, the three phases currents were symmetric and sinusoidal.
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Figure 16. The measured waveforms: (a) the measured d- and q-axes currents with iq-ref is changing
as a triangular wave; (b) the measured three-phases’ currents with iq-ref is changing as a triangular
wave. (c) the measured d- and q-axes currents with id-ref and iq-ref changing as square waves; (d) the
measured three-phases’ currents with id-ref and iq-ref changing as square waves.

Second, the motor was operated under a steady state condition with reference currents
id-ref = 0 and iq-ref = 3.5 A. The loading torque was adjusted to reach a speed of 555 r/min.
The measured waveforms were recorded, as seen in Figure 17a–c. Then, the same case
was simulated within the MATLAB Simulink model. The simulation results are given
in Figure 17d–f. As noticed, very good agreement was observed between measurement
and simulation.
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Figure 17. Comparison between measurement and simulation results as a motor: (a) the measured
direct and quadrature currents; (b) the measured waveform of phases’ currents; (c) the measured
electromagnetic torque; (d) the simulated direct and quadrature currents; (e) the simulated waveform
of phases’ currents; (f) the simulated electromagnetic torque.

Table 4 gives the torque analysis data. It compares the measured and the simulated
torques. The torque error was 3.26% which may be a result of measurement errors. More-
over, the mechanical coupling between the IPMSM and loading magnetic brake could be a
primary reason for torque error, as improper mechanical coupling could affect friction losses.
As a result, the proposed model is accurate enough to represent real machine performance.

Table 4. The measured and simulated torque results.

Measured Simulation Torque Error (Nm) Torque Error (%)
Average Torque (Nm) 3.68 3.56 0.12 3.26

Recently, many researchers have become interested in MTPA and maximum efficiency
per ampere (MEPA) control for IPMSM, as they are very important, especially for high
power machines such as in EV applications. The basic idea for MTPA and MEPA is to define
the current angle that corresponds to the desired criteria (maximum torque or maximum
efficiency). The proposed model can easily be used for such purposes. The obtained current
angles can be further employed in real implementations to achieved MTPA and MEPA.

Figure 18 shows a comparison of the measured and simulated torque versus current
angle. The current angle was changed from 0◦ to 50◦ in steps of 5◦. The maximum current
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was set to 3 A. The motor was running in an open loop current control. The motor speed
was adjusted by the loading dc brake. The test was done at 500 r/min. As noted, due to the
reluctance torque of IPMSM, the maximum torque did not occur at a zero-current angle,
such as in surface-mounted PMSM. As seen, the maximum torque occurred around a 5◦

current angle. Moreover, very good agreement was observed between measurement and
simulation, as seen in Figure 18a. The maximum torque error over 11 points of comparison
was 0.12 Nm at a current angle of 0◦, as illustrated by Figure 18b. It corresponded to an
error of 4.1%, as seen in Figure 18c. On the other hand, the average torque error over
11 points of comparison was 0.0449 Nm, which corresponded to a percentage of 1.7422%,
which is a small error and could be a result of measurement errors, assumptions in the FEA
model, variations of dc voltage, or effects of temperature on machine parameters such as
magnets and resistance.
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The model accuracy will remain similar for wider speed ranges as long as the control
algorithm (FOC) provides good tracking behavior. If the FOC fails tracking, this will
not affect the model accuracy, which means that the control algorithm (FOC) itself needs
improvements, not the proposed machine model.

5. Summary of Proposed Method

Figure 19 shows a flowchart that explains step by step the proposed modeling method.
First, the machine dimensions, material properties, and configurations of current

circuits are defined. Second, the FE model of the machine is constructed. The FE model
must be precisely configured to represent real machine behavior. Any mismatches in input
data to the FE model will lead to undesirable and huge errors. Hence, the experimental
verification of the FE model is of great importance. Third, the FE model is validated by
comparing the no-load and loading voltages of the machine as a generator. If the accuracy
is accepted and hence the PM flux linkage is inputted precisely, then one can proceed to
calculate the full magnetic characteristics of machine. on the contrary, if the accuracy is not
satisfactory, then measurement of the PM flux linkage must be done precisely after an FFT
of phase voltage, as described in Section 3.1.1. After that, the production of the full magnetic
characteristics of the machine can be achieved. Fourth, the development of the MATLAB
Simulink model is done using the FEA data after precise calibrations. The MATLAB
Simulink model requires an inverse solution of currents versus flux linkages, as discussed
in Section 3.2.1. It also involves the estimation of iron losses and its involvement within the
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MATLAB Simulink model, as described in Section 3.2.2. The final step is to validate the
MATLAB Simulink model experimental when the machine is operated as a motor.
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6. Conclusions

This paper develops an accurate modeling method for PMSMs. First, the proposed
model exhibits high fidelity in predicting real machine behavior while providing a compu-
tationally efficient solution. It presents a powerful solution for detailed analysis of all kinds
of PMSMs for further performance analysis or for developing accurate control algorithms.
It also helps to analyze machine losses and estimate real machine efficiency. Accurate
loss modeling and efficiency estimation are key interests for current and future research
related to several industrial applications such as electric vehicles. Second, the proposed
model considers accurately iron losses effects as well as the effects of magnetic saturation,
spatial harmonics, and mutual coupling. Third, it not only guaranties the production of a
high accuracy model but also involves the manufacturing effects by the calibration of the
FEA model based on experimental measurements. As seen by the results, the good match
between simulation and experimental measurements reflects the high model accuracy. The
average percentage of torque error between measurement and simulation is 1.7422%, which
is a small and acceptable error.
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Symbol Definition Unit
At, Ay The areas of stator pole/tooth and yoke m2

B The combined rotor and load viscous friction coefficient kg·m2

Bm The peak value of magnetic flux density Wb/m2

f The frequency of back EMF voltage Hz
Fobj The objective function
ht, hy The heights of stator pole/tooth and yoke m
id, iq The d- and q-axes components of stator current A
ida, iqa The d- and q-axes components of magnetizing currents A
id-fe, iq-fe The d- and q-axes components of currents that represents iron losses A
id-ref, iq-ref The d- and q-axes components of reference current A
J The combined rotor and load inertia coefficient kg·m2·s
kc The coefficients of eddy current losses W/m3

kd The lamination thickness m
ke The coefficients of additional losses W/m3

kh The coefficients of hysteresis losses W/m3

Ld, Lq The d- and q-axes components of inductance H
p The number of pole pairs
Pcu The copper losses W
Pfe The iron losses W
Rc The iron loss resistance Ω
Rs The phase resistance Ω
Te The total electromagnetic torque N·m
TL The load torque N·m
vd, vq The d- and q-axes components of phase voltage V
Vt, Vy The volumes of stator pole/tooth and yoke m3

Vph_peak The peak value of phase voltage V
θi The rotor position Deg
λd,λq The d- and q-axes components of flux-linkage Wb
λdo, λqo The commanded d- and q-axes flux-linkages Wb
λPM The flux-linkage of permanent magnets Wb
ωe The electrical angular speed Rad/s
ωm The angular velocity of rotor Rad/s
σ material conductivity S/m
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