
Citation: Meng, L.; Zhang, B.; Ren, Y.;

Sang, H.; Gao, K.; Zhang, C.

Mathematical Formulations for

Asynchronous Parallel Disassembly

Planning of End-of-Life Products.

Mathematics 2022, 10, 3854. https://

doi.org/10.3390/math10203854

Academic Editor: Ripon Kumar

Chakrabortty

Received: 19 September 2022

Accepted: 14 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Mathematical Formulations for Asynchronous Parallel
Disassembly Planning of End-of-Life Products
Leilei Meng 1 , Biao Zhang 1, Yaping Ren 2,*, Hongyan Sang 1, Kaizhou Gao 1 and Chaoyong Zhang 3

1 School of Computer Science, Liaocheng University, Liaocheng 252000, China
2 Department of Industrial Engineering, School of Intelligent Systems Science and Engineering,

Jinan University, Zhuhai 519070, China
3 State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and

Technology, Wuhan 430074, China
* Correspondence: renyp1@163.com

Abstract: Disassembly is one of the most time-consuming and labor-intensive activities during the
value recovery of end-of-life (EOL) products. The completion time (makespan) of disassembling
EOL products is highly associated with the allocation of operators, especially in parallel disassembly.
In this paper, asynchronous parallel disassembly planning (APDP), which avoids the necessity to
synchronize disassembly tasks of manipulators during the parallel disassembly process, is studied to
optimize the task assignment of manipulators for minimal makespan. We utilize four mixed integer
linear programming (MILP) formulations to identify the optimal solutions. A set of different-sized
instances are used to test and compare the performance of the proposed models, including some real-
world cases. Finally, the proposed exact algorithm is further compared with the existing approach
to solving APDP. Results indicate that a significant difference exists in terms of the computational
efficiency of the MILP models, while three of four MILP formulations can efficiently achieve better
solutions than that of the existing approach.

Keywords: demanufacturing; disassembly planning; asynchronous parallel disassembly; mixed
integer linear programming; exact algorithm

MSC: 90B30

1. Introduction

As sustainable manufacturing and circular economy become popular in the industry,
demanufacturing has recently attracted increasing attention. In demanufacturing, the first
step is to disassemble end-of-life (EOL) products into components or parts and retrieve
usable or repairable subassemblies. In addition to economic benefits, the disassembly
of EOL products can bring environmental benefits due to the subsequent treatment of
subassemblies (e.g., reuse, remanufacturing, and recycling) [1,2], especially toxic materials
including solid, liquid, and gas. Disassembly planning (DP) aims to select the optimal
disassembly sequence of an EOL product with maximum recovery value and/or process-
ing efficiency [3].

According to the disassembly process, DP can be classified into two categories:
(1) sequential disassembly, where parts are disassembled one by one; (2) parallel dis-
assembly, where multiple parts can be disassembled by multiple manipulators simulta-
neously [4,5]. Sequential disassembly is a typical disassembly problem that has been
studied for decades [6], in which only one part or component is disassembled at a time.
Obviously, this one-by-one processing could incur a longer makespan to disassemble a
product, especially for large or complex products. Parallel disassembly is thus developed
that allows multiple manipulators to simultaneously perform disassembly operations.
However, parallel disassembly must consider not only the precedence relationships among

Mathematics 2022, 10, 3854. https://doi.org/10.3390/math10203854 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10203854
https://doi.org/10.3390/math10203854
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1439-4832
https://doi.org/10.3390/math10203854
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10203854?type=check_update&version=2

Mathematics 2022, 10, 3854 2 of 16

parts/disassembly operations but also the coordination among manipulators [4]. For paral-
lel disassembly, two challenges need to be addressed: (1) which manipulator is selected
for disassembling each part (allocation problem), (2) how to assign parts or disassembly
tasks to each manipulator (sequencing problem). Therefore, parallel disassembly is more
complicated than sequential disassembly, where sequential disassembly only involves a
sequencing problem of disassembling parts/disassembly tasks.

To date, the existing literature on parallel disassembly largely focuses on synchronous
manipulator processing, that is, synchronous parallel disassembly planning (SPDP) [3,7–9],
which requires that the starting time of manipulators are synchronized in each parallel
disassembly process. This synchronization simplifies parallel disassembly planning but
increases the idle time of manipulators, which affects the disassembly efficiency. Recently,
Ren et al. [4] presented a novel parallel disassembly, called asynchronous parallel disas-
sembly, to eliminate the synchronous restriction and strengthen the collaboration among
manipulators. Asynchronous parallel disassembly allows a manipulator to continuously
work after completing a task as long as precedence (and other) constraints are not violated.
In Ren et al.’s work, asynchronous parallel disassembly planning (APDP) was first studied
and solved by an improved genetic algorithm (IGA). However, the authors did not describe
APDP mathematically and there is no guarantee that the optimal disassembly solutions
can be found by IGA. In order to make up for this shortcoming, this paper will make an
improvement in terms of mathematical models and methodology based on [4]. Moreover,
the proposed method in this work can solve the problems more optimally than the IGA in
Ren et al.’s work.

This paper aims at developing an exact method based on the APDP, in which the
minimum completion time (makespan) of disassembling a product can be identified. First,
we propose a basic mathematical model (i.e., Model 1) for the APDP. Then, three extended
models (i.e., Model 2, Model 3, and Model 4) are further developed. To evaluate the
performance of the proposed models, a set of different-sized instances are tested. The
results of these four formulations are presented and analyzed. Finally, the proposed
approach is compared with the IGA used in [4]. Experimental results demonstrate that
three of four MILP formulations outperform IGA, specifically, the solutions obtained from
IGA are improved in 5 out of 11 test instances. In summary, the key contributions of this
work can be summarized as follows:

(1) A nonlinear mathematical model is formulated to demonstrate the APDP.
(2) Four MILP formulations are developed based on the nonlinear model.
(3) The branch-and-cut algorithm of the CPLEX solver is employed to search for exact

solutions. The results demonstrate that the exact solutions of three MILP models are
able to improve the current best solutions in the test instances.

The remainder of this paper is organized as follows. Section 2 provides a literature
review, primarily focusing on DP. Section 3 describes the APDP and Section 4 presents four
MILP formulations for the APDP. Section 5 first presents the computational results of the
models in terms of the problem complexity and the computational performance. Then, the
computational results obtained from the proposed approach are compared with that of
the existing IGA method. Finally, concluding remarks and future directions are covered
in Section 4.

2. Literature Review

The DP is a combinatorial optimization problem and it can be solved by both exact
algorithms and heuristic/metaheuristic approaches [10–14]. In terms of exact methods,
branch-and-bound algorithms [5,15] and mathematical programming [16] are commonly
used, especially the latter. For example, Johnson and Wang [17] established an integer
linear programming model based on a two-commodity network flow formulation to find
an optimal solution with maximum profit. Kang et al. [18] presented an integer program-
ming model for disassembly sequence planning by modifying the shortest path problem.
Lambert [19] formulated a binary integer linear programming approach to maximize profit

Mathematics 2022, 10, 3854 3 of 16

by applying an AND/OR graph for enumerating the complete set of possible disassembly
operations. Ren et al. [16] presented a MILP model to maximize the profit of a partial
disassembly process. Edis et al. [20] proposed a MILP model for the disassembly line
balancing problem. In addition, several extensions on the MILP model regarding line
balancing, hazardousness and demand of parts, and direction changes are proposed.

The exact algorithms perform well when solving relatively small-sized problem in-
stances [21]. However, with the increase in the problem size, their computational times
grow exponentially. Therefore, approximate methods are widely used to solve DP prob-
lems [22]. Approximate methods mainly refer to heuristics and meta-heuristic algorithms.
Smith and Hung [8] studied selective parallel disassembly planning and aimed to maxi-
mize product quality and minimize product cost and environmental impacts. Sanchez and
Haas [23] studied building disassembly and designed a rule-based recursive method to
obtain a near-optimal solution. Seo et al. [24] aimed to optimize the disassembly sequence
considering economic and environmental aspects and proposed a genetic algorithm (GA).
Kongar and Gupta [25] proposed a weighted multi-objective model to solve the DP prob-
lem with consideration of disassembly time, the penalty for direction changes, and the
penalty for disassembly method changes. Tian et al. [26] studied the disassembly planning
considering uncertainty and proposed a GA to minimize disassembly cost. Based on that,
they proposed a hybrid intelligent algorithm that integrates fuzzy simulation and artificial
bee colony [27]. Kheder et al. [28] designed a GA to optimize a disassembly process con-
sidering several criteria such as maintainability of components and disassembly direction
changes. Ren et al. [3] proposed a hierarchical disassembly tree to model selective SPDP
and a multi-objective evolutionary algorithm to simultaneously minimize disassembly
time and maximize profit. Guo et al. [29] used a scatter search algorithm to simultaneously
maximize disassembly profit and minimize time using the weighted coefficient method. Re-
cently, Pistolesi and Lazzerini [9] studied a multi-objective SPDP and proposed a Tensorial
Memetic Algorithm (TeMA) to maximize the degree of parallelism, the level of ergonomics,
and the balance of workers’ workload, while minimizing the disassembly time and the
number of rotating the product.

Meta-heuristic approaches also include the artificial bee colony (ABC)
algorithm [27,30–32], the particle swarm optimization (PSO) algorithm [33], the gravi-
tational search algorithm (GSA) [16], and the discrete flower pollination algorithm [34].
They are highly dependent on solution encoding and decoding, parameter setting, and
evolutionary operators [35]. On the other hand, it is difficult to guarantee both robustness
and optimality of the solutions obtained from a meta-heuristic method [36].

From the literature review above, it is noted that (1) the meta-heuristic algorithms are
commonly used to solve DPs, especially for large instances; (2) few studies are available on
APDP. In particular, no work exists that models and solves APDP optimally. To fill these
gaps, this work is focused on modeling and developing an efficient exact algorithm for
APDP. Except for that, this work attempts to optimally solve APDP with medium-/large-
sized instances.

3. Problem Description
3.1. Representation of DP

To model a DP problem, we first draw a disassembly precedence diagram to represent
the prior relationships among disassembly operations/parts in a product. In a precedence
diagram, each part of a product is indexed by j, j = 0, 1, . . . , N. N is the number of parts and
part 0 is a dummy part that denotes an initial point of the disassembly process. Figure 1
shows an example of the disassembly precedence diagram, in which there are 10 parts
and a directed edge is used to represent the precedence relationship between pairwise
adjacent parts. The edge can be viewed as a disassembly operation, which means that
part j will be removed after traversing the edge pointing to it. In Figure 1, the disassembly
operations are either solid lines (indicating AND precedence relationships) or dotted lines
(indicating OR precedence relationships). A part that is an AND predecessor of part j

Mathematics 2022, 10, 3854 4 of 16

must be disassembled before removing part j. For example, part 7 is the AND predecessor
of parts 5 and 6 so it has to be removed before part 5 or 6 can be disassembled. Before
disassembling part j, not less than one of the parts that are OR predecessors of part j must
be done. For example, part 3 is one of OR predecessors of parts 1 and the other is part 2, so
either part 2 or part 3 has to be removed before part 1 can be disassembled.

Mathematics 2022, 10, x FOR PEER REVIEW 4 of 17

parts and a directed edge is used to represent the precedence relationship between

pairwise adjacent parts. The edge can be viewed as a disassembly operation, which

means that part j will be removed after traversing the edge pointing to it. In Figure 1, the

disassembly operations are either solid lines (indicating AND precedence relationships)

or dotted lines (indicating OR precedence relationships). A part that is an AND prede-

cessor of part j must be disassembled before removing part j. For example, part 7 is the

AND predecessor of parts 5 and 6 so it has to be removed before part 5 or 6 can be dis-

assembled. Before disassembling part j, not less than one of the parts that are OR prede-

cessors of part j must be done. For example, part 3 is one of OR predecessors of parts 1

and the other is part 2, so either part 2 or part 3 has to be removed before part 1 can be

disassembled.

2

3

1

9

8

0

4

7

10

6

5

Figure 1. An example of the disassembly precedence diagram for a product.

3.2. Synchronous Parallel Disassembly and Asynchronous Parallel Disassembly

Here, we adapt the example in Figure 1 to differentiate synchronous and asyn-

chronous disassembly processes, which are illustrated in Figure 2 (a) and (b), respec-

tively. In Figure 2, the numbers labeled in the parentheses denote the indices of parts and

the disassembly time of parts, respectively. Two manipulators are employed to perform

the same disassembly sequences in both Figure 2a,b, that is, {2, 8, 7, 5} and {3, 10, 9, 1, 4,

6}. The projection of each rectangle denotes the disassembly time of the corresponding

part. From Figure 2a, it is observed that the beginning time of disassembling parts of

manipulators is synchronous and a manipulator cannot start a new disassembly task un-

til all other manipulators complete their current ones. The makespan of the synchronous

disassembly process is the sum of the maximum disassembly time among parts in each

parallel disassembly, which are marked in shadows in Figure 2a. It can be seen that little

idle time exists in the asynchronous disassembly process, that is, Figure 2b but a large

amount of idle time occurs in synchronous manipulator processing, that is, Figure 2a.

In this work, the following assumptions or specifications are considered:

• AND precedence and OR precedence relationships are ensured.

• Work area collisions among manipulators are considered.

• Once a part begins, it cannot be interrupted.

• Each part is exactly removed once by one manipulator.

• Disassembly times of parts are determined in advance.

• A manipulator can remove at most one part at the same time.

(3, 12) (10, 10)

(2, 10) (8, 36) (7, 20)

(9, 14) (1, 14)

(5, 23)

(4, 18) (6, 16)

M
a
n

ip
u

la
to

rs

Time (second)

M
a

k
esp

a
n

 =
 1

2
5

 s

(a)

Figure 1. An example of the disassembly precedence diagram for a product.

3.2. Synchronous Parallel Disassembly and Asynchronous Parallel Disassembly

Here, we adapt the example in Figure 1 to differentiate synchronous and asynchronous
disassembly processes, which are illustrated in Figure 2a,b, respectively. In Figure 2, the
numbers labeled in the parentheses denote the indices of parts and the disassembly time
of parts, respectively. Two manipulators are employed to perform the same disassembly
sequences in both Figure 2a,b, that is, {2, 8, 7, 5} and {3, 10, 9, 1, 4, 6}. The projection of each
rectangle denotes the disassembly time of the corresponding part. From Figure 2a, it is ob-
served that the beginning time of disassembling parts of manipulators is synchronous and
a manipulator cannot start a new disassembly task until all other manipulators complete
their current ones. The makespan of the synchronous disassembly process is the sum of the
maximum disassembly time among parts in each parallel disassembly, which are marked
in shadows in Figure 2a. It can be seen that little idle time exists in the asynchronous disas-
sembly process, that is, Figure 2b but a large amount of idle time occurs in synchronous
manipulator processing, that is, Figure 2a.

Mathematics 2022, 10, x FOR PEER REVIEW 4 of 17

parts and a directed edge is used to represent the precedence relationship between

pairwise adjacent parts. The edge can be viewed as a disassembly operation, which

means that part j will be removed after traversing the edge pointing to it. In Figure 1, the

disassembly operations are either solid lines (indicating AND precedence relationships)

or dotted lines (indicating OR precedence relationships). A part that is an AND prede-

cessor of part j must be disassembled before removing part j. For example, part 7 is the

AND predecessor of parts 5 and 6 so it has to be removed before part 5 or 6 can be dis-

assembled. Before disassembling part j, not less than one of the parts that are OR prede-

cessors of part j must be done. For example, part 3 is one of OR predecessors of parts 1

and the other is part 2, so either part 2 or part 3 has to be removed before part 1 can be

disassembled.

2

3

1

9

8

0

4

7

10

6

5

Figure 1. An example of the disassembly precedence diagram for a product.

3.2. Synchronous Parallel Disassembly and Asynchronous Parallel Disassembly

Here, we adapt the example in Figure 1 to differentiate synchronous and asyn-

chronous disassembly processes, which are illustrated in Figure 2 (a) and (b), respec-

tively. In Figure 2, the numbers labeled in the parentheses denote the indices of parts and

the disassembly time of parts, respectively. Two manipulators are employed to perform

the same disassembly sequences in both Figure 2a,b, that is, {2, 8, 7, 5} and {3, 10, 9, 1, 4,

6}. The projection of each rectangle denotes the disassembly time of the corresponding

part. From Figure 2a, it is observed that the beginning time of disassembling parts of

manipulators is synchronous and a manipulator cannot start a new disassembly task un-

til all other manipulators complete their current ones. The makespan of the synchronous

disassembly process is the sum of the maximum disassembly time among parts in each

parallel disassembly, which are marked in shadows in Figure 2a. It can be seen that little

idle time exists in the asynchronous disassembly process, that is, Figure 2b but a large

amount of idle time occurs in synchronous manipulator processing, that is, Figure 2a.

In this work, the following assumptions or specifications are considered:

• AND precedence and OR precedence relationships are ensured.

• Work area collisions among manipulators are considered.

• Once a part begins, it cannot be interrupted.

• Each part is exactly removed once by one manipulator.

• Disassembly times of parts are determined in advance.

• A manipulator can remove at most one part at the same time.

(3, 12) (10, 10)

(2, 10) (8, 36) (7, 20)

(9, 14) (1, 14)

(5, 23)

(4, 18) (6, 16)

M
a
n

ip
u

la
to

rs

Time (second)

M
a

k
esp

a
n

 =
 1

2
5

 s

(a)

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 17

(3, 12) (10, 10)

(2, 10) (8, 36) (7, 20)

(9, 14) (1, 14)

(5, 23)

(4, 18) (6, 16)

M
a
n

ip
u

la
to

r
s

Time (second)

M
a
k

e
sp

a
n

 =
 8

9
 s

(b)

Figure 2. The comparison between two parallel disassembly processes. (a) Synchronous parallel

disassembly process. (b) Asynchronous parallel disassembly process.

4. MILP Modeling of APDP

The notations are shown as follows:

N the number of parts
,i j part indices in a produ {1ct ,2, , ,..., }Nj Ii =

',p p position indices of manipulators, where
', {1,2,..., }p p P N =

mN the number of manipulators

m manipulator index {1,2,..., , } mm N

it the disassembly time of part i

()ANDP i
 index set of AND predecessors of part i

()ORP i
 index set of OR predecessors of part i

()W i

index set of parts that have work area collisions with part i in the

parallel disassembly process

M a large positive number

, ,i m px

a binary decision variable, , , 1i m px =
, if part i occupies

thp position of

the disassembly sequence of manipulator m ; otherwise, , , 0i m px =

,i mx

a binary decision variable, , 1i mx =
, if part i is removed by manipulator

m ; otherwise, , 0i mx =

, ,i j mu

a binary decision variable, , , 0i j mu =
, if part i is removed immediately

before part
j

 by manipulator m ; otherwise, , , 0i j mu =

,i jy

a binary decision variable, , 1i jy =
, if part i is removed be-

fore(adjacent or non-adjacent) part j ; otherwise, , 0i jy =
, part j is re-

moved before (adjacent or non-adjacent) part i

is
a continuous decision variable, the starting time of disassembling part

i

,m psm

a continuous decision variable, the time when manipulator m starts

to remove the
thp part

maxC

a continuous decision variable, the maximum completion time

(makespan) of the disassembly process

As shown in Equation (1), the objective of our APDP is to minimize the makespan of

completely disassembling a product, in which the assignment of disassembly tasks and

the sequence of removing parts are integrally determined for each manipulator. In the

following, we will illustrate the MILP formulations of the APDP.

maxmin C (1)

Figure 2. The comparison between two parallel disassembly processes. (a) Synchronous parallel
disassembly process. (b) Asynchronous parallel disassembly process.

In this work, the following assumptions or specifications are considered:

• AND precedence and OR precedence relationships are ensured.
• Work area collisions among manipulators are considered.
• Once a part begins, it cannot be interrupted.
• Each part is exactly removed once by one manipulator.
• Disassembly times of parts are determined in advance.

Mathematics 2022, 10, 3854 5 of 16

• A manipulator can remove at most one part at the same time.

4. MILP Modeling of APDP

The notations are shown as follows:

N the number of parts
i, j part indices in a product, i, j ∈ I = {1, 2, . . . , N}

p, p′ position indices of manipulators, where p, p′ ∈ P = {1, 2, . . . , N}
Nm the number of manipulators
m manipulator index, m ∈ {1, 2, . . . , Nm}
ti the disassembly time of part i

ANDP(i) index set of AND predecessors of part i
ORP(i) index set of OR predecessors of part i

W(i)
index set of parts that have work area collisions with part i in the parallel

disassembly process
M a large positive number

xi,m,p
a binary decision variable, xi,m,p = 1, if part i occupies pth position of the

disassembly sequence of manipulator m; otherwise, xi,m,p = 0

xi,m
a binary decision variable,xi,m = 1, if part i is removed by manipulator m;

otherwise, xi,m = 0

ui,j,m
a binary decision variable, ui,j,m = 0, if part i is removed immediately

before part j by manipulator m; otherwise, ui,j,m = 0

yi,j

a binary decision variable, yi,j = 1, if part i is removed before (adjacent or
non-adjacent) part j; otherwise, yi,j = 0, part j is removed before (adjacent

or non-adjacent) part i
si a continuous decision variable, the starting time of disassembling part i

smm,p
a continuous decision variable, the time when manipulator m starts to

remove the pth part

Cmax
a continuous decision variable, the maximum completion time (makespan)

of the disassembly process

As shown in Equation (1), the objective of our APDP is to minimize the makespan of
completely disassembling a product, in which the assignment of disassembly tasks and
the sequence of removing parts are integrally determined for each manipulator. In the
following, we will illustrate the MILP formulations of the APDP.

minCmax (1)

4.1. Model 1

As aforementioned, two subproblems, that is, the allocation problem and sequencing
problem need to be addressed. Here, we introduce a binary decision variable xi,m,p that
represents whether part i is the pth part removed by manipulator m. Moreover, two
continuous decision variables, that is, si and Cmax, are employed to denote the starting
time of removing part i and the makespan of the disassembly process, respectively. The
constraint sets of Model 1 are described in Equations (2)–(10):

Nm

∑
m=1

N

∑
p=1

xi,m,p = 1, ∀i (2)

N

∑
i=1

xi,m,p ≤ 1, ∀m, p (3)

sixi,m,p+1xj,m,p ≥ (sj + tj)xi,m,p+1xj,m,p,
∀i, j, m, p ∈ {1, 2, . . . , N − 1} (4)

Mathematics 2022, 10, 3854 6 of 16

N

∑
i=1

xi,m,p ≥
N

∑
j=1

xj,m,p+1, ∀ m, p ∈ {1, 2, . . . , N − 1} (5)

si ≥ sj + tj, ∀i, j ∈ ANDP(i) (6)

si ≥ sj + tj, ∀i, ∃ j ∈ ORP(i) (7)

si ≥ sj + tj or sj ≥ si + ti, ∀i, j ∈W(i) (8)

Cmax ≥ si + ti, ∀i (9)

si ≥ 0, ∀i (10)

Constraint (2) denotes that each part must be exactly removed once by one manipulator
during the disassembly process. Constraint (3) denotes that a manipulator can remove
at most one part simultaneously. Constraint (4) ensures that a manipulator can begin to
disassemble the next part only after the current part is completely disassembled. To be
more specific, if xj,m,p and xi,m,p+1 are equal to 1, parts j and i are successively disassembled
by manipulator m, which indicates that the completion time of removing part j is no more
than the starting time of removing part i; otherwise, both sides of inequation (4) are equal
to 0. Constraint (5) denotes that there is no idle position in each disassembly sequence until
the last part of each disassembly sequence is removed by the manipulator. Constraint (6)
and (7) guarantee the AND, and OR precedence relationships among parts, respectively.
Constraint set (7) can also be formulated as ∑

j∈ORP(i)
si ≥ sj + tj, ∀i, among which si ≥ sj + tj

returns 1 or 0. Constraint (8) excludes the work area collisions between manipulators when
they work at the same time. Constraint (9) means that the makespan of a disassembly
process must be more than the completion time of disassembling each part. Constraint (10)
defines the decision variable si.

Equations (1)–(10) are linear except constraint (4). Constraint (4) includes the product
of binary and continuous variables, which is typically non-convex and difficult to be solved.
Here, we use the big M method to linearize formulation (4). Then, constraint (4) is converted
to constraint (11). The MILP of Model 1 can be depicted by formulations (1)–(3) and (5)–(11).

si ≥ sj + tj −M ∗ (2− xi,m,p+1 − xj,m,p),
∀i, j, m, p ∈ {1, 2, . . . , N − 1} (11)

4.2. Model 2

Although constraint (11) is linear, it involves four indices (i.e., i, j, m, and p) and
consists of a large number of constraints. This could incur an increase in the computa-
tional complexity of Model 1. To avoid the complex computation, we attempt to simplify
constraint (11) in this segment.

First, a continuous variable smm,p is defined that denotes the starting time of removing
the pth part by manipulator m. With xi,m,p, si, and smm,p, we can obtain the following
equations:

smm,p =
N

∑
i=1

sixi,m,p, ∀m, p (12)

smm,p+1 ≥ smm,p +
N

∑
i=1

xi,m,pti, ∀i, m, p ∈ {1, 2, . . . , N − 1} (13)

Equation (12) illustrates the relationships among the decision variables, which denotes
that if part i is the pth part removed by manipulator m, that is, xi,m,p = 1, smm,p must
be equal to si. Constraint (13) is used to replace constraint (11), where the number of
constraints becomes small. However, the right-hand side of Equation (12) is nonlinear.
To linearize it, we formulate constraints (14)–(16), which are equivalent to constraint (12).
To be more specific, if xi,m,p = 1, constraint (14) enforces smm,p to be no less than si and

Mathematics 2022, 10, 3854 7 of 16

constraint (15) enforces smm,p to be no more than si. Therefore, smm,p is equal to si. If
xi,m,p = 0, constraint (14) and (15) are relaxed and holds, and constraint (16) guarantee that
smm,p is equal to 0.

smm,p ≤ si + M(1− xi,m,p), ∀i, m, p (14)

smm,p ≥ si −M(1− xi,m,p), ∀i, m, p (15)

smm,p ≥ 0, ∀m, p (16)

4.3. Model 3

Decision variable xi,m,p is indispensable and crucial in both Model 1 and Model 2.
Here, xi,m,p is simplified to be xi,m to reduce the solution space and it determines whether
part i is removed by manipulator m without considering the position p. Nevertheless, xi,m
can only deal with the allocation problem of removal parts, and additional binary variable
yi,j is thus introduced. If yi,j equals 1, part i is removed before part j; otherwise, part i is
removed after part j, by which the disassembly sequence of parts can be determined.

The relationships among xi,m, yi,j, and si are formulated as:

Nm

∑
m=1

xi,m = 1, ∀i (17)

(sj − si − ti)xi,mxj,myi,j ≥ 0, ∀m, i, j, i < j (18)

(si − sj − tj)xi,mxj,m(1− yi,j) ≥ 0, ∀m, i, j, i < j (19)

Constraint (17) denotes that the disassembly task of each part must be exactly assigned
to one manipulator. Constraints (18) and (19) are equivalent to constraint (11). Specifically,
inequation (18) requires that the starting time of removing part j is later than the completion
time of removing part i when xi,m = 1, xj,m = 1 and yi,j = 1. Instead, inequation (19)
denotes that the starting time of removing part i is later than the completion time of
removing part j when xi,m = 1, xj,m = 1 and yi,j = 0. Notably, constraints (18) and (19)
are dual with respect to i and j. Hence, both indices can be subjected to i < j, which helps
reduce the number of constraints in constraints (18) and (19).

Due to the nonconvexity and nonlinearity of constraints (18) and (19), we further
transform them into constraints (20) and (21), respectively. The MILP of Model 3 is obtained
by Equations (1), (6)–(10), (17), and (20)–(21).

sj ≥ si + ti −M(3− xi,m − xj,m − yi,j), ∀m, i, j, i < j (20)

sj + tj ≤ si + M(2− xi,m − xj,m + yi,j), ∀m, i, j, i < j (21)

4.4. Model 4

As presented in Model 3, xi,m is integrated with yi,j to address the allocation and
sequencing problems of APDP. Herein, we combine xi,m and yi,j into a binary decision
variable, i.e., ui,j,m. Let ui,j,m = 1 mean that part i is removed immediately before part j for
the same manipulator m, and otherwise ui,j,m = 0 [37]. Clearly, ui,j,m can simultaneously
decide on the task assignment of manipulators and the disassembly sequence of parts. Fur-
thermore, a dummy part, that is, part 0 is assumed to start and terminate each disassembly
sequence. This implies that part 0 is disassembled twice by each manipulator, that is, the
starting and the completion time of each disassembly sequence. It should be noted that the
disassembly time of part 0 is zero.

Based on decision variables ui,j,m, and si, Model 4 can be formulated as follows.

N

∑
i=0

Nm

∑
m=1

ui,j,m = 1, ∀j (22)

Mathematics 2022, 10, 3854 8 of 16

N

∑
i=0

Nm

∑
m=1

ui,j,m =
N

∑
i=0

Nm

∑
m=1

uj,i,m, ∀j ∈ {0, 1, . . . , N} (23)

N

∑
j=1

u0,j,m ≤ 1, ∀m (24)

(sj − si − ti)
Nm

∑
m=1

ui,j,m ≥ 0, ∀i, j (25)

s0 = 0 (26)

Constraint (22) is equivalent to constraint (17), which indicates that each part has
exactly one immediate predecessor that is disassembled by the same manipulator. Con-
straint (23) guarantees the equilibrium of in-degree and out-degree, that is, each part has
exactly one immediate predecessor and follower in the disassembly sequence. Actually, the
disassembly sequence of each manipulator is a tour that starts from part 0 and terminates
at part 0. Constraint (24) is formulated to eliminate the subtour, that is, each manipulator
can at most complete one disassembly sequence. Similar to constraint (4), constraint set
(25) denotes that the immediate predecessor of each part must be earlier removed before it.
Constraint (26) denotes that the starting time of part 0 is equal to zero.

Finally, inequation (25) is linearized to (27) using the big M method, and the MILP of
Model 4 is formulated by Equations (1), (6)–(10), (22)–(24), and (26)–(27).

si + ti ≤ sj + M(1−
Nm

∑
m=1

ui,j,m), ∀i, j (27)

5. Computational Results

The Branch-and-Cut (B&C) algorithm of IBM ILOG CPLEX 12.7.1 is used to solve the
proposed MILP formulations. The B&C algorithm is embodied in the CPLEX software (i.e.,
IBM ILOG CPLEX 12.7.1, IBM International Business Machines Corporation, New York, NY,
USA), which is very popular in solving mixed integer programming (MIP), especially for
mixed integer linear programming (MILP). In this section, four product cases previously
used in [4] are applied to test our models and evaluate the exact solutions found by the
B&C. Except Case 1 with 10 parts as presented in Figure 1, others are real-world cases, that
is, a valve cover head fixture with 22 parts (Case 2), an engine block with 35 parts (Case 3),
and a five-speed mechanical transmission with 40 parts (Case 4). Also, the maximum CPU
time (timelimit) used by the B&C is set to be 600 s and other configurations of the algorithm
adopt the default settings in the CPLEX software. The algorithm is implemented on a
desktop computer equipped with Intel Core i5-4460 CPU@3.20 GHz.

5.1. Comparisons of MILP Models

This subsection compares four MILP models in both size complexity and computa-
tional complexity. Three indicators are employed to evaluate the size complexity, that is,
the number of binary decision variables (NBV), the number of constraints (NC), and the
number of continuous decision variables (NCV). The performance of the MILP formula-
tions is highly associated with NBV, NC, and NCV [38,39]. Like others, in this paper, the
computational complexity is measured by the current solution (CS) found in the B&C, CPU
time consumed by the B&C, Gap, and Opt. CPU time is equal to timelimit if the B&C
algorithm cannot prove the optimal solution; otherwise, it is the time consumed for proving
the optimal solution. Note that Gap is the relative tolerance between CS and BS, where BS
is the lower bound obtained from the CPLEX solver, and Gap = |CS − BS|/CS% [40–43].
Opt represents the total number of problem instances solved to optimality by the B&C
algorithm within 600 s.

Mathematics 2022, 10, 3854 9 of 16

5.1.1. Size Complexity

Table 1 summarizes the four MILP models, and Table 2 reports the detailed information
on NBV, NC, and NCV of each model in the test instances. The first column of Table 2
denotes the number of manipulators employed in each case. It can be seen from Table 2
that Model 3 has the smallest NBV, Model 4 has the smallest NC, and Models 1, 3, and 4
have the smallest NCV. Model 1 has much more constraints than Model 2 since constraint
(11) in Model 1 comprises of much more constraints than constraints (13)–(16) in Model 2.
Due to decision variable smm,p, NCV in Model 2 is larger than that in Model 1. In Model 3,
two-dimensional variables xi,m and yi,j replace the three-dimensional decision variables.
Herein, the differences in the MILP models are analyzed with respect to decision variables
and constraints, the following subsection will further discuss the relationships between the
size complexity and the computational complexity.

Table 1. Summary of four MILP Models.

Models Model 1 Model 2 Model 3 Model 4

Binary variables xi,m,p xi,m,p xi,m, yi,j ui,j,m

Constraint sets (2)–(3), (5)–(11) (2)–(3), (5)–(10),
(13)–(16) (6)–(10), (17), (20)–(21) (6)–(10), (22)–(24),

(26)–(27)

Continuous variables si, Cmax si, smm,p, Cmax si, Cmax si, Cmax

Table 2. Comparison of size complexity.

Nm Case
Model 1 Model 2 Model 3 Model 4

NBV NC NCV NBV NC NCV NBV NC NCV NBV NC NCV

2

1 244 2504 12 244 610 34 79 262 12 288 190 13

2 968 20,503 23 968 2197 67 275 1013 23 1056 622 24

3 2458 83,593 36 2458 5331 106 673 2535 36 2598 1455 37

4 3216 125,140 41 3216 6898 121 876 3302 41 3376 1867 42

3

1 365 3735 12 365 894 45 90 372 12 431 203 13

2 1452 30,710 23 1452 3251 89 297 1475 23 1584 646 24

3 3683 125,312 36 3683 7919 141 708 3725 36 3893 1492 37

4 4816 187,619 41 4816 10,256 161 916 4862 41 5056 1909 42

4

1 486 4966 12 486 1178 56 101 482 12 574 216 13

2 1936 40,917 23 1936 4305 111 319 1937 23 2112 670 24

3 4908 167,031 36 4908 10,507 176 743 4915 36 5188 1529 37

4 6416 250,098 41 6416 13,614 201 956 6422 41 6736 1951 42

5.1.2. Computational Complexity

This segment focuses on the analysis of computational complexity among the models
and the comparison of the results is shown in Table 3. The first column of Table 3 denotes
the number of manipulators employed in each case. It is observed that Model 1 performs
worst in both the solution quality and the computational efficiency. It can only find the
optimal solutions for 5 out of 12 instances and its Gap values are equal to 0 in 4 instances.
For Case 3 and Case 4, Model 1 cannot even find any feasible solutions within 600 s. As
described in Table 1, Model 1 includes a three-dimensional binary variable xi,m,p and a
complex constraint (11), which results in poor computational performance.

Mathematics 2022, 10, 3854 10 of 16

Table 3. Comparisons of computational complexity.

Nm Case
Model 1 Model 2 Model 3 Model 4

CS CPU
(s) Gap CS CPU

(s) Gap CS CPU
(s) Gap CS CPU

(s) Gap

2

1 89 2.18 0 89 0.37 0 89 0.03 0 89 0.20 0

2 25.5 600 29.41 20.5 484.26 0 20.5 1.67 0 20.5 1.61 0

3 - 600 - 1727 600 16.33 1726 600 13.04 1726 600 16.28

4 - 600 - - 600 - 365 600 6.85 384 600 24.74

3

1 89 0.81 0 89 0.14 0 89 0.03 0 89 0.08 0

2 20 600 10.0 20 179.28 0 20 0.91 0 20 0.27 0

3 - 600 - 1445 169.65 0 1445 3.25 0 1445 548.67 0

4 - 600 - - 600 - 338 600 5.92 338 600 14.50

4

1 89 0.42 0 89 0.16 0 89 0.05 0 89 0.06 0

2 18 346.31 0 18 50.5 0 18 0.20 0 18 0.25 0

3 - 600 - 1445 204.92 0 1445 0.91 0 1445 345.54 0

4 - 600 - - 600 - 305 600 1.97 310 600 6.77

Mean 429.14 6.57 290.77 1.18 200.59 0.49 274.72 1.69

Opt 5 8 8 8

In terms of computational performance, Model 2 is significantly better than Model 1.
Firstly, Model 2 is able to optimally solve 8 out of 12 instances (i.e., Gap = 0). Secondly, its
computational cost is much less than that of Model 1. By comparing their size complexities,
we can find that constraint (11) is simplified to constraint (13) in Model 2, which highly
reduces its complexity.

The Gap values of Models 2 and 3 show that the same instances can be optimally
solved by both models. As seen in the CS values, Model 3 can obtain feasible or optimal
solutions in each case within 600 s, whereas Model 2 cannot explore a feasible solution in
3 out of 12 instances within 600 s. This demonstrates that the computational efficiency of
Model 3 is superior to that of Model 2. By comparing their decision variables in Table 1,
we find that Model 3 does not involve a three-dimensional binary variable xi,m,p and a
continuous variable smm,p. Furthermore, the constraints of Model 3 are much less than
those of Model 2 according to the NC values in Table 2. Hence, the simplified decision
variables and the reduced constraints might improve the computational performance of
the models.

For Model 4, its CS values are slightly different from those of Model 3. Specifically,
only two solutions are found in Model 4, which is a little inferior to Model 3 in all tests. On
the other hand, the Gap values of Model 4 are significantly bigger than those of Model 3
when both cannot optimally solve the test instances. Therefore, Model 4 is not as good as
Model 3 in terms of solution convergence.

The last two rows of Table 3 provide the mean CPU time, the mean Gap, and Opt of
each model over all test instances. Notably, we only consider the instances that feasible
solutions can be found within 600 s when computing the mean Gap. It is noted that Model
1 finds the least optimal solutions (i.e., Opt = 4), while the other models explore 8 optimal
solutions within 600 s. Although Models 2, 3, and 4 have the same Opt, both the mean
CPU time and the mean Gap of Model 3 significantly outperform those of Models 2 and 4.
Therefore, Model 3 is the best, Models 2 and 4 are secondary, and Model 1 performs worst
for solving the APDP.

Table 4 presents the best solutions for Cases 3 and 4 with Nm = 2, 3, and 4, respectively.
Figures 3 and 4 present the Gantt charts of the best solutions for Cases 3 and 4, respectively.

Mathematics 2022, 10, 3854 11 of 16

As seen in Table 4, Figures 3 and 4, the makespan gets some extent improvement with the
increase of manipulators. However, there exists a threshold with respect to Nm. In other
words, the makespan of the disassembly process will not be reduced once the manipulators
are redundant. For example, Case 3 with 3 and 4 manipulators are able to find the same
optimal solution (i.e., 1445). This situation also usually happens in practice. Our proposed
method can help decision-makers select the ideal manipulator configuration, where trade-
offs have to be made between the makespan and the cost of manipulators. With regard to
the case with considering unlimited manipulators, the four MILP mod-els can be seen in
Appendix A.

Table 4. Best Solutions for cases 3–4 with 2–4 Manipulators.

Case Nm Solution Cmax

3

2 M1:15,4,34,5,12,29,33,21,8,10,18,6,9,30,14
M2:1,13,31,16,35,24,20,7,11,19,26,17,23,25,32,22,3,2,27,28 1726

3
M1:1,13,20,4,5,15,29,24,26,25,10,31,9,11,21,18,3,2,22,12,27,28
M2:34,35,32,17,30
M3:14,8,7,6,33,16,19,23

1445

4

M1:34,33,24,29,25,16,13,4,5,3,2,22,27,28
M2:35,32,20,8,19,18,12,11,6
M3:15,21,14,7,30
M4:1,31,26,17,10,9,23

1445

4

2 M1:15,18,21,23,24,19,33,32,39,34,36,22,20,4,3,29,28,6,10,8,11
M2:16,17,2,25,26,5,37,40,35,38,31,7,9,27,30,14,13,1,12 365

3
M1:17,22,2,19,21,5,31,37,38,7,9,28,1,10,8,12
M2:15,16,24,25,34,33,36,20,14,29,13
M3:18,26,23,40,35,32,39,4,27,30,6,3,11

338

4

M1:15,2,26,25,5,34,38,7,9,30,29,6,10,8,12
M2:17,40,36,13
M3:18,24,20,32,31,39,22,14,3
M4:16,23,35,33,37,19,21,4,28,27,1,11

305

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 17

M2:34,35,32,17,30

M3:14,8,7,6,33,16,19,23

4

M1:34,33,24,29,25,16,13,4,5,3,2,22,27,28

M2:35,32,20,8,19,18,12,11,6

M3:15,21,14,7,30

M4:1,31,26,17,10,9,23

1445

4

2
M1:15,18,21,23,24,19,33,32,39,34,36,22,20,4,3,29,28,6,10,8,11

M2:16,17,2,25,26,5,37,40,35,38,31,7,9,27,30,14,13,1,12
365

3

M1:17,22,2,19,21,5,31,37,38,7,9,28,1,10,8,12

M2:15,16,24,25,34,33,36,20,14,29,13

M3:18,26,23,40,35,32,39,4,27,30,6,3,11

338

4

M1:15,2,26,25,5,34,38,7,9,30,29,6,10,8,12

M2:17,40,36,13

M3:18,24,20,32,31,39,22,14,3

M4:16,23,35,33,37,19,21,4,28,27,1,11

305

(a)

(b)

(c)

Figure 3. Gantt charts of Case 3 with 2–4 manipulators. (a) Case 3 with 2 manipulators (max 1726C =

). (b) Case 3 with 3 manipulators (max 1445C =
). (c) Case 3 with 4 manipulators (max 1445C =

).

(a)

(b)

Figure 3. Gantt charts of Case 3 with 2–4 manipulators. (a) Case 3 with 2 manipulators (Cmax = 1726).
(b) Case 3 with 3 manipulators (Cmax = 1445). (c) Case 3 with 4 manipulators (Cmax = 1445).

Mathematics 2022, 10, 3854 12 of 16

Mathematics 2022, 10, x FOR PEER REVIEW 12 of 17

M2:34,35,32,17,30

M3:14,8,7,6,33,16,19,23

4

M1:34,33,24,29,25,16,13,4,5,3,2,22,27,28

M2:35,32,20,8,19,18,12,11,6

M3:15,21,14,7,30

M4:1,31,26,17,10,9,23

1445

4

2
M1:15,18,21,23,24,19,33,32,39,34,36,22,20,4,3,29,28,6,10,8,11

M2:16,17,2,25,26,5,37,40,35,38,31,7,9,27,30,14,13,1,12
365

3

M1:17,22,2,19,21,5,31,37,38,7,9,28,1,10,8,12

M2:15,16,24,25,34,33,36,20,14,29,13

M3:18,26,23,40,35,32,39,4,27,30,6,3,11

338

4

M1:15,2,26,25,5,34,38,7,9,30,29,6,10,8,12

M2:17,40,36,13

M3:18,24,20,32,31,39,22,14,3

M4:16,23,35,33,37,19,21,4,28,27,1,11

305

(a)

(b)

(c)

Figure 3. Gantt charts of Case 3 with 2–4 manipulators. (a) Case 3 with 2 manipulators (max 1726C =

). (b) Case 3 with 3 manipulators (max 1445C =
). (c) Case 3 with 4 manipulators (max 1445C =

).

(a)

(b)

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 17

(c)

Figure 4. Gantt charts of Case 4 with 2–4 manipulators. (a) Case 4 with 2 manipulators (max 365C =
).

(b) Case 4 with 3 manipulators (max 338C =
). (c) Case 4 with 4 manipulators (max 305C =

).

5.2. Result Comparisons with IGA

The exact solutions obtained from the proposed MILP models are compared with

the solutions from the IGA in [4]. Table 5 shows the result comparisons, in which the

best solution for each instance is highlighted. It can be seen that IGA can obtain seven

best solutions in 12 test instances. Models 1–4 can identify 5, 9, 12, and 10 best solutions,

respectively. Obviously, IGA outperforms Model 1, while it is not as good as Models

2–4. On the other hand, IGA cannot ensure that the same solution is obtained in each

test, which can be demonstrated by the difference among the Best, Average and Worst

values of IGA. Instead, the proposed method aims to solve the exact solutions of the

APDP. Except for that, it can guarantee the robustness of the solution. In summary, three

out of four proposed MILP models perform better than the IGA in both the quality and

robustness of the solutions. This is because the IGA is one of the approximation algo-

rithms, and it cannot guarantee obtaining the same solution within the same time limit.

This is the commonness of most approximation algorithms. With regard to MILP for-

mulation, it is solved by the exact Branch-and-Cut (B&C) algorithm of CPLEX, and the

same solution within the same time limit can be obtained.

Table 5. Computational results of our MILP models and the IGA.

Case Nm
IGA

Model 1 Model 2 Model 3 Model 4
Best Average Worst

1

2 89 90.3 93 89 89 89 89

3 89 89 89 89 89 89 89

4 89 89 89 89 89 89 89

2

2 20.5 20.8 21 25.5 20.5 20.5 20.5

3 20 20 20 20 20 20 20

4 18 18 18 18 18 18 18

3

2 1728 1731.9 1736 - 1727 1726 1726

3 1505 1516.6 1525 - 1445 1445 1445

4 1445 1454.9 1467 - 1445 1445 1445

4

2 400 414.8 426 - - 365 384

3 342 350.5 357 - - 338 338

4 306 312.8 317 - - 305 310

The best values are marked in bold.

6. Conclusions

This paper is focused on exploring the exact solutions of asynchronous parallel dis-

assembly planning (APDP) with minimal makespan during the disassembly process. A

basic nonlinear mathematical model is presented to demonstrate the APDP. To improve

the basic model, four MILP models are further developed using linearization or relaxa-

tion techniques. We employ the branch-and-cut algorithm embedded in CPLEX to solve

Figure 4. Gantt charts of Case 4 with 2–4 manipulators. (a) Case 4 with 2 manipulators (Cmax = 365).
(b) Case 4 with 3 manipulators (Cmax = 338). (c) Case 4 with 4 manipulators (Cmax = 305).

5.2. Result Comparisons with IGA

The exact solutions obtained from the proposed MILP models are compared with
the solutions from the IGA in [4]. Table 5 shows the result comparisons, in which the
best solution for each instance is highlighted. It can be seen that IGA can obtain seven
best solutions in 12 test instances. Models 1–4 can identify 5, 9, 12, and 10 best solutions,
respectively. Obviously, IGA outperforms Model 1, while it is not as good as Models 2–4.
On the other hand, IGA cannot ensure that the same solution is obtained in each test,
which can be demonstrated by the difference among the Best, Average and Worst values of
IGA. Instead, the proposed method aims to solve the exact solutions of the APDP. Except
for that, it can guarantee the robustness of the solution. In summary, three out of four
proposed MILP models perform better than the IGA in both the quality and robustness of
the solutions. This is because the IGA is one of the approximation algorithms, and it cannot
guarantee obtaining the same solution within the same time limit. This is the commonness
of most approximation algorithms. With regard to MILP formulation, it is solved by the
exact Branch-and-Cut (B&C) algorithm of CPLEX, and the same solution within the same
time limit can be obtained.

Mathematics 2022, 10, 3854 13 of 16

Table 5. Computational results of our MILP models and the IGA.

Case Nm
IGA

Model 1 Model 2 Model 3 Model 4
Best Average Worst

1

2 89 90.3 93 89 89 89 89

3 89 89 89 89 89 89 89

4 89 89 89 89 89 89 89

2

2 20.5 20.8 21 25.5 20.5 20.5 20.5

3 20 20 20 20 20 20 20

4 18 18 18 18 18 18 18

3

2 1728 1731.9 1736 - 1727 1726 1726

3 1505 1516.6 1525 - 1445 1445 1445

4 1445 1454.9 1467 - 1445 1445 1445

4

2 400 414.8 426 - - 365 384

3 342 350.5 357 - - 338 338

4 306 312.8 317 - - 305 310

The best values are marked in bold.

6. Conclusions

This paper is focused on exploring the exact solutions of asynchronous parallel dis-
assembly planning (APDP) with minimal makespan during the disassembly process. A
basic nonlinear mathematical model is presented to demonstrate the APDP. To improve
the basic model, four MILP models are further developed using linearization or relaxation
techniques. We employ the branch-and-cut algorithm embedded in CPLEX to solve the
models. In the experimental tests, the four MILP models are analyzed from the perspective
of size complexity. Then, the computational performance of each model is evaluated and
compared by solving a set of instances. The obtained results indicate that Model 3 performs
best, Models 2 and 4 are secondary, and the worst is Model 1. Finally, the obtained exact
solutions are compared with the existing solutions from an improved genetic algorithm
(IGA). The comparison demonstrates that three out of four proposed models can obtain
better solutions than the IGA.

In this paper, only 12 tests are done to evaluate the differences of different MILP
models. We welcome related researchers to use our MILP formulations to solve more
different-sized instances and find more differences between different MILP models. It is
undeniable that the efficiency of IGA (approximation algorithm) will be much higher than
the MILP model for solving large-sized instances, this has been proved by much existing
research for solving other combinatorial optimization problems [21,40]. This is because,
with the increase of the size of the instance, the solution space, the number of decision
variables, and the number of constraints will enlarge exponentially, which will result in
difficult branching and finding new low bounds of the B&C algorithm.

In future studies, other important factors such as the recovered profit of EOL products
and the manipulator configuration will be considered as the objective for APDP, which
could help find much better optimal solutions that involve the balance between disassembly
efficiency, cost, and profit.

Author Contributions: L.M.: Writing—Original draft, methodology. B.Z.: conceptualization. Y.R.:
validation, supervision. H.S.: formal analysis. K.G.: validation. C.Z.: editing. All authors have read
and agreed to the published version of the manuscript.

Funding: This research is supported by the Funds for National Natural Science Foundation of China
[grant numbers 52205529, 52205526 and 62173356], the Natural Science Foundation of Shandong
Province [grant numbers ZR2021QE195 and ZR2021QF036], the Basic and Applied Basic Research

Mathematics 2022, 10, 3854 14 of 16

Foundation of Guangdong Province of China (Grant No. 2019A1515110399) and Guangyue Youth
Scholar Innovation Talent Program support received from Liaocheng University [LCUGYTD2022-03].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

With regard to the case considering unlimited manipulators, the four MILP models are
as follows. Model 1 is subjected to constraint sets (A1)–(A8), Model 2 is subjected to con-
straint sets (A1)–(A12), Model 3 is subjected to constraint sets (A4)–(A8) and (A13)–(A14),
and Model 4 is subjected constraint sets (A4)–(A8) and (A15)–(A18).

N

∑
p=1

xi,p = 1, ∀i (A1)

N

∑
i=1

xi,p ≤ 1, ∀p (A2)

N

∑
i=1

xi,p ≥
N

∑
j=1

xj,p+1, ∀ p ∈ {1, 2, . . . , N − 1} (A3)

si ≥ sj + tj, ∀i, j ∈ ANDP(i) (A4)

si ≥ sj + tj, ∀i, ∃ j ∈ ORP(i) (A5)

si ≥ sj + tj or sj ≥ si + ti, ∀i, j ∈W(i) (A6)

Cmax ≥ si + ti, ∀i (A7)

si ≥ 0, ∀i (A8)

smp+1 ≥ smp +
N

∑
i=1

xi,pti, ∀i, p ∈ {1, 2, . . . , N − 1} (A9)

smp ≤ si + M(1− xi,p), ∀i, p (A10)

smp ≥ si −M(1− xi,p), ∀i, p (A11)

smp ≥ 0, ∀p (A12)

sj ≥ si + ti −M(1− yi,j), ∀m, i, j, i < j (A13)

sj + tj ≤ si + Myi,j, ∀m, i, j, i < j (A14)

N

∑
i=0

ui,j = 1, ∀j (A15)

N

∑
i=0

ui,j =
N

∑
i=0

uj,i,∀j ∈ {0, 1, . . . , N} (A16)

N

∑
j=1

u0,j ≤ 1 (A17)

s0 = 0 (A18)

Mathematics 2022, 10, 3854 15 of 16

References
1. Ren, Y.; Zhang, C.; Zhao, F.; Tian, G.; Lin, W.; Meng, L.; Li, H. Disassembly line balancing problem using interdependent

weights-based multi-criteria decision making and 2-Optimal algorithm. J. Clean. Prod. 2018, 174, 1475–1486. [CrossRef]
2. Colledani, M.; Battaïa, O. A decision support system to manage the quality of End-of-Life products in disassembly systems. CIRP

Ann. Manuf. Technol. 2016, 65, 41–44. [CrossRef]
3. Ren, Y.; Tian, G.; Zhao, F.; Yu, D.; Zhang, C. Selective cooperative disassembly planning based on multi-objective discrete artificial

bee colony algorithm. Eng. Appl. Artif. Intell. 2017, 64, 415–431. [CrossRef]
4. Ren, Y.; Zhang, C.; Zhao, F.; Xiao, H.; Tian, G. An asynchronous parallel disassembly planning based on genetic algorithm. Eur. J.

Oper. Res. 2018, 269, 647–660. [CrossRef]
5. Zhang, X.F.; Zhang, S.Y. Product cooperative disassembly sequence planning based on branch-and-bound algorithm. Int. J. Adv.

Manuf. Technol. 2010, 51, 1139–1147. [CrossRef]
6. Kara, S.; Pornprasitpol, P.; Kaebernick, H. Selective Disassembly Sequencing: A Methodology for the Disassembly of End-of-Life

Products. CIRP Ann. Manuf. Technol. 2006, 55, 37–40. [CrossRef]
7. Xiu, F.Z.; Gang, Y.; Zhi, Y.H.; Cheng, H.P.; Guo, Q.M. Parallel disassembly sequence planning for complex products based on

fuzzy-rough sets. Int. J. Adv. Manuf. Technol. 2014, 72, 231–239.
8. Smith, S.; Hung, P.-Y. A novel selective parallel disassembly planning method for green design. J. Eng. Des. 2015, 26, 283–301.

[CrossRef]
9. Pistolesi, F.; Lazzerini, B. TeMA: A Tensorial Memetic Algorithm for Many-Objective Parallel Disassembly Sequence Planning in

Product Refurbishment. IEEE Trans. Ind. Inform. 2019, 15, 3743–3753. [CrossRef]
10. Ren, Y.; Zhang, C.; Zhao, F.; Triebe, M.J.; Meng, L. An MCDM-Based Multiobjective General Variable Neighborhood Search

Approach for Disassembly Line Balancing Problem. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 3770–3783. [CrossRef]
11. Feng, Y.; Zhou, M.; Tian, G.; Li, Z.; Zhang, Z.; Zhang, Q.; Tan, J. Target Disassembly Sequencing and Scheme Evaluation for CNC

Machine Tools Using Improved Multiobjective Ant Colony Algorithm and Fuzzy Integral. IEEE Trans. Syst. Man Cybern. Syst.
2019, 49, 2438–2451. [CrossRef]

12. Hsu, H.-P. A Fuzzy Knowledge-Based Disassembly Process Planning System Based on Fuzzy Attributed and Timed Predi-
cate/Transition Net. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 1800–1813. [CrossRef]

13. Tang, Y. Learning-Based Disassembly Process Planner for Uncertainty Management. IEEE Trans. Syst. Man Cybern. Part A Syst.
Hum. 2008, 39, 134–143. [CrossRef]

14. Tang, Y.; Zhou, M. Fuzzy-Petri-net based disassembly planning considering human factors. IEEE Trans. Syst. Man Cybern. A Syst.
2004, 26, 718–726. [CrossRef]

15. Güngör, A.; Gupta, S.M. Disassembly sequence plan generation using a branch-and-bound algorithm. Int. J. Prod. Res. 2001, 39,
481–509. [CrossRef]

16. Ren, Y.; Yu, D.; Zhang, C.; Tian, G.; Meng, L.; Zhou, X. An improved gravitational search algorithm for profit-oriented partial
disas-sembly line balancing problem. Int. J. Prod. Res. 2017, 55, 7302–7316. [CrossRef]

17. Johnson, M.R.; Wang, M.H. Economical evaluation of disassembly operations for recycling, remanufacturing and reuse. Int. J.
Prod. Res. 1998, 36, 3227–3252. [CrossRef]

18. Kang, J.-G.; Lee, D.-H.; Xirouchakis, P.; Persson, J.-G. Parallel Disassembly Sequencing with Sequence-Dependent Operation
Times. CIRP Ann. 2001, 50, 343–346. [CrossRef]

19. Lambert, A. Optimizing disassembly processes subjected to sequence-dependent cost. Comput. Oper. Res. 2007, 34, 536–551.
[CrossRef]

20. Edis, E.B.; Ilgin, M.A.; Edis, R.S. Disassembly line balancing with sequencing decisions: A mixed integer linear programming
model and extensions. J. Clean. Prod. 2019, 238, 117826. [CrossRef]

21. Meng, L.; Zhang, C.; Shao, X.; Ren, Y.; Ren, C. Mathematical modelling and optimisation of energy-conscious hybrid flow shop
scheduling problem with unrelated parallel machines. Int. J. Prod. Res. 2018, 57, 1119–1145. [CrossRef]

22. Pistolesi, F.; Lazzerini, B.; Mura, M.D.; Dini, G. EMOGA: A Hybrid Genetic Algorithm with Extremal Optimization Core for
Multi-objective Disassembly Line Balancing. IEEE Trans. Ind. Inform. 2018, 14, 1089–1098. [CrossRef]

23. Sanchez, B.; Haas, C. A novel selective disassembly sequence planning method for adaptive reuse of buildings. J. Clean. Prod.
2018, 183, 998–1010. [CrossRef]

24. Seo, K.-K.; Park, J.-H.; Jang, D.-S. Optimal Disassembly Sequence Using Genetic Algorithms Considering Economic and
Environmental Aspects. Int. J. Adv. Manuf. Technol. 2001, 18, 371–380. [CrossRef]

25. Kongar, E.; Gupta, S.M. Disassembly sequencing using genetic algorithm. Int. J. Adv. Manuf. Technol. 2005, 30, 497–506. [CrossRef]
26. Tian, G.; Zhou, M.; Chu, J. A Chance Constrained Programming Approach to Determine the Optimal Disassembly Sequence.

IEEE Trans. Autom. Sci. Eng. 2013, 10, 1004–1013. [CrossRef]
27. Tian, G.; Zhou, M.; Li, P. Disassembly Sequence Planning Considering Fuzzy Component Quality and Varying Operational Cost.

IEEE Trans. Autom. Sci. Eng. 2017, 15, 748–760. [CrossRef]
28. Kheder, M.; Trigui, M.; Aifaoui, N. Disassembly sequence planning based on a genetic algorithm. Proc. Inst. Mech. Eng. Part C: J.

Mech. Eng. Sci. 2014, 229, 2281–2290. [CrossRef]
29. Guo, X.; Liu, S.; Zhou, M.; Tian, G. Dual-Objective Program and Scatter Search for the Optimization of Disassembly Sequences

Subject to Multiresource Constraints. IEEE Trans. Autom. Sci. Eng. 2017, 15, 1091–1103. [CrossRef]

http://doi.org/10.1016/j.jclepro.2017.10.308
http://doi.org/10.1016/j.cirp.2016.04.121
http://doi.org/10.1016/j.engappai.2017.06.025
http://doi.org/10.1016/j.ejor.2018.01.055
http://doi.org/10.1007/s00170-010-2682-7
http://doi.org/10.1016/S0007-8506(07)60361-8
http://doi.org/10.1080/09544828.2015.1045841
http://doi.org/10.1109/TII.2019.2904631
http://doi.org/10.1109/TSMC.2018.2862827
http://doi.org/10.1109/TSMC.2018.2847448
http://doi.org/10.1109/TSMC.2016.2531659
http://doi.org/10.1109/TSMCA.2008.2007990
http://doi.org/10.1109/icsmc.2004.1401189
http://doi.org/10.1080/00207540010002838
http://doi.org/10.1080/00207543.2017.1341066
http://doi.org/10.1080/002075498192049
http://doi.org/10.1016/S0007-8506(07)62136-2
http://doi.org/10.1016/j.cor.2005.03.012
http://doi.org/10.1016/j.jclepro.2019.117826
http://doi.org/10.1080/00207543.2018.1501166
http://doi.org/10.1109/TII.2017.2778223
http://doi.org/10.1016/j.jclepro.2018.02.201
http://doi.org/10.1007/s001700170061
http://doi.org/10.1007/s00170-005-0041-x
http://doi.org/10.1109/TASE.2013.2249663
http://doi.org/10.1109/TASE.2017.2690802
http://doi.org/10.1177/0954406214557340
http://doi.org/10.1109/TASE.2017.2731981

Mathematics 2022, 10, 3854 16 of 16

30. Kalayci, C.B.; Gupta, S.M. Artificial bee colony algorithm for solving sequence-dependent disassembly line balancing problem.
Expert Syst. Appl. 2013, 40, 7231–7241. [CrossRef]

31. Lu, Q.; Ren, Y.; Jin, H.; Meng, L.; Li, L.; Zhang, C.; Sutherland, J.W. A hybrid metaheuristic algorithm for a profit-oriented and
ener-gy-efficient disassembly sequencing problem. Robot. Cim. Int. Manuf. 2020, 61, 101828. [CrossRef]

32. Tian, G.; Ren, Y.; Feng, Y.; Zhou, M.; Zhang, H.; Tan, J. Modeling and Planning for Dual-Objective Selective Disassembly Using
and/or Graph and Discrete Artificial Bee Colony. IEEE Trans. Ind. Inform. 2018, 15, 2456–2468. [CrossRef]

33. Li, W.; Xia, K.; Gao, L.; Chao, K.-M. Selective disassembly planning for waste electrical and electronic equipment with case studies
on liquid crystaldisplays. Robot. Comput. Manuf. 2013, 29, 248–260. [CrossRef]

34. Wang, K.; Li, X.; Gao, L.; Garg, A. Partial disassembly line balancing for energy consumption and profit under uncertainty. Robot.
Comput. Manuf. 2019, 59, 235–251. [CrossRef]

35. Zhang, B.; Pan, Q.-K.; Gao, L.; Li, X.; Meng, L.-L.; Peng, K.-K. A multiobjective evolutionary algorithm based on decomposition
for hybrid flowshop green scheduling problem. Comput. Ind. Eng. 2019, 136, 325–344. [CrossRef]

36. Meng, L.; Zhang, C.; Shao, X.; Ren, Y. MILP models for energy-aware flexible job shop scheduling problem. J. Clean. Prod. 2018,
210, 710–723. [CrossRef]

37. Castro, P.M.; Grossmann, I.E. Generalized Disjunctive Programming as a Systematic Modeling Framework to Derive Scheduling
Formulations. Ind. Eng. Chem. Res. 2012, 51, 5781–5792. [CrossRef]

38. Meng, L.; Zhang, C.; Shao, X.; Zhang, B.; Ren, Y.; Lin, W. More MILP models for hybrid flow shop scheduling problem and its
extended problems. Int. J. Prod. Res. 2019, 58, 3905–3930. [CrossRef]

39. Pan, C.-H. A study of integer programming formulations for scheduling problems. Int. J. Syst. Sci. 1997, 28, 33–41. [CrossRef]
40. Meng, L.; Zhang, C.; Zhang, B.; Ren, Y. Mathematical Modeling and Optimization of Energy-Conscious Flexible Job Shop

Scheduling Problem with Worker Flexibility. IEEE Access 2019, 7, 68043–68059. [CrossRef]
41. Castro, P.M.; Zeballos, L.J.; Méndez, C.A. Hybrid time slots sequencing model for a class of scheduling problems. AIChE J. 2011,

58, 789–800. [CrossRef]
42. Meng, L.; Zhang, C.; Ren, Y.; Zhang, B.; Lv, C. Mixed-integer linear programming and constraint programming formulations for

solving distributed flexible job shop scheduling problem. Comput. Ind. Eng. 2020, 142, 106347. [CrossRef]
43. Meng, L.; Gao, K.; Ren, Y.; Zhang, B.; Sang, H.; Zhang, C. Novel MILP and CP Models for Distributed Hybrid Flowshop

Scheduling Problem with Se-quence-Dependent Setup Times. Swarm Evol. Comput. 2022, 71, 101058. [CrossRef]

http://doi.org/10.1016/j.eswa.2013.06.067
http://doi.org/10.1016/j.rcim.2019.101828
http://doi.org/10.1109/TII.2018.2884845
http://doi.org/10.1016/j.rcim.2013.01.006
http://doi.org/10.1016/j.rcim.2019.04.014
http://doi.org/10.1016/j.cie.2019.07.036
http://doi.org/10.1016/j.jclepro.2018.11.021
http://doi.org/10.1021/ie2030486
http://doi.org/10.1080/00207543.2019.1636324
http://doi.org/10.1080/00207729708929360
http://doi.org/10.1109/ACCESS.2019.2916468
http://doi.org/10.1002/aic.12609
http://doi.org/10.1016/j.cie.2020.106347
http://doi.org/10.1016/j.swevo.2022.101058

	Introduction
	Literature Review
	Problem Description
	Representation of DP
	Synchronous Parallel Disassembly and Asynchronous Parallel Disassembly

	MILP Modeling of APDP
	Model 1
	Model 2
	Model 3
	Model 4

	Computational Results
	Comparisons of MILP Models
	Size Complexity
	Computational Complexity

	Result Comparisons with IGA

	Conclusions
	Appendix A
	References

