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V.; Kuk, K.; Popović, B.; Čisar, P.
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Abstract: This paper describes one of the non-linear (and non-stationary) stochastic models, the
GSB (Gaussian, or Generalized, Split-BREAK) process, which is used in the analysis of time series
with pronounced and accentuated fluctuations. In the beginning, the stochastic structure of the GSB
process and its important distributional and asymptotic properties are given. To that end, a method
based on characteristic functions (CFs) was used. Various procedures for the estimation of model
parameters, asymptotic properties, and numerical simulations of the obtained estimators are also
investigated. Finally, as an illustration of the practical application of the GSB process, an analysis is
presented of the dynamics and stochastic distribution of the infected and immunized population in
relation to the disease COVID-19 in the territory of the Republic of Serbia.

Keywords: stochastic processes; emphatic fluctuations; non-stationarity; asymptotic normality;
Gaussian distribution; estimation; COVID-19
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1. Introduction

Stochastic models which are used in the analysis of time series with pronounced and
permanent fluctuations are of particular importance in contemporary research. For this
purpose, we start from the basic results of Engle and Smith [1], who first introduced the
so-called STOchastic Permanent BREAKing process, popularly called the STOPBREAK
process. Many authors have since considered the STOPBREAK notion, primarily in the field
of econometrics. Some of its modifications were considered, among others, in [2–5], while
its application was presented, for instance, in [6–8].

The original modification of the STOPBREAK process, named the Split-BREAK model,
was introduced in [9]. After that, the general form of this process, named Gaussian (or
Generalized) Split-BREAK (GSB) process, was proposed in [10–12]. This stochastic model also
can be viewed as a generalization of STOPBREAK, as well as a well-known linear Auto-
Regressive Moving Average (ARMA) model. In that way, the GSB process has already been
applied in analyzing non-linear time series with pronounced and permanent fluctuations.
Let us point out that in the mentioned works, of main consideration were the stochastic
properties of the stationary components of the GSB process. The main goal of this paper is
a more detailed investigation of the non-stationary components (time series) of the GSB
model. These series naturally have a more complex stochastic structure, but they are of
particular interest in contemporary research [13–18]. To this end, the asymptotic properties
of distributions of the GSB series will also be of specific interest.

In addition to the theoretical aspects, the application of the GSB process in describing
the dynamics and finding an adequate stochastic distribution of the infected and immunized
population with respect to COVID-19 on the territory of the Republic of Serbia was also
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considered. We point out that many authors who deal with this, still current, issue have
contributed various theoretical models that investigate it from several aspects. For instance,
rigorous mathematical models, usually based on analyzing and solving systems of partial
coupled equations, have been proposed, among others, in [19–21]. On the other hand, works
in [22–25] combine deterministic and stochastic approaches, such as multiple and logistic
regression, multifactor correlation, and the least squares estimation method, to predict the
various effects caused by the COVID-19 pandemic. A particularly interesting approach
is given in [26,27] where, to predict the COVID-19 dynamics more accurately, machine
learning techniques and the construction of a complete information system are used. Finally,
to the best of our knowledge, most stochastic approaches to-date in the analysis of infection,
immunization, and other indicators related to the disease of COVID-19 were based on
the use of the gamma distribution [21,28], as well as a log-normal distribution [29]. This
is precisely one of the reasons why we believe that a different approach is given here,
primarily in stochastic modeling and research of this problem. At the same time, let us
emphasize that our main goal is to model the temporal dynamics of the COVID-19 disease,
based on a formal study of the stochastic structure of the GSB model. In this sense, some
other indicators and features of this disease, which can also affect its dynamics (see, for
instance [30–32]), can to a certain degree be a limitation of this approach.

In the next section, starting from previous works [9–12], some definitions and basic
stochastic properties of the GSB process are discussed. Section 3 contains the main and
novel results related to this process’s detailed stochastic structure and asymptotic properties,
where the method of characteristic functions (CFs) was used as the basic tool. Section 4
presents the procedure for estimating the unknown parameters of the GSB process and an
investigation of the asymptotic properties of the obtained estimators. Numerical Monte
Carlo simulations of the obtained estimators are considered in Section 5. In addition, the
application of the GSB process in describing the dynamics and distribution of the size of
infected and immunized populations on the territory of the Republic of Serbia is given here.
Finally, concluding remarks are highlighted in Section 6.

2. Definition and Main Properties of the GSB Process

The basic series of GSB processes is defined by the following equality:

yt = mt + εt. (1)

Here, t = 0, 1, . . . , T are the known time values, (mt) is the series of the so-called mar-
tingale means, and (εt) are the innovations, i.e., series of independent identical distributed
(IID) Gaussian N

(
0, σ2) random variables (RVs). Moreover, it is considered that (εt) is

defined on the same probability space (Ω,F , P), expanded by some filtration F = (Ft),
i.e., nondecreasing σ-algebras on Ω. In a practical sense, filtration (Ft) represents a set of
“information” at time t. Therefore, it is assumed that, for each t = 0, 1, . . . , T, the RVs εt
are Ft-adaptive. Accordingly, the conditional expectation, as well as the variance of RVs εt,
are, respectively,

E(εt|Ft−1) = 0, V(εt|Ft−1) = E
(

ε2
t

∣∣∣Ft−1

)
= σ2.

On the other hand, for martingale means (mt), we assume that they are defined by the
following recurrence relation:

mt = mt−1 + qt−1εt−1 = m0 +
t−1

∑
j=0

qjε j. (2)
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Here, we can effectively assume that m0
as
= µ (const.) and ε−1 = ε0

as
= 0. Meanwhile, qt is the

so-called noise indicator, i.e., the RV that depends on innovations (εt) in the following way:

qt = I
(

ε2
t−1 > c

)
=

{
1, ε2

t−1 > c
0, ε2

t−1 ≤ c.

The value c > 0 represents the critical value of the reaction, i.e., the significance of the
previous realization of innovations (εt) which allow their present values to be included
in Equation (2). In other words, value qt−1 = 0 indicates that there is no change in the
martingale mean value mt, compared to the previous value mt−1. Consequently, the value
yt will be obtained with a “small” fluctuation, which depends only on εt. By contrast, in
the case of qt = 1 an emphatic (permanent) fluctuation of yt is registered. Thus, the level of
previous realizations of series (εt) affects the degree of variations in the series (yt), that is,
it indicates the intensity of fluctuations in the GSB process. Furthermore, according to the
previous equalities, it follows that:

E(yt|Ft−1) = mt + E(εt|Ft−1) = mt,

from which we conclude that the series realizations (yt) are “close” to the martingale means
(mt). Moreover, it is valid to put:

E(yt) = E[E(yt|Ft−1)] = E(mt) = E(mt−1) + E(qt−1εt−1)
= E(mt−1) = · · · = E(m0) = µ,

i.e., the mean values of the series (yt) and (mt) have equal, constant values. We notice that
the previous equalities speak a lot about the stochastic nature of the GSB process, that is,
the additive decomposition (1). Since the sequence (mt) is measurable concerning the field
Ft−1, it represents a component of predictability and stability of the GSB process. In contrast,
the innovations series (εt) is the deviation factor (white noise) of the basic GSB series (yt) in
relation to the martingale means (mt).

Further, we determine the conditional variance of the series (yt) from the equation:

V(yt|Ft−1) = E(y2
t |Ft−1)−m2

t = 2mtE(εt) + E(ε2
t ) = σ2,

and from here, one obtains:

V(yt) = E(y2
t )− µ2 = E(m2

t ) + 2E(mtεt) + E(ε2
t )− µ2 = V(mt) + σ2.

For each t = 1, . . . , T, it also holds that:

V(mt) = E
(
m2

t
)
− µ2

= E
(
m2

t−1
)
+ 2E(mt−1qt−1εt−1) + E

(
q2

t−1ε2
t−1
)
− µ2

= V(mt−1) + acσ2,

where ac = E(qt) = E
(
q2

t
)
= P

{
ε2

t > c
}

. It follows that the variance of martingale means
(mt), under the assumption m0 ≡ µ(const.), can be expressed as:

V(mt) = tacσ2, t ≥ 0.

From here, the variance of the basic series (yt) can be obtained as follows:

V(yt) = V(mt) + σ2 = (tac + 1)σ2, t ≥ 0.

According to the previous equalities, the variances of the series (yt) and (mt) have non-
constant values that depend on the point in time (t) in which they are observed.
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Correlation functions of the series (yt) and (mt) can be obtained in a similar way. Note
that for every s > t ≥ 0, it holds that:

Cov(mt, ms) = E(mtms)− µ2 = E(mtms−1) + E(mtqs−1εs−1)− µ2

= Cov(mt, ms−1),

and it is easy to see that the covariance of the series (mt) satisfies:

Cov(mt, ms) = V(mt), s > t ≥ 0.

From here, the correlation function of the martingale means is obtained:

K̃(s, t) =
Cov(mt, ms)√

V(mt)·
√

V(ms)
=

{
min(s,t)√

s·t , s 6= t
1, s = t.

Similarly, according to equalities:

Cov(yt, ys) = E(ytys)− µ2 = E(ytms) + E(ytεs)− µ2

= E(mtms) + E(εtms)− µ2 = Cov(mt, ms) + acσ2

= V(mt) + acσ2 = V(yt), s > t ≥ 0,

the correlation function for (yt), can be obtained as follows:

K(s, t) =

{ acmin(s,t)+1√
(acs+1)·(act+1)

, s 6= t

1, s = t.

Therefore, both correlation functions depend on the time arguments t, s and indicate
the non-stationarity of the series (yt) and (mt). This fact requires some more complex
techniques to examine their properties. Moreover, note that when s > t ≥ 0,

lim
s→t

K̃(s, t) = lim
s→t

min(s,t)√
s·t = t√

t2 = 1

lim
s→t

K(s, t) = lim
s→t

acmin(s,t)+1√
(acs+1)·(act+1)

= act+1√
(act+1)2 = 1.

Thus, the correlation functions of both series (yt) and (mt) satisfy the L2-continuity condition.
At the end of this section, we define a series of increments of the GSB process by the

following equality:
Xt = yt − yt−1, t = 1, . . . , T. (3)

Almost all authors who have studied STOPBREAK processes highlight the importance of
this sequence. This series, as can be easily seen from Equations (1) and (2), can be given in
the following form:

Xt = εt − θt−1εt−1, (4)

where θt = 1− qt = I
(
ε2

t−1 ≤ c
)
. The series (Xt) is named a Splitting Moving Average

process (of order 1), shortened to Split-MA (1) process, because it operates in two regimes.
Fluctuations of innovations (εt) that were emphasized in the previous time moment (t − 1)
imply θt−1 = 0, so the equality Xt = εt holds. On the other hand, fluctuations that do not
exceed the critical value c give a representation of (Xt) in the form of a standard, linear MA
(1) process. In this way, (Xt) has similar properties to the MA (1) models, which can be
applied in research into it. Thus, taking earlier assumptions, the mean value and variance
of this series, obtained by simple computation, are:

E(Xt) = 0, V(Xt) = E
(

X2
t

)
= σ2(bc + 1),
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where bc = 1− ac = P
(
ε2

t−1 ≤ c
)
. Moreover, the covariance of this sequence is:

Cov(Xt, Xs) =


(bc + 1)σ2, s = t
−bcσ2, |s− t| = 1
0, otherwise,

and obviously has an identical structure to the standard MA (1) series. Based on the ob-
tained covariance, we can easily see that the series (Xt) is stationary and that its correlation
function can be written in the form:

ρX(h) :=
Cov(Xt, Xt+h)

V(Xt)
=


1, h = 0
−bc/(bc + 1), h = ±1

0, otherwise.

Finally, according to Equations (3) and (4), it follows that:

yt − yt−1 = εt − θt−1εt−1, t = 1, . . . , T, .

which can be viewed as a non-linear Integrated Auto-Regressive Moving Average (ARIMA)
model with “temporary” components (θt−1εt−1). These imply the specific structure of the
series (Xt), as well as other components of the GSB process.

In the following section, as we have already pointed out, we also discuss the applica-
tion of the GSB model in describing the dynamics of infection and immunization of the
population on the territory of the Republic of Serbia. As will be seen, this kind of dynamics
has pronounced fluctuations that can be described by the non-stationary components of
the GSB process, primarily by its main time series (yt). In that case, due to its stationarity,
the Split-MA (1) process plays an important role. As an illustration, Figure 1 shows the
realizations of all the above-mentioned series obtained by the Monte Carlo simulation of
the GSB model.
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Figure 1. Dynamics of the basic series of the GSB model. (Parameter values are: µ = 0 and c = σ = 1).

3. Stochastic Distribution and Asymptotic Properties of the GSB Process

In this section, some stochastic properties of the GSB process, regarding the distribution
and asymptotic behavior of its basic stochastic components, are discussed in more detail.
As explained in the previous section, the GSB model, given by Equations (1)–(4), contains
four stochastic components: the basic series (y), innovations (εt), the martingale means
(mt), and the series of increments (Xt). At the same time, series (εt) and (Xt) represent the
stationary components of the GSB process, where (Xt) is “close” to the linear MA model.
In general form, the stochastic structure of the series (Xt) is described in [12], where the
method of characteristic functions (CFs) was used. Following this approach, the basic
stochastic properties of the series (Xt) can be expressed by the following statement.
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Theorem 1. Let (Xt) be the Split-MA (1) process defined by Equation (4). For arbitrary x ∈ R and
t = 0, ·1, . . . , T, the cumulative distribution function (CDF) of this stochastic process is given by:

FX(x) := P{Xt < x} = (1− bc)Fε(x) + bcF√2ε(x), (5a)

where Fε(x) and F2ε(x) are CDFs of RVs εt : N
(
0, σ2) and

√
2εt : N

(
0, 2σ2) , respectively.

Proof. For arbitrary t = 0, 1, . . . , T, let us denote the series of RVs ηt = θtεt. Since θt and
εt are mutually independent RVs, it follows

E(ηt) = E(θt)E(εt) = 0,
V(ηt) = E

(
θ2

t
)
E
(
ε2

t
)
= bcσ2.

Moreover, it is simply shown that Cov(ηt, ηt+h) = 0 holds for every h 6= 0, i.e., (ηt) is a
series of uncorrelated RVs. By applying conditional probabilities, the CDF of these RVs can
be obtained as follows:

Fη(x) : = P{ηt < x}
= P{ηt < x|θt = 1}·P{θt = 1}+ P{ηt < x|θt = 0}·P{θt = 0}
= P{εt < x}·P{θt = 1}+ P{x > 0}·P{θt = 0}
= bcFε(x) + (1− bc)F0(x),

where F0(x) = I(x > 0) is the CDF of the RVI0
as
= 0. Based on that, for the CF of the RVsηt,

one obtains:

ϕη(u) : =
+∞∫
−∞

eiuxFη(dx) =
+∞∫
−∞

eiux[bcFε + (1− bc)F0](dx)

= bc ϕε(u) + (1− bc)ϕ0(u).

Here, ϕε(u) = e−
σ2u2

2 and ϕ0(u) ≡ 1 are CFs of the RVs εt и I0, respectively. By substituting
these CFs into the previous equality, we have:

ϕη(u) = 1 + bc

(
e−

σ2u2
2 − 1

)
,

whence, by applying Equation (4), it follows that the CF of RVs Xt is:

ϕX(u) = ϕε(u)·ϕη(u) = e−
σ2u2

2

[
1 + bc

(
e−

σ2u2
2 − 1

)]
= (1− bc)e−

σ2u2
2 + bce−σ2u2

.

According to the last equality and Lévy’s correspondence theorem (see, e.g., [33] (p. 181)),
Equation (5) immediately follows, that is, the statement of the theorem is proved. �

Remark 1. As shown in [12], the CDF of RVs Xt can also be given in the following form:

FX(x) := P{Xt < x} = [(1− bc)F0(x) + bcFε(x)] ⊗ Fε(x), (5b)

where “⊗” denotes the convolution of two (arbitrary) CDFs F(x), G(x):

(F⊗ G)(x) :=
+∞∫
−∞

F(x− y)G(dy).
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The equivalence of Equations (5a) and (5b) are directly obtained from the fact that CDF
F0(x) is neutral for the convolution operator, i.e.,

(F⊗ F0)(x) = (F0 ⊗ F)(x) =
+∞∫
−∞

I(x > y)F(dy) = F(x).

Finally, note that by differentiating Equation (5), the probability density function (PDF) of
the series (Xt), one obtains:

fX(x) =
1− bc

σ
√

2π
e−

x2

2πσ2 +
bc

2σ
√

π
e−

x2

4πσ2 .

By a similar procedure as in the previous theorem and using the convolutions of
CDFs, we describe the stochastic distribution of other components of the GSB process, i.e.,
the series (mt) and (yt). As already shown in the previous section, these series represent
non-stationary stochastic processes with a constant mean µ = E(mt) = E(yt). Accordingly,
the following statement is valid.

Theorem 2. Let (yt) and (mt) be the time series defined by Equations (1) and (2), respectively,
where m0

as
= µ (const). For arbitrary x ∈ R and t = 0, ·1, . . . , T, the CDFs of these series are

as follows:

Fm(x, t) := P{mt < x} =
t
⊗

j=1

[
(1− bc)Fj(x) + bcF0(x)

]
⊗Fµ(x). (6)

Fy(x, t) := P{yt < x} =
t
⊗

j=1

[
(1− bc)Fj(x) + bcF0(x)

]
⊗ Fµ(x)⊗ Fε(x). (7)

Here, F0(x) and Fj(x) are the CDFs of previously defined RVs I0 and εt, respectively, and
Fµ(x) = Fm(x, 0) is the CDF of the RV m0

as
= µ. In addition, when T = +∞, the following

convergences (in distribution) are valid:

1√
t
mt

d→ N
(

0, acσ2
)

,
1√

t
yt

d→ N
(

0, acσ2
)

, t→ +∞. (8)

Proof. For arbitrary t = 0, 1, . . . , T, let us introduce a series of RVs ξt = qtεt. In the same
way as in the proof of the previous theorem, it is shown that (ξt) is a series of mutually
uncorrelated RVs, with E(ξt) = 0, D(ξt) = acσ2, where ac = E(qt) = P

{
ε2

t > c
}
= 1− bc.

By reapplying the conditional probabilities, the CDF of ξt is obtained as follows:

Fξ(x) : = P{ξt < x}
= P{ξt < x|qt = 1·P{qt = 1}+ P{ξt < x| qt = 0}·P{qt = 0}
= P{εt < x}·P{qt = 1}+ P{x > 0}·P{qt = 0}
= acFε(x) + (1− ac)F0(x).

According to this, their corresponding CF is obtained:

ϕξ(u) =
+∞∫
−∞

eiuxFξ(dx) =
+∞∫
−∞

eiux[acFε + (1− ac)F0](dx)

= ac ϕε(u) + (1− ac)ϕ0(u) = 1 + ac

(
e−

σ2u2
2 − 1

)
= (1− bc)e−

σ2u2
2 + bc.
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Applying Equation (2), we find that the CFs of the RVs (mt) are as follows:

ϕm(u, t) = ϕµ(u)
t−1

∏
j=0

ϕξ(u) = eiuµ

[
(1− bc)e−

σ2u2
2 + bc

]t
, (9)

where ϕµ(u) = eiuµ is CF of the RV m0
as
= µ. Then, Equation (6) immediately follows from

Equation (9) and Lévy’s correspondence theorem [33] (p. 181).
Similarly, by applying the previous Equations (1) and (9), the CFs of the RVs (yt)

are obtained:

ϕy(u, t) = ϕm(u)·ϕε(u) = eiuµ− σ2u2
2

[
(1− bc)e−

σ2u2
2 + bc

]t
. (10)

From here, by reapplying the theorem of Lévy, Equation (7) immediately follows.
To prove the second part of the theorem, i.e., Equation (8), note first that the CFs of

the RVs mt/
√

t and yt/
√

t, when t = 1, 2, . . . , according to Equations (9) and (10), can be
written as follows:

ϕm

(
u√

t
, t
)

= eiuµ/
√

t
[

1 + ac

(
e−

σ2u2
2t − 1

)]t

= eiuµ/
√

t
[
1− acσ2u2

2t + σ
(

u2

t

)]t
,

ϕy

(
u√

t
, t
)

= eiuµ/
√

t− σ2u2
2t

[
1 + ac

(
e−

σ2u2
2t − 1

)]t

= eiuµ/
√

t− σ2u2
2t

[
1− acσ2u2

2t + σ
(

u2

t

)]t
.

Here, σ(z) is an infinitely small value of a higher order than z when z→ 0 . Hence, for a
fixed but arbitrary u ∈ R, we have:

ϕm

(
u√

t
, t
)
→ e−

acσ2u2
2 , ϕy

(
u√

t
, t
)
→ e−

acσ2u2
2 , t→ +∞,

and the convergences thus obtained confirm the asymptotic relations in Equation (8). �

Remark 2. Note again that the proofs of the previous two theorems are based on deter-
mining the CFs of the corresponding time series of the GSB process. In this sense, the
CFs of the uncorrelated series of RVs (ξt) and (ηt) play a fundamental role. The series
(ξt) and (ηt) can be viewed as “new” innovations with “optional” non-zero values, which
essentially describe the stochastic structure of the GSB process. Nevertheless, as the relation
ηt + ξt

as
= εt holds for each t = 0, ·1, . . . , T, it is sufficient to consider only one of these

two series of uncorrelated RVs (which is what was done in the statement of Theorem 2).
Moreover, it can be easily shown that CDFs:

Fξ(u) = (1− bc)Fε(x) + bcF0(x),
Fη(u) = bcFε(u) + (1− bc)F0(u)

are continuous almost everywhere, with the only point of discontinuity x = 0 where
they have “jumps” of the values bc and 1− bc, respectively (see for more detail [34,35]).
Therefore, the CDFs of the series (ξt) and (ηt) are mixtures of Gaussian and discrete type
distribution, usually named Contaminated Gaussian Distribution (CGD). This is another
important fact that disables an application of some of the standard procedures in the
investigation of the properties of non-stationary series (yt) and (mt).

On the other hand, Equation (8) shows that even non-stationary time series (mt) and

(yt) can generate series
(

mt/
√

t
)

and
(

yt/
√

t
)

that converge toward a normal distribution
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when t→ +∞ . Moreover, based on the properties of the non-stationary components of
the GSB process described in Section 2, the time series

(
mt/
√

t
)

has a constant variance

acσ2. These facts will be of importance in the practical application of the GSB process and
can be readily observed based on the convergence of the corresponding CFs ϕm

(
u/
√

t, t
)

and ϕy

(
u/
√

t, t
)

. As an illustration, Figure 2 shows convergences of the modulus of these
CFs, for different time indices (t).
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(
u/
√

t, t
)

and

ϕy

(
u/
√

t, t
)

, when t = 1, 2, . . . , 500. (Parameter values are: µ = c = σ = 1).

At the end of this section, we additionally describe some more asymptotic properties
of series obtained by transformations of non-stationary time series (mt) and (yt). They also
refer to the possibility of finding their asymptotically normal (AN) distributions, which can
be shown by the following statement:

Theorem 3. For arbitrary α ≥ 1 and time series (yt) and (mt), given by Equations (1) and (2),
respectively, let us define the so-called α-mean series:

Mt;α =
1
tα

t

∑
j=1

mj, Yt;α =
1
tα

t

∑
j=1

yj,

Then the following statements hold:

(i). When 1 ≤ α ≤ 3/2, time series Mt;α and Yt;α have an asymptotically normal distribution,
i.e., the following relations, when t→ +∞ , are valid:

Mt;α ∼ N
(

µt1−α,
acσ2t3−2α

3

)
, Yt;α ∼ N

(
µt1−α,

acσ2t3−2α

3

)
. (11)

(ii). When α > 3/2, time series Mt;α and Yt;α asymptotically vanish, i.e.,

Mt;α
d→ I0, Yt;α

d→ I0, t→ +∞. (12)
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Proof. We show the statement of the theorem first for the time series Mt;α. Based on the
definition of time series (mt), i.e., Equation (2), one obtains:

Mt;α = 1
tα

t
∑

j=1
mj =

1
tα

t
∑

j=1

(
m0 +

j−1
∑

k=0
qkεk

)

= 1
tα

[
tm0 +

t−1
∑

j=0
(t− j)qjε j

]
= t1−αm0 +

t
∑

k=1

k
tα ξt−k.

Thus, the series Mt;α is represented as a sum of uncorrelated RVs ξt−k, k = 1, . . . , t. By
applying the well-known properties of the CFs, as well as the expressions for the CF of the
series (ξt), the CFs of Mt;α are as follows:

ϕM;α(u, t) = ϕm

( u
tα−1 , 0

) t

∏
k=1

ϕξ

(
ku
tα

)
= eiuµt1−α

t

∏
k=1

[
1 + ac

(
e−

k2σ2u2

2t2α − 1
)]

.

Taking the logarithm of the function ϕM;α(u, t) gives a function:

ψM(u, t, α) := ln ϕM;α(u, t) = iuµt1−α +
t

∑
k=1

fk(u, t, α),

where fk(u, t, α) := ln
[
1 + ac

(
exp

(
−k2σ2u2t−2α/2

)
− 1
)]

. After some computation, we
find that, when 0 < ac < 1,

∂ fk(0,t,α)
∂u =

− ack2σ2u
t2α e

− k2σ2u2

2t2α

1+ac

(
e
− k2σ2u2

2t2α −1

)
∣∣∣∣∣∣∣∣
u=0

= 0

∂2 fk(0,t,α)
∂u2 =

− ack2σ2

t2α e
− k2σ2u2

2t2α

(
(1−ac)

(
1− k2σ2u2

t2α

)
+ace

− k2σ2u2

2t2α

)
(

1+ac

(
e
− k2σ2u2

2t2α −1

))2

∣∣∣∣∣∣∣∣
u=0

= − ack2σ2

t2α .

Thus, the functions fk(u, t, α) have local maxima at the point u = 0. Using a similar
procedure as in [34], that is, by Laplace approximation of functions fk(u, t, α) at u = 0,
one obtains:

ψM(u, t, α) = iuµt1−α +
t

∑
k=1

[
∂2 fk(0,t,α)

∂u2 · u2

2 + σk
(
u2)]

= iuµt1−α +
t

∑
k=1

[
− ack2σ2u2

2t2α + σk
(
t−2αu2)]

= iuµt1−α − acσ2u2

12t2α t(t + 1)(2t + 1) + σ
(
t3−2αu2).

Then, by taking the asymptotic value in the last expression, when t→ +∞ , it follows:

ψM(u, t, α) ∼
{

iuµt1−α − acσ2t3−2α/6, 1 ≤ α ≤ 3/2
0, α > 3/2.

Substituting this expression into the CFs ϕM;α(u, t), it is easy to conclude that the first part
of the theorem, in the sense of the series Mt;α, is valid.
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The proof for the series Yt;α is carried out analogously. Using Equation (1), as the
previously proven facts, we have that

Yt;α = 1
tα

t
∑

j=1

(
mj + ε j

)
= Mt;α +

t
∑

j=1

ε j
tα = t1−αm0 +

t
∑

k=1

k
tα ξt−k +

t−1
∑

k=0

εt−k
tα

= t1−αm0 +
εt
tα +

t
∑

k=1
(1 + kqt−k)

εt−k
tα .

Since RVs εt−k, k = 0, 1, . . . , t, are mutually independent, after some computation, we
obtain the CFs of series Yt;α as follows:

ϕY;α(u, t) = ϕm

(
u

tα−1 , 0
)

ϕε

( u
tα

) t
∏

k=1

[
(1− ac)ϕε

( u
tα

)
+ ac ϕε

(
(k+1)u

tα

)]
= eiuµt1−α− σ2u2

2t2α
t

∏
k=1

[
e−

σ2u2

2t2α + ac

(
e−

(k+1)2σ2u2

2t2α − e−
σ2u2

2t2α

)]
= eiuµt1−α− σ2u2(t+1)

2t2α
t

∏
k=1

[
1 + ac

(
e−

(k2+2k)σ2u2

2t2α − 1
)]

.

From here, using the same procedure as in the previous part of the proof, i.e., by taking the
logarithm of the function ϕY;α(u, t), and by developing ψY(u, t,α) := ln ϕY;α(u, t) at the
point u = 0, we have:

ψY(u, t, α) = iuµt1−α − σ2u2(t+1)
2t2α +

t
∑

k=1
ln
[

1 + ac

(
e−

(k2+2k)σ2u2

2t2α − 1
)]

= iuµt1−α − σ2u2(t+1)
2t2α −

t
∑

k=1

[
ac(k2+2k)σ2u2

2t2α + σk
(
t−2αu2)]

= iuµt1−α − σ2u2

2
(
t1−2α + t−2α

)
− ac

σ2u2

12t2α t(t + 1)(2t + 7)
+σ
(
t3−2αu2).

Finally, taking the asymptotic values, when t→ +∞ , one obtains:

ψY(u, t, α) ∼
{

iuµt1−α − σ2u2

2

(
t1−2α + t−2α + act3−2α

3

)
, 1 ≤ α ≤ 3/2

0, α > 3/2.

Substituting this expression into CFs ϕY;α(u, t), the entire statement of the theorem is proved. �

Remark 3. In the previous theorem, the case α = 3/2 is particularly interesting because
Equation (11) then gives the following convergences:

1
t3/2

t

∑
j=1

mj
d→ N

(
0,

acσ2

3

)
,

1
t3/2

t

∑
j=1

yj
d→ N

(
0,

acσ2

3

)
, t→ +∞. (13)

We will call these convergences, in the usual way, central limit theorems (CLTs) for the GSB
process. As will be seen below, they will be helpful for estimating the unknown parameters
of the GSB process, primarily the conditional variance σ2.

4. Parameter Estimation Procedures

Now, let us consider the problem of estimation of (unknown) parameters of the GSB
process, the critical value (c), mean value (µ), and conditional variance (σ2). To estimate
the first parameter c, a series of increments (Xt) will be used as the (only) observable
and stationary component of the GSB model. Recall that we have named this series the
Split-MA (1) process because it is close to standard, linear MA models. Although some of
the estimation procedures we present here are like standard estimation methods in MA
models (see, for instance [36]), the specificity of the Split-MA (1) model requires additional
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testing and analysis, primarily of the quality of the obtained estimates. To that end, the
consistency and asymptotic normality of the estimators were examined. After that, several
new approaches were considered, based on the observation of non-stationary time series
(yt). The main goal of these procedures is aimed at obtaining the estimated values of the
parameters µ and σ2.

4.1. Estimates of Critical Value (c)

Let (Xt) be the Split-MA (1) process defined by Equation (4). As we have already
shown, the first correlation coefficient of this series is:

ρX(1) = −
bc

1 + bc
, 0 < bc < 1.

From here, by solving on bc, we get the estimated value of this parameter:

b̃c = −
ρ̂X(1)

1 + ρ̂(1)
, 0 < bc < 1, (14)

where:

ρ̂X(1) =

(
T

∑
t=1

XtXt−1

)(
T

∑
t=1

X2
t

)−1

is the estimated value of the first correlation. Based on the estimate b̃c, the corresponding
estimate of the critical value c = c̃ can be determined as a solution to the equation:

P
{

ε2
t ≤ c

}
= b̃c.

According to Equation (14), it is easy to see that b̃c and c̃ are appropriate estimates if the
following inequalities hold:

0 < b̃c < 1 ⇐⇒ −0.5 < ρ̂X(1) < 0.

In [9], it was shown that thus obtained estimators are strictly consistent if the inno-
vations (εt) have a continuous distribution. Moreover, the estimates b̃c and c̃ will also be
asymptotically normal (AN) if the RVs (εt) have a symmetric distribution. Note that both
conditions are fulfilled in the case of Gaussian innovations εt : N

(
0,σ2), when the RVs

(εt/σ)
2 have a χ2

1 distribution. Thus, the estimate of the critical value c̃ is simply found
from the equality:

c̃ = σ̃2·F−1
χ2

1

(
b̃c

)
. (15)

Here, σ̃2 is the estimated variance of innovations (εt) which will be described later.
However, it can be shown that, as for the linear MA series, the estimate b̃c is not the

most efficient estimate for bc (asymptotic efficiency of the estimate b̃c is analyzed at the
end of this subsection). To obtain more efficient estimates of the given parameters, we will
modify the well-known Gauss-Newton method of estimating the parameters of nonlinear
functions (see, for instance [36]). First, notice that Equation (4) can be written in the form:

εt = Xt + θt−1εt−1, t = 1, . . . , T

or, in functional form,
εt(X, θ) = Xt + θt−1εt−1(X, θ). (16)

On the other hand, if we define a series of RVs as

Wt(X, θ) = θtWt−1(X, θ) + εt−1(X, θ), (17)
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then it is easy to see that the RVs Wt(X, θ) are Ft−1 adapted, for each t = 1, . . . , T, and
thus independent of εt and θt+1. According to mentioned properties of RVs (θt) and (εt), it
follows that (Wt(X, θ)) is a stationary and ergodic series of RVs (see, for more detail [37])
with E(Wt(X, θ)) = 0 and correlation function ρW(h) = b|h|c , h = 0,±1, . . . To this series,
using the procedure described in [38], we add the so-called residual series:

Rt(X, θ) = Wt(X, θ)− bcWt−1(X, θ). (18)

The RVs Rt(X, θ) are also Ft−1 adapted and mutually non-correlated, which can easily be
shown. Namely, by applying Equations (16)–(18), for any integer h > 0, one obtains:

Cov(Rt(X, θ), Rt+h(X, θ)) = E(Rt(X, θ)Rt+h(X, θ))
= E[Rt(X, θ)(Wt+h(X, θ)− bcWt+h−1(X, θ))]
= E(Rt(X, θ)Wt+h(X, θ))− bcE(Rt(X, θ)Wt+h−1(X, θ))
= E[Rt(X, θ)θt+hWt+h−1(X, θ)]− bcE(Rt(X, θ)Wt+h−1(X, θ)) = 0.

Thus, Equation (18) defines the series (Wt(X, θ)) as a linear autoregressive (AR) pro-
cess with innovations (Rt(X, θ)). From here, we obtain another estimate of the unknown
parameter bc ∈ (0, 1) by the following algorithmic procedure:

(1) Applying Equation (14), determine b̃c as (the initial) estimate of bc, and according to
Equation (15), determine estimate c̃.

(2) Based on Equations (16)–(18) and having obtained an estimate b̃c, compute, for each
t = 1, . . . , T, the values:

θ̃t:= I
(

ε2
t−1

(
X, θ̃

)
≤ c̃
)

εt

(
X, θ̃

)
:= Xt + θ̃t−1εt−1

(
X, θ̃

)
Wt

(
X, θ̃

)
:= θ̃tWt−1

(
X, θ̃

)
+ εt−1

(
X, θ̃

)
Rt

(
X, θ̃

)
:= Wt

(
X, θ̃

)
− b̃cWt−1

(
X, θ̃

)
,

where θ̃0 = 1, ε0

(
X, θ̃

)
= ε−1

(
X, θ̃

)
= W0

(
X, θ̃

)
= 0.

(3) Using the standard regression procedure, i.e., the correlation function ρW(h) when
h = 1, obtain an estimate of bc in the form:

b̂c =

(
T−1

∑
t=0

Wt

(
X, θ̃

)
Wt+1

(
X, θ̃

))( T

∑
t=1

W2
t

(
X, θ̃

))−1

.

(4) As in the first step, based on the estimate b̂c, the critical value ĉ can be estimated as a
solution of the equation (concerning c):

P{ε2
t ≤ c} = b̂c.

We emphasize that in [9], strict consistency and AN of the estimates b̃c and c̃ as well as
b̂c and ĉ was proved. At the same time, the distribution of innovations (εt) was not explicitly
used there. In the case of GSB process, where innovations are Gaussian distributed, we can
express these results as follows:

Theorem 4. Estimates b̃c and b̂c are strictly consistent for the parameter bc, i.e., it is valid that:

b̃c
as→ bc, b̂c

as→ bc, T → +∞.
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Moreover, the estimates b̃c and b̂c are asymptotically normal for bc, i.e.,

√
T
(

b̃c − bc

)
d→ N

(
0, Ṽ

)
,
√

T
(

b̂c − bc

)
d→ N

(
0, V̂

)
, T → +∞,

where
~
V(bc) = (bc + 1)2(2b2

c + 4bc + 1
)

and V̂(bc) = (1− bc)
(
3b2

c + 3bc + 1
)
.

Remark 4. Based on the previous theorem, the consistency and AN of the estimates c̃ and
ĉ, as continuous functions of b̃c and b̂c, is also valid (see, for instance [9] or [39] p. 24).
Additionally, for any bc ∈ (0, 1), the inequality V̂(bc) ≤ Ṽ(bc) holds when the equality is
valid only for bc = 0, as can be seen in Figure 3. This means that asymptotic variance V̂(bc),
as a measure of “scattering” b̂c from the true value bc, is (significantly) smaller than Ṽ(bc).
So, b̂c is a more efficient estimate than b̃c, which justifies its introduction.
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4.2. Estimates of Mean (µ)

As an estimator for the parameter µ = E(yt), the sample mean of series (yt) was
usually used:

µ̃ := yT =
1
T

T

∑
t=1

yt. (19)

This estimator is obviously unbiased E(µ̃) = E(yT) = µ, but its variance is not bounded.
Namely, using the previously defined α-mean series YT;α when α = 1, we can represent the
estimator µ̂ as a sum of uncorrelated RVs:

µ̃ = m0 +
1
T

[
T

∑
k=1

(1 + kqT−k)εT−k + εT

]
.

Thus, for the variance of µ̃ we get:

Ṽ := V(µ̃) = 1
T2

[
T
∑

k=1
V((1 + kqT−k)εT−k) + V(εT)

]
= σ2

T2

[
T
∑

k=1
E(1 + kqT−k)

2 + 1
]

= σ2

T2

[
T
∑

k=1
(1 + ack(k + 2)) + 1

]
= σ2

T2

[
T + 1 + ac

T(T+1)(2T+7)
6

]
= σ2(T+1)

T2

(
1 + ac

T(2T+7)
6

)
= acσ2T

3 +O
(
T−1)→ +∞, T → +∞.
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Note that, as expected, the variance Ṽ = V(µ̃) is asymptotically identical to that in
Theorem 3, i.e., as in Equation (11), when α = 1. Moreover, Ṽ = 0 when ac = 0, that is, in
the case of extremely large values of the parameter c. However, in practical applications,
this condition is usually not met.

An alternative way to obtain an estimate for µ is to take the sample mean of the mean
series yt, when t = 1, . . . , T, i.e.,

µ̂ :=
1
T

T

∑
t=1

yt =
1
T

T

∑
t=1

ωtyt. (20)

Here, ωt := H(T)− H(t− 1) and H(t) :=
t

∑
j=1

j−1, t = 1, . . . , T are the harmonic numbers,

with assumption H(0) = 0. Obviously, µ̂ is also an unbiased estimate of the parameter µ,
but with weights that are more pronounced at the “older” points of time (t) in which real-
izations of the series (yt) are observed. This is consistent with the fact that the covariances
of RVs yt depend on these “older” time indices. Moreover, as shown in Section 2, at these
time points, the covariances of RVs yt are equal to their variances. For these reasons, it is
expected that the estimate µ̂ will be more efficient than µ̃. Indeed, using a similar procedure
as before, we first represent the estimate µ̂ as a sum of uncorrelated RVs:

µ̂ = 1
T

T
∑

t=1
ωt

(
m0 +

t−1
∑

j=0
qjε j

)
+ 1

T

T
∑

t=1
ωtεt

= 1
T

[
m0

T
∑

t=1
ωt +

T−1
∑

j=0

(
qjε j

T
∑

t=j+1
ωt

)
+

T
∑

t=1
ωtεt

]
.

As for each j = 1, . . . , T, the statement below holds:

T

∑
t=j

ωt =
T

∑
t=j

(H(T)− H(t− 1)) =
T

∑
t=j

T

∑
k=t

1
k
= T − (j− 1)

(
ωj + 1

)
,

it follows that it can also be written:

µ̂ = 1
T

[
T(m0 + q0ε0) +

T−1
∑

j=1

(
T − j

(
ωj+1 + 1

))
qjε j

]
+ 1

T

T
∑

t=1
ωtεt

= m0 + q0ε0 +
1
T

T−1
∑

j=1

(
cjqj + ωj

)
ε j +

εT
T2 ,

where cj = T− j
(
ωj+1 + 1

)
. Thus, after some computation, the variance of µ̂ one obtains is:

V̂ := V(µ̂) = 1
T2

[
T−1
∑

j=1
E
(
cjqj + ωj

)2E
(

ε2
j

)
+

E(ε2
T)

T2

]

= σ2

T2

[
T−1
∑

j=1

(
accj

(
cj + 2ωj

)
+ ω2

j

)
+ 1

T2

]
= σ2(ac(T−1)−2)H(T−1)H( T)

T + σ
(

H−2(T)
)

= acσ2H2(T) + σ
(

H−2(T)
)
→ +∞, T → +∞.

Notice that the variance of V̂ := V(µ̂) is also unbounded, but with a lower asymptotic
order than Ṽ = V(µ̃), since:

lim
T→+∞

V(µ̂)

V(µ̃)
= lim

T→+∞

H2(T)
T

= 0.



Mathematics 2022, 10, 3849 16 of 28

This means that the estimate µ̂ is (asymptotically) more efficient than µ̃, which can be seen
in Figure 4. Here are shown 3D plots of both variances Ṽ and V̂, which were observed as
functions of two variables ac ∈ (0, 1) and T > 0.
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4.3. Estimates of Variance
(
σ2)

Let us consider determining the estimates of the third unknown parameter σ2, which
represents the variance of the innovations (εt), that is, the conditional variance of the
base series (yt). It is precisely these facts that enable different estimation procedures for
the parameter σ2. First, notice that based on the previously obtained estimates b̃c and b̂c,
i.e., the modeled innovation values (εt) given by Equation (16), the variance σ2 can be
easily estimated. The usual estimation procedure is based on sampling variance:

σ̃2 =
1
T

T

∑
t=1

ε2
t

(
X, θ̃

)
or σ̂2 =

1
T

T

∑
t=1

ε2
t
(
X, θ̂

)
. (21)

Here, εt

(
X, θ̃

)
are εt

(
X, θ̂

)
modeled innovation values obtained from the estimates

b̃c and b̂c, respectively. Notice that in the case of Gaussian innovations (εt), the estimates
given by Equation (21) are identical to the maximum likelihood estimators. Indeed, the
log-likelihood function then reads as follows:

L(y1, . . . , yT ; σ2) = −T
2

ln(2πσ2)− 1
2σ2

T

∑
t=1

(yt −mt)
2 ,

and by solving the equation ∂L
(
y1, . . . , yT ; σ2)/∂σ2 = 0, the estimate of σ2 is obtained as

in Equation (21), that is, as the sample variance of the series (εt). Thus, the consistency and
AN of both estimates σ̃2 and σ̂2 can be readily shown. We note that due to their equivalence,
only the estimate σ̂2 will be further considered (see Theorem below).

On the other hand, note that the previous estimation procedure is based on unobserv-
able, modeled values of innovations (εt). Another approach to estimating the variance σ2

is based on the so-called two-stage procedure, using the previously estimated parameter b̂c.
By applying the equality V(Xt) = E

(
X2

t
)
= σ2(bc + 1), as well as the sample variance of

the series (Xt), we can obtain an estimate:

σ̂2
X =

1

T
(

b̂c + 1
) T

∑
t=1

X2
t . (22)
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Then, it follows:

Theorem 5. Estimates σ̂2 and σ̂2
X are strictly consistent for the parameter σ2, i.e., it is valid to put:

σ̂2 as→ σ2, σ̂2
X

as→ σ2, T → +∞.

Moreover, the estimates σ̂2 and σ̂2
X are asymptotically normal for σ2, i.e.,

√
T
(

σ̂2 − σ2
)

d→ N (0, V1),
√

T
(

σ̂2
X − σ2

)
d→ N (0, V2), T → +∞, (23)

where V1 = 2σ4 and V2 = σ4(2 + 11bc − b2
c
)(

1 + 2bc − 3b3
c
)−1.

Proof. Since
(
ε2

t
)

is an IID series of RVs, the stationarity and ergodicity of this series are
apparent. Applying the strong low of large numbers (SLLS), it follows:

σ̂2 =
1
T

T

∑
t=1

ε2
t
(
X, θ̂

) as→ σ2.

Furthermore, it can easily be shown that V
(
σ̂2) = 2σ4/T is the variance of the estimate

σ̂2. Thus, applying the central limit theorem (CLT), the first convergence in Equation (23)
is obtained.

To prove the properties of the estimate σ̂2
X , we note that

(
X2

t
)

is also a stationary and
ergodic series of RVs. If SLLS is now applied to the following statistics:

X2
t :=

1
T

T

∑
t=1

X2
t , (24)

then one obtains:
1
T

T

∑
t=1

X2
t

as→ σ2(bc + 1).

At the same time, according to Theorem 4, we have that b̂c is a strongly consistent estimator
of bc, i.e., b̂c + 1 as→ bc + 1, when T → +∞. Thus, the last two convergences give:

σ̂2
X =

X2
t

b̂c + 1
as→ σ2, T → +∞.

To prove the AN of the estimate σ̂2
X , note first that the sequence

(
X2

t
)

is 1-dependent, in
the sense of Definition 6.3.1 in [36] (p. 245). According to Cauchy-Swarz and Minkowski in-
equalities, applied to Equation (4), i.e., the sixth moment of the sum Xt = εt + (−θt−1εt−1),
it follows that:

E|Xt|6 ≤
[(

E|εt|6
)1/6

+
(

bc E|εt−1|6
)1/6

]6

≤ 15σ6
(

1 + bc
1/6
)6

< +∞.

Then, the Hoeffding-Robbins theorem [40] can be applied, based on which it follows:

√
TX2

t = T−1/2
T

∑
t=1

X2
t

d→ N
(

σ2(bc + 1), V0

)
, (25)
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for which:

V0 = V
(
X2

t
)
+ 2Cov

(
X2

t , X2
t+1
)
= E

(
X4

t
)
+ 2E

(
X2

t X2
t+1
)
− 3σ4(1 + bc)

2

= 3σ4(1 + 3bc) + 2σ4(1 + 4bc + b2
c
)
− 3σ4(1 + bc)

2

= σ4(2 + 11bc − b2
c
)
.

By applying the almost sure convergence of the estimate b̂c and the previously obtained
convergence in Equation (25), we have

√
Tσ̂2

X =

√
TX2

t

b̂c + 1
d→ N

(
σ2, V2

)
, T → +∞,

where V2 = V0/V̂(bc). Thus, according to Theorem 4, the second convergence in Equa-
tion (23) is obtained. �

Remark 5. As in Theorem 4, by comparing the asymptotic variances V1 and V2 for the
estimates σ̂2 and σ̂2

X , respectively, it is easy to see that inequality V1 ≤ V2 holds. At the same
time, the equality V1 = V2 = 2σ4 is valid only when bc = 0 (Figure 5a), so the estimator σ̂2

is more efficient than σ̂2
X .
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However, according to the proof of the previous theorem, it can be easily seen that for
the variance of the statistics X2

t , given by Equation (24), is valid (Figure 5b):

V(X2
t ) =

σ4(2 + 11bc − b2
c
)

T
→ 0, T → +∞.

Thus, X2
t can be used as an estimator of the “hybrid” parameter σ2(bc + 1), which will be

of interest for practical research, that is, the application of the GSB model discussed below.
Finally, another approach to finding estimates of the variance σ2 is based on the

observations of the non-stationary series (yt). Applying Theorem 3, i.e., the previously
proven convergence in Equation (13), we have:

YT;3/2 :=
1

T3/2

T

∑
t=1

yt
d→ N

(
0,

acσ2

3

)
, T → +∞.
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If we now consider the statistics:

S2
T := Y2

T;3/2 =
1

T3

(
T

∑
t=1

yt

)2

=
1

T3

T

∑
j=1

T

∑
k=1

yjyk, (26)

after some computation, one obtains:

E
(
S2

T
)

= 1
T3

T
∑

j=1

T
∑

k=1
E
(
yjyk

)
= 1

T3

T
∑

j=1

T
∑

k=1

[
Cov

(
yjyk

)
+ µ2]

= 1
T3

T
∑

j=1

T
∑

k=1

[
σ2(min{j, k}ac + 1) + µ2]

= σ2

T3

[
ac

T
∑

j=1

(
j + 2

j−1
∑

k=1
k

)
+ T2

]
+ µ2

T = σ2

T3

(
ac

T
∑

j=1
j2 + T2

)
+ µ2

T

= σ2ac
6T2 (T + 1)(2T + 1) + σ2+µ2

T → acσ2

3 , T → +∞.

Thus, S2
T is an asymptotically unbiased estimator for acσ2/3, and using the estimate âc =

1− b̂c, an estimator of the parameter σ2 can be taken as:

σ̂2
Y :=

3
âc

S2
T =

3
âcT3

T

∑
j=1

T

∑
k=1

yjyk. (27)

5. Numerical Simulation and Application of the GSB Process

As already mentioned in the introductory section, two important aspects related to
the practical implementation of the GSB process will be explored here. Firstly, numerical
Monte Carlo simulations of previously obtained GSB estimators are analyzed. Then, based
on actual data, the GSB process was applied to analyze the dynamics and distribution of
the infected and immunized population with respect to COVID-19 disease in the territory
of the Republic of Serbia.

5.1. Numerical Simulations of GSB Estimators

We first describe a pseudo-algorithm for estimating the parameters of the GSB model
based on N = 1000 independent Monte Carlo replications of the GSB series. To that end, we
assume that all series have size T = 500, which is close to the length of the actual series to
be considered below. The primary aim is to examine the convergence, i.e., the quality of the
previously proposed estimators on a sample of a given length. Therefore, corresponding
estimation errors will also be investigated for this purpose. Using the previously presented
theoretical facts, the pseudo-algorithm for estimating the parameters of the GSB process
can be formulated as follows:

1. In the first estimation step, compute the sample correlation ρ̂X(1) for a series of
increments (Xt). If the condition −0.5 < ρ̂X(1) < 0 is fulfilled, by using Equation (14),
the estimator b̃c can be obtained.

2. Compute statistics X2
t , given by Equation (24), as an estimate of the “hybrid” parame-

ter σ2(bc + 1). The following variance estimator is then obtained:

σ̂2
X =

X2
t

b̃c + 1
.

3. According to Equation (15) and previously obtained estimates b̃c and σ̂2
X , compute the

estimator c̃ = σ̂2
X ·F
−1
χ2

1

(
b̃c

)
.
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4. By using the estimate c̃, for each t = 1, . . . , T, generate the (modeled) values of series
(εt) and (mt), by applying the iterative procedure:{

εt = yt −mt,
mt = mt−1 + εt−1 I

{
ε2

t−2 ≥ c̃
}

,
(28)

where ε0 = ε−1 = 0, and m0 = y0 = µ̂ is given by Equation (20).
5. According to previously obtained series (εt), and by using Equation (21), compute a

(more efficient) variance estimator σ̃2.
6. By applying the Gauss-Newton procedure, i.e., Equations (16)–(18), the estimate b̂c

can be obtained.
7. According to previously obtained estimates b̂c and σ̃2, compute the estimator

ĉ = σ̃2·F−1
χ2

1

(
b̂c

)
.

We point out that in the above-mentioned pseudo algorithm, the 2nd stage can be
replaced by the following alternative step:

2’.Compute statistics S2
T , given by Equation (26), and estimate the “hybrid” parameter

acσ2/3. Then, according to Equation (27), the variance σ2 can be estimated as:

σ̂2
Y :=

3
ãc

S2
T ,

where ãc = 1− b̃c.
By applying this pseudo-algorithm, the obtained values of the estimated parameters

can be summarized as shown in Table 1, where their average values (Mean), minimums
(Min.), maximums (Max.) can also be seen, along with the appropriate mean squared errors
of estimation (MSEE) given in parentheses. Furthermore, testing results concerning the AN
of thus obtained estimates are also presented in Table 1. To that end, Anderson-Darling
and Cramer-von Mises normality tests were used. Their test statistics (denoted as AD and
W, respectively), as well as their corresponding p-values, were calculated using procedures
from the R-package “nortest” [41].

According to the obtained values, it is evident that most estimators have a property of
the AN. This applies even to the estimates of the mean value µ̃ and µ̂, which are obtained
from realizations of non-stationary GSB-series (yt). As already explained, this is related to
Theorems 2 and 3, which respectively describe the AN properties of the series

(
yt/
√

t
)

and so-called α-means series. Notice that the asymptotic variance of these estimators is
not bounded, hence there is a large range of their observed values. On the other hand,
the AN property is not particularly emphasized in the case where the critical value (c) is
estimated. This is because both estimates c̃ and ĉ are obtained by the three-step procedure:
estimates for the parameters bc and σ2 should first be determined, and only then for c. In
the case of variance estimators σ̃2 and σ̂2, obtained based on modeled innovations (εt),
it is easy to see that they have the highest and almost the same efficiency. Furthermore,
the values of the estimator σ̂2

X are only slightly “weaker” than σ̃2 and σ̂2. This is expected
since, according to Theorem 5, the AN property holds for all these variance estimators.
However, the estimate σ̂2

Y is by far the weakest variance estimate and can be omitted from
further analysis. Moreover, based on previously obtained theoretical results, also confirmed
through simulations, the most robust estimates of the unknown parameters c, µ,σ2 are
ĉ, µ̂, σ̂2, respectively. For those reasons, these estimators will be used for GSB modeling of
actual data on COVID-19, which will be discussed below.
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Table 1. Summary statistics of estimated parameters of the GSB process, obtained by a Monte Carlo
study, along with realized statistics of normality tests.

Parameters
Estimators Statistics Values AD

(p-Value)
W

(p-Value)

Mean (µ̃)

Min. −24.9395
0.2886

(0.6161)
0.0415

(0.6545)
Mean −0.0192

(MSEE) (7.2791)
Max. 26.8691

Mean (µ̂)

Min. −20.0310
0.3363

(0.5056)
0.0453

(0.5845)
Mean −0.00806

(MSEE) (4.6055)
Max. 19.7987

Critical value (c̃)

Min. 0.3849
1.0160 *
(0.0112)

0.1449 *
(0.0278)

Mean 1.0904
(MSEE) (0.5069)

Max. 1.6481

Critical value (ĉ)

Min. 0.5105
0.5647

(0.1435)
0.1074

(0.0889)
Mean 0.9844

(MSEE) (0.1587)
Max. 1.5033

Variance (σ̃2)

Min. 0.8271
0.3144

(0.5446)
0.0494

(0.5182)
Mean 0.9991

(MSEE) (0.0630)
Max. 1.2182

Variance (σ̂2)

Min. 0.8248
0.3247

(0.5231)
0.0546

(0.4459)
Mean 1.0002

(MSEE) (0.0631)
Max. 1.2118

Variance (σ̂2
Y)

Min. 0.7796

0.4018
(0.3584)

0.0588
(0.3921)

Mean 1.0034

(MSEE) (0.0842)

Max. 1.3340

Variance (σ̂2
X)

Min. 0.1104
90.626 **

(<2.2 × 10−16)
16.522 **

(7.37 × 10−10)
Mean 1.0937

(MSEE) (1.4183)
Max. 1.6313

* p < 0.05, ** p < 0.01.

5.2. Application of the GSB Process: A Case Study of COVID-19 Dynamics

In this section we give, as an illustration, a practical application of the GSB process in
stochastic modeling of actual data. In other words, as mentioned in the introductory section,
we will show that it can be an adequate stochastic model for describing the dynamics of the
infected and vaccinated population in relation to the SARS-CoV2 virus on the territory of
the Republic of Serbia. To that end, we observe realizations of two time series (Ut) and (Vt)
which, daily, represents the total number of infected persons, i.e., persons vaccinated with
the first dose of the vaccine, starting from 24 December 2020 (the start date of vaccination
in Serbia) and ending with 6 June 2022. The dynamics of both time series, length T = 529,
are shown in Figure 6.
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The main statistical indicators of these series (also labeled as Series A and Series B,
respectively) are shown in the following Table 2. Based on thus obtained values, it can be
concluded that these are time series with distinct, pronounced fluctuations. For instance,
the average number of infected people is (approximately) 3650 per day, ranging from
60 to 19,901 infected people. Similar to that, the average number of vaccinated persons
is 6348 per day, but the range of vaccinated persons varies from only 4 to as many as
68,678 persons per day. Therefore, we further consider the possibility that the GSB process
can be used here as an appropriate stochastic model. For this purpose, as basic sequences,
we observe the realizations of the so-called log-volumes, i.e., logarithmic values of series
(Ut) and (Vt):

y(1)t := ln(Ut), y(2)t := ln(Vt), t = 0, 1, . . . , T. (29)

Notice that the main goal of this transformation is to obtain more evenly distributed values
of both series, and although based on increasing of the logarithmic function, the emphasis
of fluctuations will remain. Additionally, inequalities Ut, Vt ≥ 1 implies the non-negativity
of both log-volumes series

(
y(1)t , y(2)t ≥ 0

)
.

Table 2. Basic statistical indicators of observed actual series.

Statistics Infected (A) Vaccinated (B)

Mean 3650.84 6336
Median 2000 2960
Mode 1366 45

Stand. deviation 3650.84 1026.38
Minimum 60 4
Maximum 19,901 68,678
Kurtosis 8.1189 8.2609

Skewness 2.1418 2.7009

Further, using the log-volumes as a basic series, and using Equation (3), the series of
increments

(
X(1)

t

)
,
(

X(2)
t

)
are determined entirely. Based on them, the estimates of GSB

process parameters can be obtained by applying the pseudo-algorithm presented above.
We emphasize that here the estimation procedure is repeated twice, i.e., for both series (A
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and B). Thus, modeled values of martingale means and innovations series, generated by
Equation (29), are as follows: ε

(j)
t = y(j)

t −m(j)
t ,

m(j)
t = m(j)

t−1 + ε
(j)
t−1 I

{(
ε
(j)
t−2

)2
≥ c̃
}

,
(30)

where j = 1, 2. As initial values of the iterative procedure (30), as before, we have taken
ε
(j)
0 = ε

(j)
−1 = 0, as well as m(j)

0 = y(j)
0 = µ̂. Table 3 contains the basic statistical indicators

of the actual series, log-volumes (y(j)
t ) and increments

(
X(j)

t

)
, as well as modeled series,

martingale means
(

m(j)
t

)
and innovations

(
ε
(j)
t

)
.

Table 3. Basic statistical indicators of actual and modeled series.

Statistics
Series A Series B

y(1)
t X(1)

t m(1)
t ε(1)

t y(2)
t X(2)

t m(2)
t ε(2)

t

Mean 7.4041 −0.0033 7.4111 −0.0054 7.3544 −0.0068 8.9349 −0.1769
Median 7.5976 −0.0336 7.6061 −0.0332 7.9940 −0.0566 9.4269 −0.1106

Stand. deviation 1.3247 0.1948 1.3244 0.1912 2.0546 1.0036 1.7589 1.0238
Minimum 4.0943 −0.5990 4.0943 −0.5990 1.3863 −5.0554 1.0986 −6.6837
Maximum 9.8985 0.9125 9.8985 0.7390 11.1372 5.5147 11.3099 4.5209
Kurtosis 2.3419 4.3332 2.3305 3.7214 2.4071 10.1761 3.6732 10.2208

Skewness −0.5493 0.6114 −0.5605 0.4518 −0.4958 0.4290 −1.0703 −0.1625

By analyzing thus obtained values, an interesting connection can be observed, which
can be explained by the previous theoretical results. Firstly, the average values of the
log-volumes are “close” to the averages of the martingale means, which is in accordance
with the equality E(yt) = E(mt). Moreover, with series A, almost equal values of other
statistical indicators (standard deviations, for instance) are noticeable. This can also be
seen by comparing the corresponding statistical indicators of increments

(
X(1)

t

)
and in-

novations
(

ε
(1)
t

)
, which will be explained below. Table 4 shows the above-mentioned

estimators obtained according to the previously described procedures. In addition, some
other estimates are shown, such as the sample linear correlation ρ̂X(1) and estimates of the
value bc. Accordingly, note that the condition −0.5 < ρ̂X(1) < 0 is fulfilled in the cases of
both series. Moreover, let us notice, for instance, that the estimated values for σ2 in the case
of Series B are “close” to unity, so it can be assumed that innovations (εt) in this case have
a standard N (0, 1) distribution.

Table 4. Estimated values of GSB process parameters.

Parameters Series A Series B

µ̃ 7.4041 7.3544
µ̂ 7.4454 8.1409

ρ̂X(1) −0.0126 −0.2577
b̃c 0.0127 0.3472
c̃ 0.0003 0.2118
b̂c 0.0953 0.4436
ĉ 0.0006 0.3477

σ̃2 0.0413 1.0462
σ̂2 0.0403 1.0634
σ̂2

X 0.0375 1.0053

As we have already pointed out, the most robust estimators of the GSB process are
ĉ, µ̂, σ̂2 and based on them, modeled values of the series (m(j)

t ) and (ε(j)
t ) were obtained. Let
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us recall that these series, respectively, represent the stability and the impact of fluctuations
in the dynamics of the total number of infected and vaccinated people. The agreement
between the modeled series and the actual data can be seen in Figure 7a where, along with
the empirical values of the log-volumes (y(j)

t ), modeled values of martingale means (m(j)
t )

are given. On the other hand, the agreement of a series of increments, i.e., the Split-MA(1)
process (X(j)

t ) with innovations (ε(j)
t ) is shown in Figure 7b.

It should also be noted that the high agreement between the actual and modeled series
is particularly noticeable in the case of series A. This can be explained theoretically, in the
way it was done in Section 2. If at some points in time, innovations (ε(1)t ) have a pronounced

fluctuation, they become equal to increments (X(1)
t ) at the next moment. The agreement

between the realizations of these two series will be all the better if, in addition to large and
pronounced fluctuations of (ε(1)t ), the critical value c is relatively small. Note that this is
precisely the case with series A, where “small” estimated values of the parameter c indicate
the possibility that the true value of this parameter is c = 0 (or, equivalently, bc = 0). If the
sample size is large enough, this assumption can be formally tested by the null hypothesis
H0 : c = 0 or, equivalently, H0 : bc = 0. According to Theorem 4, testing procedures can be
based on the normal distribution, that is, using some standard, well-known statistical tests.

Note that in that case, the series of increments (X(1)
t ) is equalized with innovations

(ε(1)t ). This implies that (y(j)
t ) is a series with independent increments, i.e.,

Xt
(1) = yt

(1) − yt−1
(1) = εt

(1) ⇐⇒ yt
(1) = yt−1

(1) + εt
(1). (31)

According to Equation (1), it follows that yt−1
(1) = mt

(1), so all “information from
the past” is contained in the previous realization of the series (y(1)t ). In that way, the
entire statistical analysis of this series, i.e., the dynamics of the infected population, gains
simplicity; namely, series A then has (only) two stochastic components (y(1)t ) and (ε(1)t ),
i.e., it represents a random walk series.

Finally, using the inverse transformations of those given in Equation (29), PDFs of
actual series (Ut) and (Vt) are readily obtained:

fU(x, t) =
1
x

f (1)y (ln x, t), fV(x, t) =
1
x

f (2)y (ln x, t). (32)

Here, f (j)
y (ln x, t), j = 1, 2 are the PDFs of log-volumes (y(j)

t ), obtained by differentiating the
CDFs given by Equation (9), which can be done simply. Still, due to the non-stationarity of
the mentioned series, which also depends on time, it is necessary to apply some numerical
procedures to calculate their PDFs. For this purpose, the R-package “distr” [42] has been
used, and the results of the applied procedure are shown in Figure 8.

Here are the empirical distributions, i.e., histograms of the number of infected and
vaccinated persons per day, with their fitted PDFs, obtained using Equations (32). Due
to the non-stationarity of the time series (Ut) and (Vt), as well as the comparison of the
theoretical PDFs, fitting was also performed for the PDFs fU(x, t) and fV(x, t) of length
t = 50, 10, . . . , 500 < T = 529 (shown with dashed lines in Figure 8). In the case of the
infected population (Series A), according to Equation (31) and the condition c≈ 0, it follows
that RVs y(1)t have (an approximately) normal N

(
µ, (t + 1)σ2) distribution. Thus, RVs Ut

will have (an approximately) log-normal distribution, shown with the solid line in Figure 8a.
Note that this result is close to that obtained in [29]. Nevertheless, the distribution of the
number of vaccinated population (Series B), shown with the solid line in Figure 8b, has a
more pronounced “peak” close to the origin. It can also be explained by previous theoretical
results, primarily given in Theorem 2, i.e., by Equation (8), which concerns the asymptotic
behavior of the main GSB series (yt).
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Figure 7. Graphs of empirical and modeled data: (a) log-volumes (solid lines) and martingale means
(dashed lines); (b) Split-MA(1) process (solid lines) and innovations series (dashed lines). The upper
panels represent the dynamics of the COVID-19 infection (Series A), and the lower panels represent
the dynamics of the vaccinated population (Series B).
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6. Conclusions

The stochastic analysis of the GSB process presented in this paper confirms its possi-
bility in modeling actual time series with pronounced fluctuations. The applied methods
of dynamic and statistical analysis, based on this process, aim here to understand the
long-term tendency of the SARS-COV2 virus behavior, as well as the immunization process.
Along with other contemporary research, we hope this one can help further development
of successful methods of overcoming the pandemic. To this end, notice that new strains of
the SARS-CoV2 virus, which are very common, can affect the overall symptoms as well
as the disease dynamics of COVID-19 (see, c.f. [43–45]). They may therefore change the
dynamics of both time series investigated here. This may therefore be a new goal and
motivation for some future research.

Finally, let us emphasize that one of the main stochastic advantages of the GSB model
is that it allows the simultaneous use of both stationary and non-stationary components.
Thereby, the asymptotic behavior of the GSB time series as well as the corresponding esti-
mates thus obtained are of particular importance. It should also be noted that the proposed
parameter estimation procedure can be implemented algorithmically in a relatively simple
way. Additionally, some other estimation methods, such as the Empirical Characteristic
Function (ECF) method described in [12] can be used. As shown in [11,12], it can also be
used to model some other types of real data with pronounced and persistent fluctuations.
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