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Abstract: Industrial processes are often nonlinear and multivariate and suffer from non-Gaussian
noise and outliers in the process data, which cause significant challenges in data-driven modelling.
To address these issues, a robust soft-sensing algorithm that integrates Huber’s M-estimation and
adaptive regularisations with multilayer perceptron (MLP) is proposed in this paper. The proposed
algorithm, called RAALASSO-MLP, starts with an initially well-trained MLP for nonlinear data-
driven modelling. Subsequently, the residuals of the proposed model are robustified with Huber’s
M-estimation to improve the resistance to non-Gaussian noise and outliers. Moreover, a double L1-
regularisation mechanism is introduced to minimise redundancies in the input and hidden layers of
MLP. In addition, the maximal information coefficient (MIC) index is investigated and used to design
the adaptive operator for the L1-regularisation of the input neurons to improve biased estimations
with Ll-regularisation. Including shrinkage parameters and Huber’s M-estimation parameter, the
hyperparameters are determined via grid search and cross-validation. To evaluate the proposed
algorithm, simulations were conducted with both an artificial dataset and an industrial dataset from
a practical gasoline treatment process. The results indicate that the proposed algorithm is superior
in terms of predictive accuracy and robustness to the classic MLP and the regularised soft-sensing
approaches LASSO-MLP and dLASSO-MLP.

Keywords: date-driven modelling; soft sensor; multilayer perceptron; LASSO; maximal information
coefficient; robust estimation

MSC: 68T05

1. Introduction

Owing to immediacy and low cost, soft sensors are preferred in many practical indus-
trial processes to facilitate intelligent control and optimisation. Compared with mechanism-
driven soft sensors, data-driven models based on the measured process data describe the
complex processes in a more convenient and efficient manner, and are therefore gaining
increasing prevalence in the process industry [1]. There are many machine learning and
statistical inference algorithms for data-driven soft sensors, including principal component
analysis [2], Gaussian process regression [3], interval fusion with preference aggregation [4],
latent structure method [5], and artificial neural networks (ANNs) [6]. Among them, ANNs
are capable of modelling nonlinear processes without assigning analytic and specific re-
lationships between the explanatory and response variables. ANNSs are imbued with
universality to describe complex industrial processes and make it convenient to obtain
satisfactory estimations at low cost [7]. Although ANNs are unstable because their initial
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weights and biases are given randomly, the shortcomings can be avoided through sufficient
training and data. There are various ANNSs, each with its own advantages and disad-
vantages, such as the radial-basis-function network [8], recurrent neural network [9,10],
extreme learning machine [11], and multilayer perceptron (MLP). As the most commonly
used and easy-to-implement ANN, MLP has been proven to be a universal approximator
that can fit any function with a three-layer structure. Consequently, MLP has been applied
to various regression and classification problems [12,13]. In [14], MLP was trained to
describe the nonlinear behaviour of a pH neutralisation process and applied to a model
predictive control system for the process. Pham et al. developed a hybrid model with MLP
and the intelligent water drop algorithm to improve river streamflow forecasting [15]. To
evaluate parallel microchannels, Zoljalali et al. used hybrid MLP to derive models of flow
distribution and pressure drop with the change in geometric parameters [16].

In MLP-based soft sensors, redundancies usually exist in the explanatory variables
as well as in the hidden layers, which greatly affects the model performance, leading
to model degradation and even overfitting. Therefore, the research on input variable
selection and structure optimisation of MLP has become an important topic. Variable
selection approaches can generally be categorised into the following types: filter-like
mutual information (MI) [17], wrapper-like sequential backward selection [18], embedding
methods such as the least absolute shrinkage and selection operator (LASSO) [19], the
nonnegative garrote (NNG) [20], and other interval fusion-based algorithms [21]. As
one of the embedding methods that simultaneously achieves input variable selection and
model parameter estimation using sparse regularisations, LASSO was integrated with the
L1-regularisation function. Recently, Sun et al. designed LASSO-MLP as the nonlinear
extension of the classic LASSO, which enables LASSO to handle highly nonlinear data [19].
Cui and Wang utilised LASSO-MLP with random weights in neural networks to estimate
the protein content of milk from its NMR spectrum [22].

For the optimisation of hidden layers of the MLP, structure redundancy can be reduced
by pruning the redundant neurons or links. Srivastava et al. designed a dropout method
that randomly drops units from the network during the training procedure [23]. Wang
et al. developed a global optimisation with NNG to simultaneously shrink the input
and hidden weights of MLP [24]. Fan et al. [25] proposed a double L1-regularised MLP
(dLASSO-MLP) to prune redundant neurons through a two-stage regularisation approach
which has favourable performance and sparsity.

However, LASSO-MLP-based algorithms have two weaknesses that undermine their
performance under nonideal industrial operating conditions. First, LASSO is sensitive
to non-Gaussian noise because its loss function is based on the ordinary least squares
(OLS) technique. Second, actual industrial processes are sometimes unstable and nonideal
owing to environmental disturbances, maloperations, and instrumentation deviations.
These factors give rise to contaminated and offset samples that significantly undermine
the reliability and accuracy of the data-driven soft sensors. Thus, integrating appropriate
robust estimation techniques helps to improve robustness. Wang and Leng combined
least absolute deviations (LAD) regression with adaptive LASSO to resist the influence
of vertical outliers [26]. Owing to their intrinsic mathematical structure, M-estimators
exhibit robustness to the non-Gaussian noise and therefore have been widely studied [27].
Various M-estimators have been applied to different robust modelling algorithms, such as
the Huber penalty [28], Tukey’s biweight penalty [29], and Hampel’s penalty [30]. Among
them, Huber’s M-estimator combines squared loss and absolute loss, which maintains the
rate of convergence with small errors while increasing the robustness for large errors. In
addition, Huber’s estimator is differentiable everywhere and has such simpler differential
coefficients over other M-estimators that the Huber-based iterations of backpropagation in
ANNSs do not significantly increase the computational complexity.

In addition, LASSO regularisation forces the coefficients of all variables to be equally
penalised by continuously tuning the shrinkage hyperparameter, which is somewhat un-
reasonable. To obtain a more simplified model, it is possible to over-shrink the coefficients
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of the relevant variables, resulting in biased estimates of the model. In multivariate linear
regression models, this issue is adequately addressed by designing adaptive factors onto
the regularisation coefficients [31,32]. However, there is little research on the adaptive
LASSO regularisation for multivariate nonlinear regression models. This is because, for
multivariate nonlinear models, it is difficult to find such indicators that can accurately
quantify the importance of each input variable to the output, and then be reasonably
mapped as adaptive operators for regularisations.

In this paper, a robust and adaptive version of dLASSO-MLP is proposed to overcome
biased estimation and susceptibility to non-Gaussian noise in the measured dataset. Addi-
tionally, the proposed algorithm is applied to soft-sensing modelling of the S-Zorb unit.
The primary contributions of this study are as follows.

1. A robust soft-sensing algorithm that integrates Huber’s M-estimation with double
regularised MLP is proposed. The resistance to non-Gaussian noise and outliers in
the measured data is substantially improved compared with previous algorithms;

2. MIC is used to evaluate the penalty degree of the input variables and design adaptive
operators for the L1-regularisation of the input layer of MLP. This adaptive mechanism
makes it easier to obtain unbiased model estimates;

3. The superiority of the proposed data-driven soft sensor is verified through a normal
artificial dataset and its contaminated version with outliers. Then, it is utilised to
predict the octane number (RON) of the S-Zorb unit in an actual gasoline treatment
process. Compared with state-of-the-art methods, the proposed algorithm exhibits
better accuracy and robustness.

The remainder of this paper is organised as follows. Section 2 gives an overview
of dLASSO-MLP, MIC, and Huber’s M-estimation. Section 3 presents the methodology
underlying the proposed algorithm. Section 4 discusses artificial datasets. Section 5 presents
the simulation results of a RON prediction application from an actual industrial process.
Section 6 presents concluding remarks.

2. Background Theories
2.1. LASSO Regularisations for MLP

Consider the following linear regression model:

y=xp+po+e 1

where x = [x1,%,,..., xp] and y denotes the explanatory and response variables, respec-

tively. Vector B = [B1,B2,--.,Bp] T is the vector of the magnitude coefficients and ¢ is
the random error. Bias By is assumed to be zero without loss of generality. For the OLS
estimation, the general assumption is that random errors ¢ are normally distributed with
variance 02 and mean zero. To remove redundant variables, Tibshirani [33] introduced
L1-regularisation into OLS estimation by minimising the following loss function:

p=argmin Y (y—xp)’+AlBl, )

V(xy)e{X,Y}

where A||B||; is called the LASSO penalty (also the L1-regularisation) and A is a nonnegative
tuning hyperparameter. With A varying, the L1-regularisation has the capability to shrink
some coefficients to be exactly zero. If A is sufficiently large, all magnitude coefficients
shrink to zero and a null subset is obtained. If A tends to zero, the LASSO algorithm is
equivalent to OLS estimation.

MLP, which is commonly applied to nonlinear problems, performs gradient descent
via a backpropagation (BP) algorithm. Figure 1 shows the basic structure of a three-layer
MLP, comprising an input layer, a hidden layer, and an output layer. Each layer consists of
one or more neurons connected to adjacent neurons, and the number of hidden neurons
is usually determined by trial-and-error [34]. Assume that # and p represent the size and
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dimension of the input dataset, respectively, and that the hidden layer has g neurons. Let
X € R™"*? denote the candidate input variables and y € R" output variables; then, y can be
formulated as follows:

y=gWof(Xwy+by) +bp) 3)

Wi, -+, Wig
where wy = AN represents the weight matrix between the input and the

Wp1,+ -+, Wpq
hidden layer, and Wp = [Wl, Wy, -, Wq] T denotes the weight vector between the hidden
and output layers. The biases of the hidden and output layers are respectively denoted as
by = [by, b2, - - -, by and bo. Functions f(-) and g(-) are activation functions.

Hidden layer

Input layer

Figure 1. Structure of a three-layer MLP.

To achieve input variable selection for MLP, Sun et al. designed LASSO-MLP [19] by
formulating a convex optimisation problem as follows:

Bi=argmin Y (y—g(Wof(Brxwy+by)+bo))* + A1llBill 4)
V(xy)e{X,Y}

where 31 denotes the shrinkage coefficient of the input neurons and A; denotes the tuning
hyperparameter of the input layer. After solving Equation (4), the LASSO-MLP estimation
can be calculated using Equation (5):

v* = g(Wof (Bixwr+bu)+bo) (5)

More advanced than LASSO-MLP, dLASSO-MLP is a two-stage convex optimisation
methodology that not only selects input variables, but also optimises hidden layers [25].
Assuming hyperparameter A, and shrinkage coefficient 3, of hidden layer, then the second
stage of dLASSO-MLP is as follows:

Bz = argmin Z (y — g(ﬁzWof(ﬁlwa—l-bH)—l—bo))z + )\2”,32”1 (6)
V(xy)e{X Y}

Correspondingly, the dLASSO-MLP estimation can be calculated using Equation (7):

y* = g(BaWof (BiXwy+bp)+bo) ()

A schematic of the dLASSO-MLP estimation is shown in Figure 2, where the dashed
lines represent inactive weights, and the dashed neurons are neurons removed from
the network.
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Hidden layer

Input layer

Figure 2. Schematic of dLASSO-MLP.

2.2. Maximal Information Coefficient (MIC)

Correlation indexes reflect the closeness of the correlation between variables. They
fall within the range [-1, 1], whose magnitudes measure the degree of the importance of
corresponding explanatory variables. The Pearson product-moment correlation coefficient
is one of the popular correlation indexes and is commonly applied with linearities [35]. To
describe nonlinear or mixed models, MIC is a promising tool with universality and equality,
which is mainly calculated through the MI and the meshing method [36]. Consider that
I(X;Y) is the MI between the given X and Y, I(X;Y) can then be expressed as follows:

o oe, LY
[(X;Y) = x;(y;yP(x,y)l gzp(x),p(y) ®

where P(x,y) denotes the joint probability density between X and Y, p(x) and p(y) denote
the marginal probability density of X and Y, respectively. Then, the different probabilities
are obtained according to different meshes, the biggest of which is considered to be MIC,
which is expressed as follows:

_ I(X;Y)
MIC = m"‘x{ Togomin{ | X, Y]} } ®

Although MIC is capable of estimating the importance of the explanatory variables to
the response variable, it cannot determine the sparsest subset to model the output variable
because it lacks a truncation criterion for variable selection. Consequently, MIC is often
implemented as an auxiliary technique for other variable selection approaches. In this
study, MIC is utilised to evaluate the degree of significance of the explanatory variables to
the output variable, and is then designed as an auxiliary factor for the regularisation of the
input layer.

2.3. Huber’s M-Estimation

Huber’s M-estimation [37] was designed to adjust different magnitudes of residuals
and obtain the robustified estimation, which is formulated as follows:

My -y forly —y*| <7

10
v (Iy -y = %v), otherwise (10)

ey y) = {

where parameter 7y determines whether the residual loss is quadratic or linear penalisation.
For v = 0 and ¢ = oo, the Huber loss can be regarded as having two extremes: LAD
and OLS. Owing to the inherent robustness of the LAD estimation, Huber’s M-estimation
has the capability to deal with deviations caused by outliers. Parameter -y is a tuning
hyperparameter and is determined through data-driven, trial-and-error approaches.
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3. Proposed Methodology

In this section, a robust soft sensor with adaptive double regularisation is proposed. A
detailed description of the proposed algorithm is given below.

3.1. Robust ALASSO-MLP with Adaptive Input Variable Selection

In the proposed algorithm, the quadratic residual loss of dLASSO-MLP is replaced
with Huber’s M-estimation to make the model estimation more robust to non-Gaussian
noise and outliers. Moreover, an adaptive operator is added to the L1-regularisation of
input neurons to avoid biased estimates when shrinking the input weights of MLP. The
improved dLASSO-MLP is formulated as Equations (11) and (12):

Bi=argmin Y o(y, §Wof(Bixwy+bp)+bo)) + M6 () Bl (11)
Y(xy)e{X,Y}

Bo=argmin Y @(y, g(B2Wof (Bixwr+bg)+bo)) + A2llB2lx (12)
V(xy)e{X,Y}

where ¢ is the Huber loss function of Equation (11), § = [(51,52, e ,5;,} denotes the
adaptive operator (which will be elaborated in the following section), and ® represents
the Hadamard product. Because the correlation index of the hidden neurons cannot be
obtained, the adaptive regularisation is not included in the hidden layer optimisation of
Equation (12).

Such quadratic optimisation problems can be solved using constrained optimisation
algorithms. In this study, an active-set algorithm is adopted to obtain the optimal sparse
subset [38,39]. The weights between the input and hidden layers of the MLP are updated
with the optimal B1, and then the hidden neurons are updated with ;. Thus, the predicted
value y* of the model can be calculated using Equation (13):

y* = g(BWof (BiXwu+by)+bo) (13)

3.2. Design of the Adaptive Operator

For LASSO in Equation (2), to obtain a sparse model, irrelevant variables need to be
shrunk to zero. Nevertheless, all input magnitude coefficients share the same hyperparam-
eter Aj, which means they are shrunk under equal penalty. This is somewhat unfair for
significant relevant variables because there is no preferential treatment for their domination.
Indiscriminate penalty causes a risk of over-shrinkage of significant relevant variables and
a biased estimation of the model.

To address the deficiency of LASSO regularisation, it is necessary to assign the input
magnitude coefficients’ different degrees of penalty. We deploy § = [&1,62,- - ,6p] to
represent the adaptive penalty vector. To balance the influences, relevant variables should
be designated smaller weights and irrelevant variables should be designated larger weights.
Under large weights, the magnitude coefficients of irrelevant variables are easier to shrink
to zero. This adaptive mechanism of coefficients shrinkage helps to obtain a more unbiased
estimation.

Considering that MLP-based approaches are unable to provide specific input weight
vectors, it is difficult to obtain a specific benchmark of variable importance. Thus, an appro-
priate criterion is necessary to measure the correlation between explanatory variables and
response variables. By conveniently applying nonlinearities, correlation indexes are promis-
ing alternatives. For unbiased shrinkage, the adaptive operator § = [(51,(52, . ,5;,} should
decrease with the influences of explanatory variables. Then, the relationship between a
single pair of §; and correlation index MIC; is expressed as follows:

1 .
51—m, l—1,2,,p (14)
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In this manner, the adaptive operator forces the coefficients of all input variables to
shrink with different penalty strengths. Subsequently, it helps to obtain an unbiased esti-
mation. The superiority of the proposed mechanism was verified through comprehensive
comparisons.

3.3. Determination of Hyperparameters

As pivotal factors in the algorithm, the hyperparameters determine the performance
of the trained model. Specifically, A; determines the shrinkage degree of the input layer
and the size of the dataset, whereas A, determines the simplification degree of the hidden
layer. When Ay, equals zero and Ay, is a sufficiently large value, there must be an optimal
A1 € (Aqpp, Ayp) such that the selected subset satisfies the optimal combination of input
variables. Similarly, hidden neurons are selected and optimised as A, varies within the
domain (Ayp, Ayyp) to achieve the best performance of the model. Candidate variables
and hidden neurons with 1 oy = 0 are all removed from the MLP. Additionally, the
hyperparameter 7y of Huber’s M-estimation affects the degree of robust estimation. When
v — 0, the Huber loss tends toward LAD loss, which tends toward OLS loss when 7 — oo.
By adjusting the value of -, the algorithm can adapt to different degrees of non-Gaussian
noise and outliers.

These hyperparameters are determined using a grid search enumeration procedure
through cross-validation (CV). Descriptions of the modelling performance criteria and
interactive processes implemented in this approach are as follows.

e  Model performance criterion: The Bayesian information criterion (BIC) is applied
as the evaluation criterion for model selection among a finite model set. BIC was
proposed by [36] and adopted as a measure of the trade-off between the model’s
accuracy and complexity. It is given as follows:

BIC = nlog,n Y (y— v+ plog,n (15)
Yyey

where n denotes the number of observations and p the number of selected variables.

e  Grid search: Compared to experiential adjustments, the grid search method performs
hyperparameter tuning exhaustively within the possible hyperparameter combina-
tions. After generating all possible combinations, it is reliable to select the best combi-
nation by means of CV. The bound domain of +y is [0.01,10], and the bound domain of
Aq and Ay is [Agy, Ayp] in this study, where Ay is set as zero and Ay, is a sufficiently large
value that depends on the dimension of the dataset. Subsequently, a list consisting of
every possible combination of A1, Ay, and v is generated. The determination of the
hyperparameters includes two loops, in which the CV was taken as the inner loop. In
the outer loop, each possible combination of hyperparameters was enumerated and
performed using a CV procedure.

e  Cross-validation: CV is considered one of the simplest and most widely used model-
validation approaches. First, the given dataset D is equally divided into K subsets,
one of which is considered the validation set, and the others are taken as the training
set. Then, the BIC of the current validation set is evaluated using Equation (15). The
procedures are repeated K times until each subset is used as the validation set exactly
once. Finally, the BIC values are averaged to evaluate the performance of hyperpa-
rameter combinations. Combining the above steps, the approach for determining
hyperparameter combinations is presented; its pseudocode is outlined in Algorithm 1.



Mathematics 2022, 10, 3837

8 of 16

Algorithm 1. Determination of A1 and A, via K-fold CV.

Input: dataset D = {X, Y}
Output: the optimal combination of (A1, A2, 9)
Begin algorithm
Generate possible combinations of (A1, Ay, ) within the parameter space;
Divide the initial dataset D into k disjoint subsets Dy, D5, ..., Dk;
for each possible combination
fork=1:K
Take Dy as validation set and the others as training set;
Train an initial MLP with the current training set;
Integrate robust estimation and adaptive L1-regularisation to the MLP;
Solve Equations (11) or (12) and get the magnitude coefficient Bk ;
Obtain a new MLP model by replacing B, with fy;
Calculate BICy, for the current parameter combination through Equation (15);
End for
CV_BIC = + YK | BIC;
End for
Return the optimal combination of (A1, A5, 4) with the minimum CV_BIC.
End algorithm

3.4. Overall Procedure of the Proposed Algorithm

Based on the detailed description of the proposed algorithm in the previous sections,
the computation flow of the algorithm can be summarised as presented below, and its
flowchart is displayed in Figure 3.

1. Calculate the MIC correlation index and adaptive operator using Equations (9) and (14);
2. Divide the initial dataset D = {X, Y} into training and testing datasets;

3. Implement Algorithm 1 and obtain the optimal hyperparameter combination of
(A1, Ao, 9); X R

Train a new MLP and obtain the optimal ;1 by solving Equation (11) using A; and ;
Update the input weights of the MLP and select the input variables;

Obtain the optimal 3, by solving Equation (12) with A, and 4;

Optimise the structure of the MLP with f,;

Output the simplified dataset and optimised MLP model.

Calculate the adaptive operator with MIC
correlation index

[«
¢

Train an initial MLP with the training dataset

|

Exert the adaptive L, -regularization with
Huber’s M-estimator on the trained MLP

|

Determine the y, A;, and A, using grid search
and K-fold CV

!

Obtain a new MLP via input variable selection
and hidden layer optimization

Output the optimal
model and subset

Figure 3. Flowchart of the proposed ARALASSO-MLP.

® N oG

Construct a new training dataset
with selected input variables
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4. Simulations and Results on Artificial Datasets

This section reports the simulation and validation of the proposed algorithm, con-
ducted through an artificial example with normal and contaminated data. Specifically, it is
compared with the standard MLP, the embedding data-driven approaches NNG-MLP [20]
and LASSO-MLP [19], and the two-stage regularised approach dLASSO-MLP [25].

4.1. Model Evaluation Criteria
The metrics used for the evaluation are as follows:

e  Coefficient of determination (R?): This statistic measures the fitness between the
predicted y* and the actual observation of y, where ¥ is the average of y:

_ ZVy,y*eY,Y* (]/ - y*)z
Lvyyrev,y- (v — v’

R?Z=1 (16)

e  Mean square error (MSE): This is the MSE between the predicted y* and measured y,
and is formulated as follows:

1 *
MSE=- ) (y-y) (17)
Yyy*eY,Y*

e  Mean absolute error (MAE): This is the average absolute residual between the pre-
dicted Y* and the actual observation of y:

1 *
MAE=- Y |y—y" (18)
Yy y*eyY,Y*

4.2. Experimental Setup

In this study, all algorithms used the same experimental setup. The first 80% of the
dataset was used for training and the remainder for testing. All simulations were performed
using MATLAB in a Windows 10 environment, with a Ryzen 7 4800H 2.90 GHz CPU and
16 GB RAM. For the respective MLP structures, the hyperbolic tangent function and linear
function were chosen as activation functions for the hidden and output layers, respectively.
As one of the most classic trust region methods, the Levenberg—-Marquardt algorithm was
used as the training approach for the BP algorithm with the same initial learning rate. To
ensure fairness, the algorithms were initialised with identical MLP structures.

The optimal hyperparameter values of these ANNs were determined via several trials.
The number of hidden layers and hidden neurons, the learning rate, and the maximum
number of iterations are listed in Table 1.

Table 1. Hyperparameter values for the MLP used in this study.

Hyperparameter Value
Hidden layers 1
Hidden neurons 5
Learning rate 0.001
Maximum number of iterations 1000

To demonstrate the robustness of the proposed algorithm, a comparative simulation
was designed with artificially altered outliers. First, simulations were performed on a nor-
mal artificial dataset. Then, the contaminated data were further simulated to demonstrate
the robustness of the proposed algorithm. Finally, the proposed algorithm was utilised in
the S-Zorb desulphurisation process to predict the RON.
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4.3. Simulation Results on Artificial Dataset
4.3.1. Artificial Dataset with Normal Distribution

In this case, an artificial nonlinear function, described in [12], was used to gener-
ate the normal dataset with different degrees of redundant variables. The candidate
variables X = {Xj, X} were divided into related variables X; € R"*"1 and irrelevant
variables X, € R"*P2, X follows a multivariate normal distribution with the covariance of
Yij= pli=il, Vi + j, where p denotes the collinearity between two different variables. Then,
the response variable Y was obtained as follows:

) {\/X1-5+X2-0—0.5+s, 6>05 (19)

eXiFrX20+05 4 g 9 < 05

where g = [3,1.5, 2, 4,0.5,1.3, —2.6, —3.5, —5.1, 2] and ¢ denotes Gaussian white noise.
In this study, p was set to 0.8, indicating that there were considerably coupled candidate
variables. pp was respectively set to 10 and 90 to simulate the dataset in low and large
dimensions. A total of 1000 observations were generated to build the dataset. Each algo-
rithm was run 10 times; the corresponding average and best performances are presented in
Tables 2 and 3. To validate the effectiveness of the proposed algorithm, the time cost for a
single modelling was recorded after all hyperparameters were determined.

Table 2. Comparison results of different algorithms for normal data (X, € R7x10y,

R? MSE MAE
Model Time Cost
Mean Best Mean Best Mean Best
MLP 0.9330 0.9414 0.1206 0.1014 0.2192 0.2084 0.4357
NNG-MLP 0.9460 0.9491 0.0933 0.0880 0.2004 0.1909 5.1777
LASSO-MLP 0.9477 0.9510 0.0904 0.0847 0.1940 0.1819 5.3589
dLASSO-MLP 0.9471 0.9510 0.0929 0.0848 0.2157 0.1969 4.3865
RAdJLASSO-MLP 0.9524 0.9548 0.0849 0.0786 0.1926 0.1858 2.6466
Table 3. Comparison results of different algorithms for normal data (X, € R7x90y,
R? MSE MAE
Model Time Cost
Mean Best Mean Best Mean Best
MLP 0.8732 0.9235 0.1665 0.1310 0.2977 0.2687 0.4405
NNG-MLP 0.9496 0.9528 0.0838 0.0781 0.2171 0.2091 92.9382
LASSO-MLP 0.9508 0.9526 0.0888 0.0788 0.2206 0.2134 40.3202
dLASSO-MLP 0.9523 0.9567 0.0859 0.0760 0.2245 0.2077 19.9748
RAdJLASSO-MLP 0.9545 0.9598 0.0799 0.0691 0.2038 0.1888 13.0524

In Tables 2 and 3, the RAALASSO-MLP has the minimum MSE and maximum R2
among all the algorithms. First, for the artificial dataset with small and large dimensions of
irrelevant variables, the embedding variable selection approaches have similar accuracy
and perform favourably over the standard MLP. This indicates that the dimension of the
input variables influences the prediction performance of MLP. Then, the optimisation of
the MLP structure enables the model to generalise better. Notably, in the case of the non-
contaminated dataset, the double regularisations with adaptive variable selection improves
the predictive performance of the model. In addition, the proposed algorithm has the least
training time, demonstrating the superiority of our algorithm in terms of time performance.

4.3.2. Artificial Dataset with Non-Gaussian Noise and Outliers

In the above example, the data were set theoretically and ideally. Notably, it is
necessary to validate the robustness of the proposed model through abnormal samples.
Abnormal samples can be divided into vertical outliers in response and heavy-tailed points
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in explanatory variables. In this study, we generated contaminated samples for both
response and explanatory variables. Vertical outliers were generated according to the Pauta
criterion [40], and were launched with values more than three scaled median absolute
deviation (MAD) away from the median of Y, where MAD is expressed as follows [41]:

MAD = median(|Y — median(Y)|) (20)

Non-Gaussian noise can be simulated with heavy-tailed points. We generated Ax ~
N(p, 1) with p # 0, randomly selected x;; € X from the samples, and replaced the original
x;j with x;; + Ax. Let 17 be the contaminated rate with values of 0.1-0.6. Then, the result
with 1000 observations under # = 0.3 is displayed in Table 4, where these algorithms except
for RAALASSO-MLP tend to break down. Further, simulation results under different 7 are
shown in Figure 4, wherein all statistics are compared.

Table 4. Comparison results of different algorithms for contaminated data (7 = 0.3).

R? MSE MAE
Model Time Cost
Mean Best Mean Best Mean Best
MLP 0.2834 0.3474 2.2393 1.9411 1.1407 1.1041 0.4916
NNG-MLP 0.7543 0.9049 0.7802 0.5192 0.7382 0.6186 53.0698
LASSO-MLP 0.7461 0.8245 0.7176 0.4925 0.6881 0.5893 47.8459
dLASSO-MLP 0.8052 0.9252 0.3685 0.1260 0.4763 0.2666 45.1171
RAdLASSO-MLP 0.9333 0.9495 0.1139 0.0833 0.2669 0.2289 35.1392
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Figure 4. Performance comparison with different #: (a) RZ; (b) MSE; (c) MAE.

It can be concluded that the RAALASSO-MLP has a better performance with every
statistic, meaning that our algorithm has the best generalisation and resistance to contami-
nated data. With increases in 7, the superiority of the proposed algorithm becomes more
obvious. The R? of the other four algorithms decrease to under 0.8 when 7 > 0.3, which
demonstrates that the MLPs with MSE as the loss function are sensitive to non-Gaussian



Mathematics 2022, 10, 3837

12 of 16

noise and outliers. Notably, MLP fails to generalise first and overfit at 7 = 0.2, whereas the
other algorithms maintain a favourable performance. As a basic ANN, MLP has neither the
capacity to reduce the model redundancy nor the resistance to outliers. Therefore, under
the joint influence of model redundancy and non-Gaussian noise, the overfitting occurred
for the MLP. As a result of the robust Huber loss, ARALASSO-MLP has better prediction
accuracy over other algorithms.

5. Application to RON Estimation in S-Zorb Plant
5.1. Overview of the S-Zorb Desulphurisation Plant

S-Zorb technology, which is based on the principle of reactive adsorption desulphuri-
sation, is generally applied to produce low sulphur and ultra-low sulphur gasoline. The
desulphurisation of fluid catalytic cracking (FCC) gasoline is achieved by selective sulphide
adsorption and removal. The general scheme of an S-Zorb unit for a gasoline treatment
process is shown in Figure 5.

S0,+C0,

Full-distillation Ked I
FCC gasoline Coked catalyst Coked catalyst
recerver | filter
( ) Reactor

Feedstock tank Feed|heat exchanger ]

—@r@ Regenerator
Feedstock pump Adsorbents Logk
receiver hapy

Hydrogen make-up
compressor
H,

Blowback hydrogen
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:l ¥ Adsorbents
reductor feed ta /ﬁl\{eﬂux tank

compressor R
{ ) >
Circulating hydrogen ( ) - Q N
compressor R Stabilizer Product
Thermal gas-liquid "7, . o
Separation Tk Cooling gas-liquid

separation tank

Figure 5. Process graph of an S-Zorb unit.

The S-Zorb desulphurisation unit is composed of four main sections: feedstock and
desulphurisation, adsorbent regeneration, adsorbent circulation and product stabilisation.
With full distillation FCC gasoline as the raw material and reformed hydrogen as the
hydrogen source, the adsorption desulphurisation reaction proceeds on the surface of
the adsorbents inside the reactor under a given temperature and pressure. The feedstock
and desulphurisation system mainly implements adsorption desulphurisation, olefin hy-
drogenation, and olefin hydroisomerization reactions. The carbon—sulphur bond of the
sulphide is broken during the reaction between the sulphur atoms of the sulphide and the
adsorbents. Subsequently, the sulphur atoms are removed and adsorbed, after which the
hydrocarbon molecules return to the process. Through these chemical reactions, the raw
materials are converted into reactive oil and gas, sulphide, and a small amount of coke.
Spent adsorbents with sulphur atoms are oxidised and regenerated in the regenerator, and
their activity is restored. The regenerated adsorbents are delivered back to the reactor to
circulate the regeneration and reaction. Subsequently, the sulphide and coke are burned
off during adsorbent regeneration. Additionally, the reactive oil and gas are stabilised to
produce low sulphur gasoline, which is clean and stable.

RON is directly determined by the proportion of hydrocarbons in gasoline. A small
reduction in RON loss means purer gasoline as well as lower cost. To facilitate the moni-
toring and analysis of the S-Zorb unit and identify the critical indicators of RON loss, it
is necessary to develop an accurate inferential model. However, due to the complicated
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mechanisms of the S-Zorb unit, mechanism-based models are difficult to implement. In
addition, there are numerous operating variables in processes with high nonlinearity and
coupling characteristics. Therefore, it is important to develop soft-sensing algorithms with
efficient variable selection and model optimisation for the accurate prediction of RON.

The S-Zorb device contained 367 variables, including 354 operating variables, seven
feedstock properties, two spent adsorbents, two regenerated adsorbents, and two products.
Among these variables, RON was taken as the response variable, whereas the other 365 non-
product variables were the explanatory variables. The processing data were collected from a
petrochemical plant in China over four years. The S-Zorb desulphurisation is a continuous
process and operating variables were sampled every three minutes. Considering the
measurement difficulty, the RON was sampled twice a week. It resulted in 325 completely
independent processing samples to match the RON measurement.

5.2. Simulations and Discussions

In this study, the first 80% of the data were designated as the training dataset and the
remaining data were used for testing. A total of 152 explanatory variables correlated with
the response variable over 0.3 were initially selected and considered as candidate input
variables, 22 of which were moderately and highly related. After several trials, the initial
MLP structure was set to 152-5-1, which means that there were 152 input, five hidden,
and one output neuron. To prove the necessity of implementing a robust approach, a
determination of whether the measured dataset has outliers has to be made according to
the Puata criterion [38]. Figure 6 shows the distribution graph of RON in the measured
dataset, in which samples 14, 84, 85, 86, 142, 151, 153, and 189 are identified as outliers.
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Figure 6. Distribution graph of RON in the measured dataset.

Table 5 shows the mean and the best statistical results for these algorithms over
10 runs. It is clear that the RAALASSO-MLP outperforms the other algorithms on all
criteria. The best regressions and error distributions of these approaches are presented in
Figures 7 and 8, where it can be seen that only the RAdLASSO-MLP has R? over 0.9 and is
superior to the other four algorithms. Notably, owing to the insufficiency, nonideality, and
redundancy of data, MLP has poorer generalisation with the industrial dataset than that
with artificial datasets and has broken to overfitting. It can be concluded that appropriate
model reduction and robustified strategies help to obtain more accurate estimations.



Mathematics 2022, 10, 3837

14 of 16

Table 5. Results of RON estimation with different algorithms.

R? MSE MAE
Model Time Cost
Mean Best Mean Best Mean Best

MLP 0.0219 0.0236 5.3199 1.9544 1.4170 0.3874 0.5618
NNG-MLP 0.4861 0.8596 0.1496 0.0352 0.2797 0.1538 135.9702
LASSO-MLP 0.6051 0.8866 0.1638 0.0254 0.2257 0.1114 74.3032
dLASSO-MLP 0.8828 0.8753 0.0254 0.0194 0.1196 0.1072 47.2796
RAdLASSO-MLP 0.9353 0.9465 0.0123 0.0101 0.0789 0.0731 46.0341
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Figure 7. Regression between the predicted and measured values with different algorithms: (a) MLP;
(b) NNG-MLP; (¢) LASSO-MLP; (d) dLASSO-MLP; (e¢) RAALASSO-MLP.
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6. Conclusions

In this paper, a robust soft-sensing algorithm called RAALASSO-MLP was proposed
for modelling complex industrial processes with outliers and non-Gaussian noise. The
proposed algorithm combines the ideologies of the double L1-regularisation algorithm
and Huber’s M-estimation to robustly optimise MLP-based soft sensors. In addition, an
adaptive mechanism with MIC is designed to discriminately shrink the input weights of
the MLP, by which a more unbiased estimation model can be obtained. We demonstrated
through simulations that the proposed soft-sensing algorithm performs favourably in terms
of robust variable selection and coefficient estimation. RAALASSO-MLP improves upon
dLASSO-MLP in describing nonlinear sparse models with a more unbiased model structure.
Furthermore, validating with an artificial example and an actual industrial S-Zorb process,
it retained the appealing robust property of Huber’s M-estimation over state-of-the-art
soft-sensing approaches.

Although it has been demonstrated that the proposed algorithm is effective for contam-
inated data and the S-Zorb process in this study, it is not suitable for time-series modelling
because of the feedforward structure of MLP. Robust soft-sensing approaches with other
recurrent neural networks, such as gated recurrent units or long short-term memory in
different industrial scenarios, will be considered in future research.

Author Contributions: Conceptualisation, Y.L. and K.S.; methodology, Y.L.; software, Y.L.; validation,
C.P; formal analysis, ].Z.; investigation, X.Y.; resources, ].Z.; data curation, Y.L.; writing—original
draft preparation, Y.L.; writing—review and editing, X.Y.; visualisation, C.P.; supervision, X.Y.; project
administration, K.S.; funding acquisition, X.Y. and K.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program (Grant
No. 2019YFB1705800), the Open Foundation of the State Key Laboratory of Process Automation
in Mining & Metallurgy under Grant No. BGRIMM-KZSKL-2021-07, and the Shandong Provincial
Natural Science Foundation of China under Grant ZR2021MF022.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The sponsors had no role in the
design, execution, interpretation, or writing of the study.

References

1.  Curreri, F; Patang, L.; Xibilia, M.G. Soft sensor transferability: A Survey. Appl. Sci. 2021, 11, 7710. [CrossRef]

2. Cheng, T.; Harrou, F; Sun, Y.; Leiknes, T. Monitoring influent measurements at water resource recovery facility using data-driven
soft sensor approach. IEEE Sens. J. 2019, 19, 342-352. [CrossRef]

3. Zhang, J; Li, D.; Xia, Y.; Liao, Q. Bayesian aerosol retrieval-based PM2. 5 estimation through hierarchical Gaussian process
models. Mathematics 2022, 10, 2878. [CrossRef]

4. Muravyov, S.V.; Khudonogova, L.I.; Emelyanova, E.Y. Interval data fusion with preference aggregation. Measurement 2018, 116,
621-630. [CrossRef]

5. Lu, B;; Chiang, L. Semi-supervised online soft sensor maintenance experiences in the chemical industry. J. Process Control 2018, 67,
23-34. [CrossRef]

6. Song, X.; Han, D.; Sun, ].; Zhang, Z. A data-driven neural network approach to simulate pedestrian movement. Phys. A 2018, 509,
827-844. [CrossRef]

7. Abiodun, O.1; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network
applications: A survey. Heliyon 2018, 4, e00938. [CrossRef]

8. Montes, E; Ner, M.; Gernaey, K.V,; Sin, G. Model-based evaluation of a data-driven control strategy: Application to Ibuprofen
Crystallization. Processes 2021, 9, 653. [CrossRef]

9. Wang, C.C.; Chang, H.T.; Chien, C.H. Hybrid LSTM-ARMA demand-forecasting model based on error compensation for
integrated circuit yray manufacturing. Mathematics 2022, 10, 2158. [CrossRef]

10. Sun, C.; Zhang, Y.; Huang, G.; Liu, L.; Hao, X. A soft sensor model based on long&short-term memory dual pathways
convolutional gated recurrent unit network for predicting cement specific surface area. ISA Trans. 2022. [CrossRef]

11. Lama, RK,; Kim, J.I.; Kwon, G.R. Classification of Alzheimer’s disease based on core-large scale brain network using multilayer

extreme learning machine. Mathematics. 2022, 10, 1967. [CrossRef]


http://doi.org/10.3390/app11167710
http://doi.org/10.1109/JSEN.2018.2875954
http://doi.org/10.3390/math10162878
http://doi.org/10.1016/j.measurement.2017.08.045
http://doi.org/10.1016/j.jprocont.2017.03.013
http://doi.org/10.1016/j.physa.2018.06.045
http://doi.org/10.1016/j.heliyon.2018.e00938
http://doi.org/10.3390/pr9040653
http://doi.org/10.3390/math10132158
http://doi.org/10.1016/j.isatra.2022.03.013
http://doi.org/10.3390/math10121967

Mathematics 2022, 10, 3837 16 of 16

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.
41.

Sun, K,; Sui, L.; Wang, H.; Yu, X; Jang, S.S. Design of an adaptive nonnegative garrote algorithm for multi-layer perceptron-based
soft sensor. IEEE Sens. J. 2021, 21, 21808-21816. [CrossRef]

Lv, J.; Tang, W.; Hosseinzadeh, H. Developed multiple-layer perceptron neural network based on developed search and rescue
optimizer to predict iron ore price volatility: A case study. ISA Trans. 2022. [CrossRef]

Saki, S.; Fatehi, A. Neural network identification in nonlinear model predictive control for frequent and infrequent operating
points using nonlinearity measure. ISA Trans. 2020, 97, 216-229. [CrossRef]

Pham, Q.B.; Afan, H.A.; Mohammadi, B.; Ahmed, A.N.; Linh, N.T.T.; Vo, N.D.; Moazenzadeh, R.; Yu, P.S. Hybrid model to
improve the river streamflow forecasting utilizing multi-layer perceptron-based intelligent water drop optimization algorithm.
Soft Comput. 2020, 24, 18039-18056. [CrossRef]

Zoljalali, M.; Mohsenpour, A.; Amiri, E.O. Developing MLP-ICA and MLP algorithms for investigating flow distribution and
pressure drop changes in manifold microchannels. Arab. |. Sci. Eng. 2022, 47, 6477-6488. [CrossRef]

Min, H.; Ren, W,; Liu, X. Joint mutual information-based input variable selection for multivariate time series modeling. Eng. Appl.
Artif. Intell. 2015, 37, 250-257.

Romero, E.; Sopena, ].M. Performing feature selection with multilayer perceptrons. IEEE Trans. Neural Netw. 2008, 19, 431-441.
[CrossRef]

Sun, K.; Huang, S.H.; Wong, D.S.H.; Jang, S.S. Design and application of a variable selection method for multilayer perceptron
neural network with LASSO. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 1386-1396. [CrossRef]

Sun, K; Liu, J.; Kang, J.L.; Jang, S.S.; Wong, D.S.H.; Chen, D.S. Development of a variable selection method for soft sensor using
artificial neural network and nonnegative garrote. J. Process Control 2014, 24, 1068-1075. [CrossRef]

Muravyov, S.V.; Khudonogova, L.I.; Ho, M.D. Analysis of heteroscedastic measurement data by the self-refining method of
interval fusion with preference aggregation—IF&PA. Measurement 2021, 183, 109851.

Cui, C.H.; Wang, D.H. High dimensional data regression using Lasso model and neural networks with random weights. Inf. Sci.
2016, 372, 505-517. [CrossRef]

Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929-1958.

Wang, H.; Sui, L.; Zhang, M.; Zhang, F.; Ma, E; Sun, K. A novel input variable selection and structure optimization algorithm for
multilayer perceptron-based soft sensors. Math. Probl. Eng. 2021, 2021, 1-10. [CrossRef]

Fan, Y.; Tao, B.; Zheng, Y. A data-driven soft sensor based on multilayer perceptron neural network with a double LASSO
approach. IEEE Trans. Instrum. Meas. 2019, 69, 3972-3979. [CrossRef]

Wang, H.; Li, G.; Jiang, G. Robust regression shrinkage and consistent variable selection through the LAD-LASSO. |. Bus. Econ.
Stat. 2007, 25, 347-355. [CrossRef]

De Menezes, D.Q.F,; Prata, D.M.; Secchi, A.R.; Pinto, ].C. A review on robust M-estimators for regression analysis. Comput. Chem.
Eng. 2021, 147, 107254. [CrossRef]

Xia, Y.; Wang, J. Robust regression estimation based on low-dimensional recurrent neural networks. IEEE Trans. Neural Netuw.
Learn. Syst. 2018, 29, 5935-5946. [CrossRef]

Wang, ].G.; Cai, X.Z.; Yao, Y.; Zhao, C.; Yang, B.H.; Ma, S.W. Statistical process fault isolation using robust nonnegative garrote. J.
Tniwan Inst. Chem. Eng. 2020, 107, 24-34. [CrossRef]

Gijbels, I; Vrinssen, I. Robust nonnegative garrote variable selection in linear regression. Comput. Stat. Data Anal. 2015, 85, 1-22.
[CrossRef]

Zou, H. The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 2012, 101, 1418-1429. [CrossRef]

Alhamzawi, R.; Ali, H. The Bayesian adaptive lasso regression. Math. Biosci. 2018, 303, 75-82. [CrossRef]

Tibshirani, R. Regression shrinkage and selection via the Lasso. . R. Stat. Soc. B 1996, 58, 267-288.

Lin, Y.J. Explaining critical clearing time with the rules extracted from a multilayer perceptron artificial neural network. Int. J.
Electr. Power Energy Syst. 2010, 32, 873-878. [CrossRef]

Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer Science
& Business Media: Berlin/Heidelberg, Germany, 2009; pp. 1-4.

Schwarz, G. Estimating the dimension of a Model. Ann. Stat. 1978, 6, 461-4646. [CrossRef]

Huber, PJ. Robust estimation of a location parameter. In Breakthroughs in Statistics; Kotz, S., Johnson, N.L., Eds.; Springer Science
& Business Media: New York, NY, USA, 1992; pp. 492-518.

Ferreau, H.J.; Kirches, C.; Potschka, A.; Bock, H.G. qpOASES: A parametric active-set algorithm for quadratic programming.
Math. Program. Comput. 2014, 6, 327-363. [CrossRef]

Solntsev, S.; Nocedal, J.; Byrd, R. An algorithm for quadratic ¢/1-regularized optimization with a flexible active-set strategy. Optim.
Methods Softw. 2015, 30, 1213-1237. [CrossRef]

Pukelsheim, F. The three Sigma rule. Am. Stat. 1994, 48, 88-91.

Pham-Gia, T.; Hung, T. The mean and median absolute deviations. Math. Comput. Model. 2001, 34, 921-936. [CrossRef]


http://doi.org/10.1109/JSEN.2021.3102586
http://doi.org/10.1016/j.isatra.2022.04.025
http://doi.org/10.1016/j.isatra.2019.08.001
http://doi.org/10.1007/s00500-020-05058-5
http://doi.org/10.1007/s13369-021-06464-z
http://doi.org/10.1109/TNN.2007.909535
http://doi.org/10.1109/TNNLS.2016.2542866
http://doi.org/10.1016/j.jprocont.2014.05.010
http://doi.org/10.1016/j.ins.2016.08.060
http://doi.org/10.1155/2021/5517289
http://doi.org/10.1109/TIM.2019.2947126
http://doi.org/10.1198/073500106000000251
http://doi.org/10.1016/j.compchemeng.2021.107254
http://doi.org/10.1109/TNNLS.2018.2814824
http://doi.org/10.1016/j.jtice.2019.12.004
http://doi.org/10.1016/j.csda.2014.11.009
http://doi.org/10.1198/016214506000000735
http://doi.org/10.1016/j.mbs.2018.06.004
http://doi.org/10.1016/j.ijepes.2010.01.026
http://doi.org/10.1214/aos/1176344136
http://doi.org/10.1007/s12532-014-0071-1
http://doi.org/10.1080/10556788.2015.1028062
http://doi.org/10.1016/S0895-7177(01)00109-1

	Introduction 
	Background Theories 
	LASSO Regularisations for MLP 
	Maximal Information Coefficient (MIC) 
	Huber’s M-Estimation 

	Proposed Methodology 
	Robust dLASSO-MLP with Adaptive Input Variable Selection 
	Design of the Adaptive Operator 
	Determination of Hyperparameters 
	Overall Procedure of the Proposed Algorithm 

	Simulations and Results on Artificial Datasets 
	Model Evaluation Criteria 
	Experimental Setup 
	Simulation Results on Artificial Dataset 
	Artificial Dataset with Normal Distribution 
	Artificial Dataset with Non-Gaussian Noise and Outliers 


	Application to RON Estimation in S-Zorb Plant 
	Overview of the S-Zorb Desulphurisation Plant 
	Simulations and Discussions 

	Conclusions 
	References

