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Abstract: Iris recognition, which is known to have outstanding performance among conventional
biometrics techniques, requires a high-resolution camera and a sufficient amount of lighting to
capture images containing various iris patterns. To address these issues, research is actively con-
ducted on ocular recognition to include a periocular region in addition to the iris region, which also
requires a high-resolution camera to capture images, indicating limited applications due to costs
and size limitation. Accordingly, this study proposes an ocular super-resolution cycle-consistent
generative adversarial network (OSRCycleGAN) for ocular super-resolution reconstruction, and
additionally proposes a method to improve recognition performance in case that ocular images are
acquired at a low-resolution. The results of the experiment conducted using open databases, namely,
CASIA-iris-Distance and Lamp v4, and IIT Delhi iris database, showed that the equal error rate of
recognition of the proposed method was 3.02%, 4.06% and 2.13% for each database, respectively,
which outperformed state-of-the-art methods.
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1. Introduction
Background of Biometrics

Among various biometrics technologies [1,2], iris recognition is commonly applied
in the fields that require personal identification or security above a certain level due to
unique characteristics of an iris region (unaffected by aging, no changes in characteristics
due to external factors), thus guaranteeing a high level of security [3–8]. Iris images are
captured from a certain long distance [9], unlike the close-distance iris recognition system
environment in which image quality may be reduced. To overcome these drawbacks,
replacing the environment or equipment is generally considered first, but entails a high
cost. Therefore, ocular or periocular recognition has been researched using an ocular
region containing the iris region or periocular region not containing the iris region [10,11].
However, ocular or periocular recognition method also has a problem of low-resolution
or poor-quality images when they are captured from a quite far distance or when a low-
performance camera is used, which degrades the recognition performance. Super-resolution
reconstruction (SRR) may be applied as an alternative to solve the issue [12,13]. However,
conventional SRR techniques have been embodied for the purpose of enhancing visibility
in images using traditional image processing techniques [14,15]. Thus, ocular recognition
performance improvement in low-resolution images cannot be achieved.

In recent years, deep learning technology was advanced, which enables a convolu-
tional neural network (CNN)-based SRR to be extensively conducted [16,17]. Moreover,
other studies on SRR have been conducted for applying a generative adversarial network
(GAN) [18] to further enhance the performance of SRR [19]. The purpose SRR in general
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scenes is to improve visibility and increase resolution for the entire image rather than for
details of a specific region. However, improvement in recognition performance is consid-
ered as a major purpose in biometric images for iris and ocular recognition than improving
visibility through SRR as the details of biometrics of each individual are important.

From this perspective, this study proposes an ocular super-resolution cycle-consistent
generative adversarial network (OSRCycleGAN)-based SRR method. Our research has
contributions in the following three ways compared to previous works:

- Different from a conventional CycleGAN, our proposed OSRCycleGAN reduces the
number of weight filters by half in generator and discriminator. Consequently, it can
decrease system complexity and memory usage while increasing the processing speed.

- The proposed OSRCycleGAN does not use identity loss compared to conventional
CycleGAN loss while using cycle consistent and perceptual losses. When calculating
the perceptual loss in particular, it calculates authentic and imposter matching dissim-
ilarities between mini-batch unit images in order to reflect them in cycle consistent
and discriminator losses.

- For a fair performance evaluation by other researchers, the trained OSRCycleGAN
model and algorithms are publicly available on request.

The rest of the paper is arranged as follows. Previous studies are analyzed in Section 2,
while the explanations of OSRCycleGAN-based SRR and the ocular recognition method
introduced in this study are provided in Section 3. Experimental results with analyses are
presented in Section 4. Finally, conclusions and future works are offered in Section 5.

2. Related Work

Prior studies on iris and ocular recognition can be roughly categorized into those
that considered SRR and those that did not consider SRR. The details are provided in the
following sections.

2.1. Iris and Ocular Recognition without SRR

Iris recognition in initial phases targeted images taken from a close distance; iris
recognition from a long distance has been researched to improve user convenience and to
be applicable in a surveillance environment [20,21]. However, long-distance iris recognition
requires a sufficiently strong near-infrared (NIR) lighting in addition to a camera with
telescopic lens that can maintain high image quality even from a far distance. The iris
region in images captured from a long distance has poorer quality than in images captured
from a close distance and, therefore, high performance cannot be guaranteed. Accordingly,
studies have been conducted using an ocular region including the iris, which is larger than
the iris region.

An ocular region can be captured from a farther distance than the convention iris
recognition method. Therefore, it can be obtained relatively easily although rich and unique
features of iris cannot be used, and the rough iris region has been used as a substitute in the
conventional iris recognition [22,23] and integrated in iris recognition methods [10,24,25].
Oishi et al. [24] proposed a method involving fusion of two scores of iris recognition and
periocular recognition. Tan et al. [25] also obtained iris recognition result and periocular
region recognition result through fusion.

The above methods are handcrafted feature-based methods, and deep feature-based
methods have been recently researched to improve recognition performance. In a study
by Gangwar et al. [26], after extracting a circular iris region from the input image as in
conventional iris recognition methods, the region was then converted to a rectangular
iris region in a polar coordinate for an input in the CNN for recognition. In a study by
Lee et al. [27], when an iris image quality is poor in a noisy environment, a total of three
images are captured by expanding the iris region with respect to the center of pupil and
then the images are input in three CNN models for recognition. Liu et al. [28] applied
the Hough transform as a preprocessing step of an input to detect the iris boundary to
improve the iris recognition performance; then, an input image was configured by making
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the region excluding the iris region fuzzy using the Gaussian low-pass filter, and a CNN
model was trained using the image to perform recognition. Vizomi et al. [29] attempted
ocular recognition by applying a CNN. Lee et al. [30] obtained the ocular region using a
rough pupil detection method from the face image captured by an NIR sensor and trained
a deep CNN using this region.

However, all these studies focused on iris and ocular recognition without considering
SRR, which implies degradation in recognition performance when low-resolution images
are input.

2.2. Iris and Ocular Recognition with SRR
2.2.1. Conventional Image Processing-Based Method

There are studies that have applied SRR for restoring low-resolution images in a
recognition system using iris and ocular regions. Nguyen et al. [21] detected the iris region
in each image of a video sequence captured from a long distance and then determined
whether each detected iris region has high resolution and high quality. Subsequently,
Nguyen et al. [31] modeled the relationship between the original high-resolution iris
image and the low-resolution iris image, which was then converted to feature-domain
based on a maximum a posteriori probability (MAP) for SRR. Deshpande et al. [32] used
Papoulis–Gerchberg (PG) and projection onto convex set (POCS) methods as SRR for
improving the quality of a low-resolution iris image. In a study by Nguyen et al. [33],
focus score weighted SRR was applied to restore low-resolution and low-quality images
for performing iris recognition in images captured from a long distance and in a moving
uncooperative environment.

2.2.2. Learning-Based Method

Traditional image processing-based SRR methods have limitations in performance
improvement as the degradation function, which is the cause of degradation in quality
of captured images, needs to be presumed by humans and the image restoration process
is fairly difficult to perform. Thus, learning-based SRR methods have been researched.
In a study by Fahmy et al. [34], a cross-correlation model was used to register and align
the divided image into nine frame sets to apply SRR. Shirke et al. [35] applied the SRR
method developed by Fahmy et al. [34] to restore iris images acquired from a distance
for improving resolution and performance. In a study by Cui et al. [36], iris images were
synthesized without a large iris image dataset due to the difficulty in constructing an
iris image dataset during which PCA-based SRR was applied to improve the resolution
and quality of images. Shin et al. [37,38] proposed a recognition method in which a
low-resolution iris image is restored using multi-layered perceptron (MLP). Moreover,
Shin et al. [39] proposed a method for generating and recognizing a high-resolution iris
image using MLP and constraint least square (CLS) filter. Alonso-Fernandez et al. [40] pro-
posed a PCA hallucination method in which low-resolution (LR) patches are obtained using
PCA eigen-transformation from a low-resolution input image and then high-resolution
(HR) patches for the training dataset are obtained to restore a high-resolution iris image.

2.2.3. Deep Feature-Based Method

Traditional learning-based methods have the disadvantage of limited improvement in
SRR performance for images captured in various environments; therefore, deep learning-
based methods have been researched. In a previous study [41], an iris super-resolution
method involving a CNN model consisting of three general layers that restore LR patch to
HR patch, and a stacked auto-encoder containing several auto-encoders was proposed. In a
study by Reddy et al. [42], an ocular sequence image was captured, and subpixel registration
was first performed using a discrete cosine transform interpolation filter (DCTIF) for images
in each frame. Ocular recognition was then performed by applying deblurring using an
additional CNN for the ocular sequence image. In another study [43], texture or natural
image was pre-trained with a CNN model and the weight was trained as well; then,
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transfer learning for learning iris images was applied to an SRCNN model and very deep
convolutional networks (VDCNN) model.

In advanced deep learning-based methods, they conducted various experiments such
as image steganography using GAN and attention modules [44–46]. In [44], they performed
image steganography by using called CHAT-GAN implemented by GANs combined with
a channel attention module. Based on this method, they achieved high-performance for
image steganography without losing hiding information and image qualities. In a study by
Liao [45,46], they proposed a new method that decreases or distributes the payload in color
image steganography. Image steganography is quite difficult to implement because its goal
is to hide additional key information in an image without any noticeable differences. In
other words, the method may have high system complexities if implemented. Therefore,
they attempted to decrease or distribute the payload by proposing a method based on
image texture complexity and distortion distribution. As a result, they got a satisfactory
performance by implementing the proposed method called embedding strategy based on
image texture complexity (ES-ITC), embedding strategy based on distortion distribution
(ES-DD), and amplifying channel modification probabilities strategy (ACMP).

In the wild, various degradation factors can reduce image quality, and these factors
may appear at any time, which cannot be noticed. This can decrease system performance,
so these factors should be removed. Based on this background, Yin et al. [47] proposed a
method that eliminates the degradation factor and obtains the super-resolution image by
single conditional hyper-network architecture.

The deep learning-based methods explained above all use general CNNs or encoders,
thus having limitations in SRR and performance improvements for iris and ocular images
in various environments, which is caused by not using the scheme of competitive training
of generator and discriminator. This study, therefore, proposes an OSRCycleGAN based
SRR method for improving the SRR performance through competitive learning of generator
and discriminator, and a method for improving recognition performance of ocular images
captured at a low resolution.

Table 1 below compares the strengths and weaknesses between previous studies and
the proposed method.

Table 1. Comparisons of previous studies and the proposed method.

Category Method(s) Strength Weakness

Without SRR Handcrafted
feature-based

Iris

Daugman’s
method [5,8]

Does not require
an additional
graphics
processing unit

Does not consider
the performance
degradation for
low-resolution iris
images

Stabilized iris
encoding and
Zernike moments
phase features [20]

Noisy image
captured at a
distance [39]

Iris + ocular

Used ocular region
including iris and
periocular
[10,22–25]

High recognition
performance in
various
environments as
both iris and
periocular region
information are
used

Poorer recognition
performance than
the deep-feature-
based
method
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Table 1. Cont.

Category Method(s) Strength Weakness

Deep
feature-based

Iris DeepIrisNet [26]

Improved
recognition
performance for
noisy iris images
as multiple CNNs
are used

Training time for
each model is
increased as
multiple CNNs are
used

Ocular

Multiple
CNN-based noisy
ocular recognition
[27]

Solves existing iris
segmentation
accuracy problem
and low-quality
image issue by
using both iris and
ocular regions

- Training time
increases because
of multiple CNNs
- Does not consider
the performance
degradation for
low-resolution
images

With SRR

Image
processing-based

Iris

SRR for captured
image at a distance
[21,33], MAP [31],
PG + POCS [32],
FCM [35]

SRR was applied
to prevent
performance
degradation due to
low-resolution
image captured
from a long
distance

Limitations in
resolution
restoration because
of existing image
processing
technique

Learning-based
PCA + ICA [34],
PCA [36,40], MLP
[37–39]

Better restoration
results than
traditional image
processing
methods

Limited
improvement of
SRR performance
in various
environments

Deep
feature-based

Iris

Stacked
auto-encoder [41],
SRCNN + VDCNN
[43]

Higher SRR
performance than
image
processing-based
or learning-based
methods

Limited
recognition and
SRR accuracies in
various
environments as a
general CNN or
encoder are used

Ocular

Multi-frame SRR +
CNN-based
deblurring [42]

Improved
performance by
separating SRR
and deblurring
processes

OSRCycleGAN
(proposed method)

Generator and
discriminator
improve SRR
performance
through
competitive
learning

Requires intensive
training procedure

3. Proposed Method
3.1. Overview of Proposed Method

Figure 1 shows the overview of the proposed method. A low-resolution ocular image
is used as an input (Step 1 of Figure 1). This is converted to a high-resolution ocular image
by OSRCycleGAN proposed in this study (Step 2 of Figure 1). Then, the restored image
is used as an input of a residual neural network (ResNet) pretrained with ocular images;
ocular features are extracted from a pooling layer before the last fully connected layer
(FCL) (Step 3 of Figure 1). Matching distance is calculated based on the Euclidean distance
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between the features extracted from the input image and the features extracted from the
registered image. It is accepted as genuine matching if the calculated distance is less than
the threshold and rejected as imposter matching otherwise (Step 4 of Figure 1).
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3.2. SRR by OSRCycleGAN

In general, the process of capturing a low-resolution image can be represented in the
equation [48,49].

y = H(x) + n (1)

Here, y, x, H(·), and n refer to low-resolution image, original high-resolution image,
degradation function, and additional noise, respectively. In this equation, H(·) is the
two-dimensional point spread function (PSF) that degrades the quality of the original
image x. Accordingly, accurately modeling PSF and n improves SRR performance, but it is
still difficult to accurately model low-resolution images captured in various environments.
Accordingly, this study proposes an OSRCycleGAN-based SRR method.

3.2.1. Architecture of CycleGAN

OSRCycleGAN proposed in this study is based on a cycle-consistent generative adver-
sarial network (CycleGAN) model. In the SRR method involving only a general CNN or an
encoder, the original form of the image being restored is not maintained well or the image
information is not considered during restoration. The model is trained in one direction for
the region viewed by the filter based on the calculation of the weight of simple convolution
filtering. Conversely, CycleGAN [50] has been mostly applied in image translation and style
transfer. Style is learned by learning the difference between each domain through cycle
loss and image generating capability of a GAN based on which loss is reflected in the GAN
so that an image of another domain can be generated in one desired domain. In this study,
CycleGAN is used for high-resolution image reconstruction rather than for style transfer or
image translation. If each domain is, respectively, designated as low resolution and high
resolution, the result of our image SRR can be attained when an image is transformed from
the low-resolution to the high-resolution fields to be produced via GAN and cycle loss.

CycleGAN generally consists of two generators and two discriminators in which a
generator generates images having the difference between domains and a discriminator
discerns the difference between the image generated by converting the domain and the
ground-truth image of the respective domain. Equation (2) below shows how generators
G(·) and F(·) that had received x, y as input and ground truth are processed in CycleGAN.
Here, x is the low-resolution image, while y is the respective high-resolution image input.

x′ = F(G(x)), y′ = G(F(y)) (2)



Mathematics 2022, 10, 3818 7 of 30

G(·) : X → Y, F(·) : Y → X (3)

Here, G(·) and F(·) each represent generators which generate images for the domain
characteristics of X− > Y and Y− > X, respectively. Using two generators is the unique
characteristic of CycleGAN where the generator that converts X− > Y gives the input x
to G(·) to obtain ỹ and then goes through F(·) to obtain x′. Similarly, the same process is
followed for the opposite case of Y− > X. The difference is calculated when the model
is back to X− > Y− > X or Y− > X− > Y through conversion between domains and
generation using two generators, and this difference can be reduced to perform conversion
between the targeted domains more accurately. The equation for calculating this process is
called cycle loss, as expressed in Equation (4) below.

Lcyc(G, F) = Ex∼Pdata(x)[‖ F(G(x))− x ‖1] +Ey∼Pdata(y)[‖ G(F(y))− y ‖1] (4)

Here, x is the low-resolution image, while y is the respective high-resolution image
input. Because G(·) and F(·) each represent generators which generate images for the
domain characteristics of X− > Y and Y− > X, respectively, F(G(x)) shows x′ image (as
shown in Equation (2)) obtained by X− > Y− > X while G(F(y)) represents y′ image (as
shown in Equation (2)) obtained by Y− > X− > Y. x ∼ Pdata(x) and y ∼ Pdata(y) are
data distributions. ‖ · ‖1 shows L1 distance, and E represents expectation value.

The discriminator is trained so that it cannot distinguish between the image gener-
ated by the generator and the ground-truth image, and this process can be referred to as
adversarial loss. Equations below show the adversarial loss of X− > Y and Y− > X.

Ladv(G, DY, X, Y) = Ey∼Pdata(y)
[
log Dy(y)

]
+Ex∼Pdata(x)

[
log(1− Dy(G(x))

]
(5)

Ladv(F, DX , Y, X) = Ex∼Pdata(x)[log Dx(x)] +Ey∼Pdata(y)[log(1− Dx(G(y))] (6)

Here, Dy(y) represents the discriminator using y (real high-resolution image) as
input, and Dy(G(x)) shows the discriminator using G(x) (generated (fake) high-resolution
image by the generator G(·) using x (low-resolution image) as input). In addition, Dx(x)
represents the discriminator using x (real low-resolution image) as input, and Dx(G(y))
shows the discriminator using G(y) (generated (fake) low-resolution image by the generator
G(·) using y (high-resolution image) as input). The log(·) is a logarithmic function.

Based on Equations (4)–(6), the final CycleGAN loss is as follows.

L(G, F, DX , DY) = Ladv(F, DX , Y, X) + Ladv(G, DY, X, Y) + Lcyc(G, F) (7)

3.2.2. Architecture of OSRCycleGAN

The process of converting low-resolution ocular image to a high-resolution image
based on OSRCycleGAN is shown in Figure 2, where the image y′, which corresponds
to the conversion result of generator Gx(·), is the final restored high-resolution image.
OSRCycleGAN reduces the number of weighted filters by half to reduce the number of
parameters in a conventional CycleGAN model; consequently, system complexity and
memory usage are reduced, and processing speed is increased by reducing the channel
dimension of a feature map. Parallel computation through graphics processing unit (GPU)
is essential for applying deep learning in which an increase in the number of weighted
filters requires high-performance GPU for training and testing, thus being difficult to be
applied in diverse environments.
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The generator model of OSRCycleGAN was modified to reduce the channel dimension
based on a six-layer model consisting of residual connection with batch normalization
(BN). The discriminator model was also modified in the same manner. Tables 2 and 3
present the details of generator and discriminator of OSRCycleGAN used in this study.
The ocular image used in this study includes the information of the eyelid, eyelash, pupil,
iris, and sclera. The general shape of the eye is longer width-wise than length-wise.
Therefore, a rectangular shape, as shown in Tables 2 and 3, was used, instead of a square
shape, as an input in a conventional CycleGAN to prevent the information from being
lost. Because the basic architecture of proposed OSRCycleGAN is referred to the original
CycleGAN, we followed the positions of BN batch normalization based on the structure of
original CycleGAN.

Table 2. Generator of OSRCycleGAN (* and ** means that the BN + ReLU and Conv + BN + ReLU
+ Conv + BN combinations are applied after the Conv or in each residual block, respectively. BN,
ReLU, and Conv mean batch normalization, rectified linear unit, and convolution layer, respectively).

Layers Feature Map Size
(Width × Height × Channels) Filter Size Number of Filters Stride

Input layer 380 × 280 × 3

Conv-1 * 380 × 280 × 32 7 × 7 × 3 32 1

Conv-2 * 190 × 140 × 64 3 × 3 × 32 64 2

Conv-3 * 95 × 70 × 128 3 × 3 × 64 128 2

Residual 1–6 ** 95 × 70 × 128 3 × 3 × 128 128 1

Deconv1 * 190 × 140 × 64 4 × 4 × 128 64 2

Deconv2 * 380 × 280 × 32 4 × 4 × 64 32 2

Output * 380 × 280 × 3 7 × 7 × 32 3 1

Table 3. Discriminator of OSRCycleGAN (#filter and S mean the number of filters and strides,
respectively) (* and ** means that the Leaky ReLU (LReLU) and BN + LReLU combination are applied
after the Conv, respectively. ReLU, BN, and Conv mean rectified linear unit, batch normalization, and
convolution layer, respectively).

Layers Feature Map Size
(Width×Height×Channels) Filter Size Number of Filters Stride

Input layer 380 × 280 × 3

Conv-1 * 190 × 140 × 32 4 × 4 × 3 32 2

Conv-2 ** 95 × 70 × 64 4 × 4 × 32 64 2

Conv-3 ** 48 × 35 × 128 4 × 4 × 64 128 2

Conv-4 ** 24 × 18 × 256 4 × 4 × 128 256 1

Conv-5 (Output) 24 × 18 × 1 4 × 4 × 256 1 1

3.2.3. Loss of OSRCycleGAN

In OSRCycleGAN, identity loss used in CycleGAN loss was eliminated, and the
perceptual loss shown in Equation (8) was applied to improve the SRR performance as
shown in Figure 2c.

Lpct =

√√√√∑T
1

(
C(yi)

∑T
1 C(yi)

−
C
(
x′i
)

∑T
1 C
(
x′i
))2

for i = 1 . . . T (8)
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Equation (8) expresses a perceptual loss used for our proposed method. First, each
ground truth image and restored image by proposed OSRCycleGAN are passed in ResNet-
101 model. Here, ResNet-101 model is denoted by C(·). Ground truth image and restored
image are denoted by y and x′, respectively. In addition, the ith extracted features from
average pooling layer of the model C(·) are represented as C(yi) and C

(
x′i
)
, respectively,

and T is 2048. Using Equation (8), the difference of mean is calculated for each 2048 feature,
and they are summated. From that, the dissimilarity between restored and original (ground
truth) image is calculated as shown in Equation (8).

Rather than simply calculating the loss by comparing the restored image with the
ground-truth image, features were extracted by having the images restored at a mini-batch
unit input in the previously trained CNN model, and the distance between the extracted
feature and the feature of ground-truth image was calculated based on authentic and
imposter matching to be reflected in the GAN loss. When this loss is used, a significant
effect can be observed on the final GAN loss depending on the distance value. The loss
value increases as the distance increases so that inadequate restoration can be reflected in
the model through which better restoration results can be expected. For extracting features
to calculate the perceptual loss, a ResNet model pretrained with ocular images was used.
Ultimately, cycle consistent loss of Equation (7) and perceptual loss of Equation (8) were
used together in OSRCycleGAN, as expressed in Equation (9).

Lloss = L
(
G, F, Dx, Dy

)
+ Lpct (9)

3.2.4. Difference between OSRCycleGAN and Original CycleGAN

In this section, the differences between the proposed OSRCycleGAN and the original
CycleGAN are presented:

- Different from a conventional CycleGAN, our proposed OSRCycleGAN reduces the
number of weight filters by half in generator and discriminator. Consequently, it can
decrease system complexity and memory usage while increasing the processing speed.

- The proposed OSRCycleGAN does not use identity loss compared to conventional
CycleGAN loss while using cycle consistent and perceptual losses. When calculating
the perceptual loss in particular, it calculates authentic and imposter matching dissim-
ilarities between mini-batch unit images in order to reflect them in cycle consistent
and discriminator losses.

3.3. Ocular Recognition

In this study, ResNet-101 was used for ocular recognition based on the results of
a previous study [30]. Generally, when only the layer depth is extended without any
supplementation, training accuracy is reduced, and global minimum cannot be reached
because repeatedly processing convolutions causes features of the original image to be
reduced through computation and, thus, loses characteristics. This problem was solved
by using the concept of identify mapping and short-cut-(skip-connection)-based residual
block. For training with the datasets used in this study, fine-tuning was proceeded based
on a pre-trained ResNet model [51]. Several hundreds of thousands of datasets are required
to train the weights of many layers in ResNet, and the experimental dataset used in this
study is insufficient. This model was pre-trained with ImageNet database, which consists
of several hundreds of thousands of images [52] and was used in ImageNet large-scale
visual recognition competition (ILSVRC). Therefore, the image size is resized into the input
size of the ImageNet data in this study. Here, it is determined in which layer fine-tuning
is performed for retraining. In this study, only Conv5 and the fully connected layer were
fine-tuned. Several hyper-parameters and optimizers need to be selected for training a
CNN. Most processes of model training can be separated into forward and backward ones.
The forward process arbitrarily initializes the weight, and the computation is proceeded
sequentially according to how the model is designed. Then, in the backward process, the
desired ground-truth value and the value computed in the forward process are compared
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to calculate the loss, which is then used to adjust the weight in backward. An activation
function is considered important in the forward process. A sigmoid function was used
commonly in the past, but due to an extensive period of time and computation amount, a
rectified linear unit (ReLU) [53] is more commonly used an activation function recently. A
ReLU function is easy to compute and does not output negative values, thus exhibiting a
better performance when training is converged and not requiring extensive computation
for finding a slope value.

A basic multinomial logistic loss is used in ResNet for which the jth output (σ(z)j
of Equation (10)) predicted using the softmax function in Equation (10) was used for
calculation. Accordingly, numerical stability can be maintained when calculating the slope.

σ(z)j =
ezj

∑K
k=1 ezk

f or j = 1 . . . , K (10)

Here, K is the number of outputs (classes) of ResNet. In case that the array of output
neurons is set to z, the probability of the neurons belonging to the jth class is obtained by
dividing the value of the jth class by the sum of the values of all classes. Using the calculated
results as input, a multinomial logistic loss (MLL) of Equation (11) [54] is calculated, as
expressed in Equation (11).

MLL = − 1
K ∑K

n=1 log( p̂n, ln), (11)

Here, p̂n represents predicted probability, and ln is a ground-truth label
(ln ∈ [0, 1, 2, . . . , K− 1] among the K classes).

In most studies related to biometrics, measuring a recognition performance is in a
closed world and open world settings. Closed world setting is when the classes of data for
training and testing are the same, while open world setting is when the classes of data for
training and testing are different. Typically, it is difficult to presume that the classes of data
for training and testing biometrics are the same. Thus, open world setting is deemed more
appropriate for real-world applications and, thus, was adopted in this study as well. In
the biometrics classification, the output of an FCL of the CNN is used or the feature vector
extracted from the layer before the last FCL is used to calculate the matching distance from
the feature vector of the registered image. In closed world setting, the classes of data for
training and testing are the same. Therefore, the output of an FCL of CNN can be directly
used; in open world setting, as the classes of data for training and testing are different, the
feature vector extracted from the layer before the last FCL is used to calculate the matching
distance from the feature vector of the registered image to perform recognition.

In this study, ocular images processed by SRR using OSRCycleGAN are inputted
to ResNet which extracts the 2048 features from the average pooling layer. A total of
2048 features are used to calculate the Euclidean distance from the 2048 features extracted
from the enrolled ocular image. It is accepted as genuine matching if the calculated distance
is smaller than the threshold, and rejected as imposter matching otherwise. With the
training data, the optimal distance threshold was set at the point where false acceptance
error (FAR) is identical to false rejection error (FRR). FAR denotes the error of incorrectly
determining imposter data as genuine, whereas FRR incorrectly denies genuine data as an
imposter. FAR and FRR generally have a tradeoff relationship, and the error when FAR is
identical to FRR is named as the equal error rate (EER).

4. Experimental Results
4.1. Dataset and Experimental Environments

To evaluate the performance of the proposed method, the experiment was conducted
using three open databases obtained with an NIR camera: CASIA-Iris-Distance and CASIA-
Iris-Lamp [55], and Indian Institute of Technology Delhi (IIT Delhi) databases [56]. Each
database was divided into two sub-sets to conduct twofold cross-validation. For example,
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282 classes including two eyes of 141 individuals in the CASIA-Iris-Distance database
were divided into sub-database 1 (DB 1) of 142 classes (71 individuals) and sub-database
2 (DB 2) of 140 classes (70 individuals) to perform data augmentation before conducting
training. For data augmentation, translation and cropping were applied for six pixels in
all four directions to augment the data by 169 times [30]. Data augmentation based on
translation and cropping has been commonly used to other previous studies [57]. Hence,
misalignment between registered and recognition images was covered by training the
CNN, and the problem of inadequate training from having insufficient dataset was solved.
Furthermore, the augmented data were only used for training, while the original data
were used for testing. By separately conducting training and testing through twofold
cross-validation, the problem of overfitting, which leads to degradation in performance for
testing data, caused by the training data being excessively trained by CNN, was prevented.
The average accuracy attained from two testing by twofold cross-validation was utilized as
the final accuracy of the proposed method. Table 4 depicts the detailed descriptions of the
experimental databases used in the study.

Table 4. Detailed descriptions of the experimental databases.

Category
Number of Classes

Number of Images

Before Augmentation After Augmentation

DB1 DB2 DB1 DB2 DB1 DB2

CASIA-
Iris-

Distance
142 140 2080 2056 351,520 347,464

CASIA-
Iris-Lamp 408 408 8054 8036 1,361,126 1,358,084

IIT Delhi
iris

database
210 223 1120 1120 189,280 189,280

Bilinear interpolation was used with respect to the original ground-truth image in
Table 4 to compose low-resolution images having 1/16 resolution of the original images.
In actual environments, Gaussian blur was additionally applied to compose a dataset
considering how a blur or other types of noises may occur due to movements.

Training and testing of the proposed method were conducted in a desktop computer
installed with central processing unit (CPU) Intel i7-6700 3.40 GHz, random access memory
(RAM) of 32 GB, and NVIDIA GeForce GTX1070 graphic processing unit (GPU) [58]. Com-
pute unified device architecture (CUDA) of version 8.0 and CUDA deep neural network
library (cuDNN) of version 5.0 were employed; our algorithms were made using open
computer vision (OpenCV) of version 3.3.0 and Visual Studio 2015. TensorFlow of version
2.1.0 [59] and Windows Caffe of version 1.0.0 [60] were used for the implementation of
OSRCycleGAN and ocular recognition model, respectively.

4.2. Training of the Proposed Model
Training of OSRCycleGAN

For the hyper-parameters for training OSRCycleGAN that restores high-resolution
images, 200 epochs of repeated training, mini batch size of 10, and Adaptive moment
estimation (Adam) as optimizer [61] were applied. Beta_1, which is a parameter for Adam,
was 0.5 for which the initial learning rate was 2× 10−4 for the exponential decay rate of
Adam optimizer. For the estimate of first and second moment, 0.9 and 0.999 were applied,
respectively. We did not employ learning rate strategies, i.e., linear decay. These values
were maintained in all the experiments. When training SRR models using the dataset used
in previous studies on SRR and in this experiment, the hyper-parameters of the proposed
model were applied under the same condition for a fair evaluation. To solve the inherent
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problem of a GAN where a generator is difficult to train, the generator was repeatedly
trained for five times, while the discriminator was trained once for one mini batch. Due to
this training strategy, the optimization of generator of OSRCycleGAN model was possible
along with discriminator. Figure 3 depicts the loss graphs of generator and discriminator
of OSRCycleGAN. As depicted in Figure 3, OSRCycleGAN was trained enough with the
training data.
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We adopted twofold cross-validation because the previous deep learning-based ocular
recognition study [30] has chosen the same twofold cross-validation. In our research, we
do not focus on ocular recognition method but ocular super-resolution reconstruction
by OSRCycleGAN. Therefore, we adopted the ocular recognition method of [30] in our
research, and we used the same twofold cross-validation in order to follow the experimental
protocol of [30]. Additionally, we added the valid loss plots in Figure 3, which were obtained
with validation data. We set 10% of training data as validation data, and these validation
data were not used for training. As shown in Figure 3, validation loss graphs are also
decreased and stabilized according to the increment of epochs, which confirms that our
OSRCycleGAN was not overfitted with training data.

Stochastic gradient descent (SGD) optimizer [62] was used for training the ResNet-101,
during which a step policy was used as a learning rate policy for optimization where a
gamma value is multiplied at a certain iteration. As one of the characteristics of SGD,
training was conducted at the mini-batch size unit. Each model in the study was trained
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for 3–10 epochs. The learning rate was set to 0.0001, which is fairly small as fine-tuning
was proceeded using the pre-trained weight. Momentum and weight decay values were
set to 0.9 and 0.0001, respectively, while the gamma value was set to 0.1. Each dataset
consisted of a different number of images, accordingly, the number of steps was varied
in order to achieve the optimal performance. Figure 4 shows the graphs of training
accuracy and training loss obtained during training of the ResNet-101 model. As shown
in Figure 4, training loss almost went to 0, while training accuracy converged to 100% as
the training epoch increased, which indicates that the ResNet-101 model used in this study
was successfully trained.
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4.3. Testing of the Proposed Method
4.3.1. Ablation Studies

To evaluate the performance of SRR by OSRCycleGAN, the similarity between the
original high-resolution image and the image restored by SRR was measured using signal-
to-noise ratio (SNR) [63], peak signal-to-noise ratio (PSNR) [64], and structural similarity
(SSIM) [65], as expressed in Equations (12)–(15). The SRR performance is higher as all the
values of SNR, PSNR, and SSIM are high.

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[Io(i, j)− Ie(i, j)]2 (12)
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SNR = 10 log10

 ∑m−1
i=0 ∑n−1

j=0 [Io(i, j)]2

mn
MSE

 (13)

PSNR = 10 log10

(
2552

MSE

)
(14)

Here, Io is the original high-resolution image, while Ie is the image obtained with SRR.
m and n indicate width and height of the image, respectively. Equation (15) below shows
the mathematical equation of SSIM.

SSIM =
(2µeµo + C1)(2σeo + C2)

(µe2 + µo2 + C1)(σe2 + σo2 + C2)
(15)

Here, µo and σo indicate mean and standard deviation of pixel values of an original
high-resolution image, while µe and σe indicate mean and standard deviation of pixel
values of the image generated with SRR. σeo is the covariance of two images. C1 and C2
are positive constants preventing the denominator from becoming 0. As shown in Table 5,
the OSRCycleGAN had better SRR performance than most of the state-of-the-art methods
except the Pix2Pix method. Although Pix2Pix shows the higher PSNR, SNR, and SSIM,
the recognition accuracies with the restored images by Pix2Pix are lower than those by
proposed method.

Table 5. Comparisons on SRR by the proposed method and state-of-the-art methods.

Methods PSNR SNR SSIM

SRGAN [19] 15.64 1.15 0.68

Pix2Pix [66] 27.2 5.91 0.78

CycleGAN [50] 18.4 1.74 0.71

OSRCycleGAN 22.66 2.03 0.74

Figure 5 shows the comparisons on SRR by the proposed method and state-of-the-art
methods. As shown in Figure 5, the images restored by OSRCycleGAN are closer to the
original high-resolution images than the images restored by state-of-the-art methods except
for Pix2Pix.

We prepared a real low resolution dataset from the original benchmark datasets
of CASIA-Iris-Distance, CASIA-Iris-Lamp, and IIT Delhi iris database. That is, all our
experiments were conducted on real low-resolution images that were downsampled from
original high-resolution images by using bilinear interpolation techniques [67]. For example,
the actual size of low-resolution images of Figure 5b is 1/16 compared to that of the original
high-resolution images of Figure 5a. However, in order to make the better visibility
for readers, we increased the size of images in Figure 5b same to that of Figure 5a. In
addition, we did not used Gaussian noise to obtain the low-resolution image. Instead, we
applied Gaussian blurring as point spread function (PSF) of image degradation as shown
in Equation (1). In details, we did not use any noise term (n of Equation (1)), but used both
downsampling and Gaussian blurring as the PSF of image degradation (H(·) of Equation
(1)) based on [48,49]. The kernel size and sigma value of Gaussian blurring function are
3 × 3 and 3, respectively.
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Figure 5. Comparisons on SRR by the proposed method and the state-of-the-art methods. (a) Original
high-resolution images. (b) Low-resolution images by bilinear interpolation. (c) Low-resolution
images by bilinear interpolation + Gaussian blurring. (d) Output images by SRGAN with (c).
(e) Output images by Pix2Pix with (c). (f) Output images by CycleGAN with (c). (g) Output images
by OSRCycleGAN with (b). (h) Output images by OSRCycleGAN with (c).

For the second experiment, ocular recognition accuracy using the images obtained
with SRR was compared. For performance comparison, the ResNet-101 model for ocular
recognition was experimented by testing without training, testing after fine-tuning, and
testing after training from scratch. Recognition performance was compared by dividing the
input cases of the ResNet-101 model into bilinear interpolation image (3 channels), recon-
structed image (3 channels), and bilinear interpolation image (2 channels) + reconstructed
image (1 channel). Furthermore, the cases for adding a perceptual loss and not adding a
perceptual loss to the existing loss equation were compared. As presented in Tables 6 and 7,
the recognition accuracy was the highest when bilinear interpolation image (2 channels)
+ reconstructed image by OSRCycleGAN (1 channel) was used as an input in addition to
cycle consistent loss + perceptual loss as proposed in this study.

As shown in the caption of Table 6, fine-tuning* means the fine-tuning using the model
pretrained with original high-resolution ocular images, and fine-tuning** represents the
fine-tuning using the model pretrained with ImageNet [52]. In case of fine-tuning, training
were performed with our experimental data (reconstructed high-resolution images) for
only the weights of remained layers while the weights of some layers were frozen. In
case of train from scratch, the weights of all the layers were trained with our experimental
data. The number of original high-resolution ocular images is much smaller than that of
ImageNet. Therefore, some weights were not sufficiently trained by fine-tuning* (where
our model was fine-tuned with original high-resolution ocular images). That is why the
accuracy of fine-tuning* is lower than that by train from scratch.
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Table 6. Ocular recognition accuracy comparison in the case of using only bilinear interpolation when
generating a low-resolution image (* means fine-tuning using the model pretrained with original
high-resolution ocular images, and ** means fine-tuning using the model pretrained with ImageNet).

High-Resolution
Image Obtained by

Recognizer
Input

Recognizer Training
Method

Loss for
OSRCycleGAN EER (%)

Bilinear interpolation Interpolated image
(three channels)

Without training
(only testing) Loss is not used

11.41

Fine-tuning * 4.58

OSRCycleGAN Reconstruction image
(three channels)

Without training
(only testing)

Cycle consistent loss 8.55

Cycle consistent loss +
Perceptual loss 11.68

Fine-tuning *
Cycle consistent loss 13.98

Cycle consistent loss +
Perceptual loss 4.28

Bilinear interpolation +
OSRCycleGAN

(proposed)

Interpolated image
(two channels) +
reconstruction

image(one channel)

Fine-tuning *
Cycle consistent loss 9.26

Cycle consistent loss +
Perceptual loss 7.01

Fine-tuning **
Cycle consistent loss 13.25

Cycle consistent loss +
Perceptual loss 3.28

Train from scratch
Cycle consistent loss 4.23

Cycle consistent loss +
Perceptual loss 3.93

In addition, we performed the additional experiments using less or more loss functions
in OSRCycleGAN as shown in Table 7. The EER of using cycle consistent loss and perceptual
loss (with adversarial loss) is 3.02% which is lower than those of using cycle consistent loss
(with adversarial loss) (6.95%), using cycle consistent loss, perceptual loss, and identity loss
(with adversarial loss) (6.26%), and using cycle consistent loss, perceptual loss, identity
loss, and focal loss (with adversarial loss) (5.88%). These results confirm that proposed
OSRCycleGAN using cycle consistent loss, perceptual loss, and adversarial loss shows the
best accuracies of ocular recognition.

Table 7 presents the results in the case of using bilinear interpolation + Gaussian
blurring when generating a low-resolution image whereas Table 6 shows the results in the
case of using only bilinear interpolation when generating a low-resolution image. Applying
additional noises of Gaussian blurring makes the changes in the overall feature distribution
of ocular images. Thus, it becomes more challenging to fine-tune the model by fine-tuning*
and fine-tuning**. Therefore, train from scratch where the weights of all the layers were
trained with our experimental data (reconstructed high-resolution images) shows the better
accuracy than those by the fine-tuning* and fine-tuning** where only the weights of some
layers were trained as shown in Table 7.
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Table 7. Ocular recognition accuracy comparison in the case of using bilinear interpolation + Gaussian
blurring when generating a low-resolution image (* means fine-tuning using the model pretrained
with original high-resolution ocular images, and ** means fine-tuning using the model pretrained
with ImageNet).

High-Resolution
Image Obtained by

Recognizer
Input

Recognizer Training
Method

Loss for
OSRCycleGAN EER (%)

Bilinear interpolation +
Gaussian Blurring

Interpolated
image

(three channels)

Without training
(only testing) Loss is not used

13.99

Fine-tuning * 4.82

OSRCycleGAN
Reconstruction

image
(three channels)

Without training
(only testing)

Cycle consistent loss 10.84

Cycle consistent loss +
Perceptual loss 6.15

Fine-tuning *
Cycle consistent loss 13.26

Cycle consistent loss +
Perceptual loss 5.41

Bilinear interpolation +
OSRCycleGAN

(proposed)

Interpolated image
(two channels) +
reconstruction

image(one channel)

Fine-tuning *
Cycle consistent loss 4.42

Cycle consistent loss +
Perceptual loss 3.80

Fine-tuning **
Cycle consistent loss 5.56

Cycle consistent loss +
Perceptual loss 10.69

Train from scratch

Cycle consistent loss 6.95

Cycle consistent loss +
Perceptual loss 3.02

Cycle consistent loss +
Perceptual loss +

Identity loss
6.26

Cycle consistent loss +
Perceptual loss +

Identity loss +
Focal loss

5.88

4.3.2. Comparisons with the State-of-the-Art Methods

For the next experiment, ocular recognition accuracy was compared between the
proposed method and state-of-the-art methods. Comparative experiment was conducted
for low-resolution images as bilinear interpolation + Gaussian blurring is more frequently
used [67] than only bilinear interpolation when generating a low-resolution image. Three
types of open databases, CASIA-Iris-Distance, CASIA-Iris-Lamp, and IIT Delhi iris databases
were experimented; as shown in Tables 8–10, the proposed method exhibited the highest
ocular recognition accuracies in all cases.

The reason why Fast-SRGAN [68] shows much higher EER compared to our method
is that Fast-SRGAN was used for SR of visible-light iris images which have different image
characteristics (i.e., more noises, reflections, and shadow, etc.) from those of near-infrared
light images used in our experiments. The reason why Iris-GAN [69] shows much higher
EER compared to our method is that Iris-GAN was based on DCGAN which generates
images from random noises instead of images, and the goal of Iris-GAN is not SR but
image generation for the increment of training data. The reason why DeblurGAN [70]
shows much higher EER compared to our method is that DeblurGAN was used for image
deblurring instead of SR. As shown in Table 8, proposed OSRCycleGAN outperforms all
the traditional, learning-based, and depth-based methods.
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Table 8. Comparisons with the state-of-the-art methods with CASIA-Iris-Distance database (using
bilinear interpolation + Gaussian blurring when generating a low-resolution image). For the training
of recognizer, train from scratch was used.

High-Resolution Image Obtained by Recognizer Input Loss for GAN EER (%)

Traditional image
processing-based PCT [71]

Reconstruction image
(three channels)

Null 13.23

Learning-based SRCNN [16] Mean Squared
Error loss 7.54

Deep learning-based

MobileNetV2 [72] Mean Squared
Error loss 6.78

SRGAN [19] Original
SRGAN loss 11.18

Pix2Pix [66] Original
Pix2pix loss 4.21

CycleGAN [50] Original
CycleGAN loss 4.19

Bilinear interpolation +
CycleGAN [50]

Interpolated image
(two channels) +

reconstruction image
(one channel)

Original
CycleGAN loss 4.41

Fast-SRGAN [68]

Reconstruction image
(three channel)

Original
Fast-SRGAN loss +
VGG content loss

20.86

Iris-GAN [69] Original
Iris-GAN loss 14.43

DeblurGAN [70] Original
DeblurGAN loss 34.86

Bilinear interpolation
+OSRCycleGAN

(proposed)

Interpolated image
(two channels) +

reconstruction image
(one channel)

Cycle
consistent loss +
Perceptual loss

3.02

Table 9. Comparisons with state-of-the-art methods with the CASIA-Iris-Lamp database (using
bilinear interpolation + Gaussian blurring when generating a low-resolution image). For the training
of recognizer, train from scratch was used.

High-Resolution
Image Obtained by Recognizer Input Loss for GAN EER (%)

SRGAN [19] Reconstruction image
(three channels)

Original
SRGAN loss 6.39

Pix2Pix [66] Reconstruction image
(three channels)

Original
Pix2pix loss 6.24

CycleGAN [50] Reconstruction image
(three channels)

Original
CycleGAN loss 6.65

Bilinear interpolation
+ CycleGAN [50]

Interpolated image
(two channels) +

reconstruction image
(one channel)

Original
CycleGAN loss 6.11

Bilinear interpolation
+ OSRCycleGAN

(proposed)

Interpolated image
(two channels) +

reconstruction image
(one channel)

Cycle
consistent loss +
Perceptual loss

4.06
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Table 10. Comparisons with state-of-the-art methods with the IIT Delhi iris database (using bilinear
interpolation + Gaussian blurring when generating a low-resolution image). For the training of
recognizer, train from scratch was used.

High-Resolution
Image Obtained by Recognizer Input Loss for GAN EER (%)

SRGAN [19] Reconstruction image
(three channels)

Original
SRGAN loss 5.57

Pix2Pix [66] Reconstruction image
(three channels)

Original
Pix2pix loss 3.09

CycleGAN [50] Reconstruction image
(three channels)

Original
CycleGAN loss 4.46

Bilinear interpolation
+ CycleGAN [50]

Interpolated image
(two channels) +

reconstruction image
(one channel)

Original
CycleGAN loss 3.35

Bilinear interpolation
+ OSRCycleGAN

(proposed)

Interpolated image
(two channels) +

reconstruction image
(one channel)

Cycle
consistent loss +
Perceptual loss

2.13

For hypothesis tests, we conducted an additional experiments of the t-test [73] and test
of Cohen’s d-value [74] about the accuracies by proposed method and second best method
in Tables 8–10. If the p-value by t-test is less than 0.01, it means that the null hypothesis
(that two observations (the accuracies by proposed method and second best method in our
case) does not show the difference) is rejected and there is a significant difference between
the two observations based on 99% significant level. If the p-value is larger than 0.01 and
less than 0.05, it means that there is a significant difference between the two observations
based on 95% significant level [73]. Cohen’s d-value larger than 0.8 means the large effect
size of the significant difference between the two observations (the accuracies proposed
method and second best method in our case) [74]. Firstly, we calculated the p-value and
Cohen’s d-value in Table 8. The results were 0.01274 and 6.279, respectively. For Table 9,
the p-value and Cohen’s d-value were 0.01317 and 6.126, respectively. For Table 10, we
got 0.02957 and 4.196, respectively. From these results, we confirm that our method shows
the higher accuracies than the second best method in Tables 8–10 based on 95% significant
level and large effect size.

Figure 6a–c show the receiver operating characteristic (ROC) curve of the measured
recognition accuracy presented in Tables 8–10. The genuine acceptance rate is calculated as
1-FRR. Each graph is the average of the two graphs found through twofold cross-validations.
As shown in Figure 6, the proposed method had the highest ocular recognition accuracies
in all cases.

Figure 7 shows the examples of correct recognition cases by the proposed method. As
shown in Figure 7, recognition was correctly executed even if there are differences between
registered image and recognition image. That is because recognition is attempted using
features extracted through a deep learning model rather than just using pixel information
of the image.
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Figure 8 shows the examples of false rejection and false acceptance cases by the
proposed method. As shown in Figure 8, in case that recognition and enrolled images are
quite similar, a false acceptance case may occur like (a) and (b), or an image belonging to
the same class may not be recognized because it is restored incorrectly during restoration
like (c)–(f).
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Figure 7. Example of correct recognition cases by the proposed method. (a,b) CASIA-Iris-Distance
database. (c,d) CASIA-Iris-Lamp database. (e,f) IIT Delhi iris database. The left-hand and
right-hand side images in (a–f) show registered images and recognition images, respectively.
1st and 2nd row images in (a–f) show low-resolution and high-resolution images restored by
OSRCycleGAN, respectively.
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Figure 8. Example of recognition error cases by the proposed method. (a,b) CASIA-Iris-Distance
database. (c,d) CASIA-Iris-Lamp database. (e,f) IIT Delhi iris database. (a,c,e) show false rejection
cases. (b,d,f) show false acceptance cases. The left-hand and right-hand side images in (a–f) show
registered images and recognition images, respectively. 1st and 2nd row images in (a–f) show
low-resolution images and high-resolution images restored by OSRCycleGAN, respectively.

4.3.3. Evaluation Based on Cross-Database Matching Performance

As next experiment, we evaluated cross-database matching performance to validate
the generalization capability of the proposed method. As the 1st experiment, we per-
formed the training of our OSRCycleGAN for SR and ResNet-101 for ocular recognition
with CASIA-Iris-Lamp database, and testing with CASIA-Iris-Distance database (case 1).
As the 2nd experiment, we performed the training of OSRCycleGAN and ResNet-101
with CASIA-Iris-Distance database, and testing with CASIA-Iris-Lamp database (case 2).
As shown in Table 11 and Figure 9, we confirm that the recognition accuracies by cross-
database matching are not much reduced compared to those by same database matching of
Tables 8 and 9, and Figure 6a,b, which validates the generalization capability of the pro-
posed method.
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Table 11. Evaluation based on cross-database matching performance. Case 1 means the training
of OSRCycleGAN for SR and ResNet-101 for ocular recognition with CASIA-Iris-Lamp database,
and testing with CASIA-Iris-Distance database. Case 2 means the training of OSRCycleGAN and
ResNet-101 with CASIA-Iris-Distance database, and testing with CASIA-Iris-Lamp database.

Cases EER (%)

Case 1 3.68

Case 2 6.46
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4.3.4. Processing Time and System Complexity

For the last experiment, as shown in Table 12, the processing speed of the proposed
method was compared in a desktop computer, as explained in Section 4.1 and in the Jetson
TX2-embedded system, shown in Figure 10. The Jetson TX2-embedded system is widely
used for on-board deep learning processing. Jetson TX2 has NVIDIA PascalTM-family GPU
(256 CUDA cores), having 8 GB of memory shared between the central processing unit
(CPU) and GPU and 59.7 GB/s of memory bandwidth; it uses less than 7.5 W of power [75].
As presented in Table 13, the proposed OSRCycleGAN had a faster processing speed than
the original CycleGAN and Pix2Pix in which the proposed method had a processing speed
of 145 frames/sec (1000/6.89) on a desktop computer and 9.1 frames/sec (1000/110) on the
Jetson TX2-embedded system. The Jetson TX2-embedded system has limited processing
power such as a number of GPU cores, thus having a slower processing speed than the
desktop computer, but the proposed method was still executable.

Table 12. Average processing time of one image by the proposed method (unit: ms).

Environments OSRCycleGAN ResNet-101 Total

Desktop computer 6.89 47 53.89

Jetson TX2
embedded system 110 313 423
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Table 13. Average processing time of one image by Pix2Pix, original CycleGAN, and proposed
OSRCycleGAN (unit: ms).

Environments Pix2Pix [66] CycleGAN [50] OSRCycleGAN

Desktop computer 25.53 22.22 6.89

Jetson TX2
embedded system 273 177 110

In addition, we compared the number of floating point operations per second (#FLOPS)
of Pix2Pix and CycleGAN with proposed OSRCycleGAN. As shown in Table 14, proposed
OSRCycleGAN shows the better performance in #FLOPS compared to Pix2Pix. In addition,
as shown in Tables 13–15, we confirm that the system complexity (#FLOPS), memory usage,
and processing time by OSRCycleGAN are much less than those by CycleGAN.

Table 14. Comparisons on #FLOPS of one image by Pix2Pix, original CycleGAN, and proposed
OSRCycleGAN (unit: #FLOPS).

Pix2Pix [66] CycleGAN [50] OSRCycleGAN

111.6 × 106 24.07 × 106 3.69 × 106

Table 15. Comparisons on memory usage by CycleGAN and proposed OSRCycleGAN (unit:
Giga Bytes).

CycleGAN [50] 4.11

OSRCycleGAN 2.04

4.4. Analysis with Class Activation Maps

In this section, to determine whether the features useful for ocular recognition are
extracted adequately in ResNet-101 layers for which the images restored by OSRCycleGAN
are used as input, a gradient class activation map (Grad-CAM) [76] was extracted, as shown
in Figure 11.
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Figure 11. Grad-CAM extraction results. Each row in the figure is a low-resolution image before
restoration, bilinear interpolated high-resolution image, high-resolution image after being restored by
OSRCycleGAN, and when mixed images of bilinear interpolation (two channels) + OSRCycleGAN
(one channel) in Tables 8–10 are used as input in the ResNet-101. (a) of each column is the input
image. (b) Grad-CAM image extracted from second residual block layer, (c–e) are Grad-CAM image
extracted from third, fourth and fifth residual block, respectively.

As shown in Figure 11b,c, weight is reflected in the pupil, iris region, and periocular
region in the layer before the ResNet-101. Furthermore, a higher weight was reflected in
the ocular region toward the subsequent layers, as shown in Figure 11d,e. Compared to
low-resolution images, a higher weight was trained in the iris region in images restored to
higher resolution, resulting in better recognition performance.

5. Conclusions

Existing iris or ocular recognition systems have a problem of capturing low-quality
images due to low resolution; low-quality images with a blur are generated due to the
movement of users when images are acquired from a far distance or low-resolution images
are captured when low-priced camera equipment is used. To address these drawbacks,
the study proposed an OSRCycleGAN-based SRR method. It also proposed a method
for enhancing the recognition accuracy of low-resolution ocular image. When the ex-
periments were conducted using three types of open databases, the proposed method
exhibited more outstanding SRR and ocular recognition performance than state-of-the-art
methods. Moreover, OSRCycleGAN had a faster processing speed than the conventional
CycleGAN in a desktop computer and the Jetson TX2-embedded system, but it was still
executable in an embedded system with limited processing power. The results of analyz-
ing class activation maps showed that effective features were extracted more adequately
from the images restored to high resolution using the proposed method than from low-
resolution images.

Although the two loss functions (cycle consistent loss and perceptual loss) used
in this method are not proposed by us, we propose a new method for calculating the
perceptual loss based on both authentic and imposter matching distances between mini-
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batch unit images. As shown in Tables 8–10, our OSRCycleGAN using cycle consistent
loss, perceptual loss, and adversarial (discriminator) loss shows the higher accuracies of
ocular recognition than the original CycleGAN using cycle consistent loss, identity loss,
and adversarial (discriminator) loss, which confirms the superiority of using perceptual
loss instead of identity loss. Because authentic matching (matching from same class) and
imposter matching (matching from different classes) should be considered as important
factor in biometric system including ocular recognition, the perceptual loss based on
these two matching could enhance the accuracy by our OSRCycleGAN compared to
CycleGAN which does not consider the two matching even with less number of filters,
system complexity, memory usage, and processing time. In addition, the identity loss
of CycleGAN cannot avoid performance degradation from various effects such as pixel
shifting because it just calculates the pixel differences between two images. Therefore, the
identity loss was not used in our OSRCycleGAN, and we compensate the gap that comes
from removing the identity loss by adding perceptual loss. These are also our innovative
points compared to CycleGAN.

As shown in Table 13, proposed OSRCycleGAN shows the processing speed faster
than the second best one (CycleGAN) by about 322% and 161% in desktop computer
and Jetson TX2 embedded system, respectively. In addition, proposed OSRCycleGAN
shows much lower number (15.3%) of #FLOPS than that by the second best one (Cy-
cleGAN) as shown in Table 14. Although the EER by our OSRCycleGAN is not much
reduced compared to the second best method as shown in Tables 8–10 and Figure 6, the
proportions of EER reduction by our OSRCycleGAN are 27.9% ((4.19 − 3.02)/4.19), 33.6%
((6.11 − 4.06)/6.11), and 31.1% ((3.09 − 2.13)/3.09) compared to the second best method
in Tables 8–10, respectively. Because OSRCycleGAN is the enhanced model of original
CycleGAN, if we compare OSRCycleGAN with the original CycleGAN having same input,
the proportions of EER reduction by OSRCycleGAN are 31.5% ((4.41 − 3.02)/4.41), 33.6%
((6.11 − 4.06)/6.11), and 36.4% ((3.35 − 2.13)/3.35) compared to the original CycleGAN
having same input in Tables 8–10, respectively.

In future work, the applicability of OSRCycleGAN in face recognition or vein recogni-
tion, which are other biometrics modality and person re-identification, will be analyzed.
Furthermore, a lighter OSRCycleGAN model will be researched for improving the process-
ing speed in embedded systems.
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