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Abstract: Experimental designs are built by using orthogonal balanced matrices. Balance is a de-
sirable property that allows for the correct estimation of factorial effects and prevents the identity
column from aliasing with factorial effects. Although the balance property is well known by most
researchers, the adverse effects caused by the lack or balance have not been extensively studied or
quantified. This research proposes to quantify the effect of the lack of balance on model term estima-
tion errors: type I error, type II error, and type I and II error as well as R2, R2

adj, and R2
pred statistics

under four balance conditions and four noise conditions. The designs considered in this research
include 24–28 factorial experiments. An algorithm was developed to unbalance these matrices while
maintaining orthogonality for main effects, and the general balance metric was used to determine
four balance levels. True models were generated, and a MATLAB program was developed; then
a Monte Carlo simulation process was carried out. For each true model, 50,000 replications were
performed, and percentages for model estimation errors and average values for statistics of interest
were computed.

Keywords: design of experiments; design matrix; balance; orthogonality; general balance metric

MSC: 62K15; 65C05; 62J10

1. Introduction

An experiment can be defined as a test or a series of tests in which deliberate changes
are made to the input variables of a process to observe the reasons for the changes in the
output variable [1]. Figure 1 shows the representation of a process where inputs are affected
by both controllable

(
xp
)

and uncontrollable
(
zq
)

factors, having an impact on the output
or response variable (y).

Factorial designs are commonly used because they contain all possible combinations
of factors levels and can estimate factorial effects and interactions. In addition, they are
commonly used as factor-filtering designs to identify the factors that have the greatest
significance or influence on the response variable.

Two commonly used types of factorial designs include the 2k and 3k (where k represents
the number of factors to evaluate, and the base represents the number of levels). Other
designs include two-level fractional factorial designs, three-level fractional factorial designs,
and mixed level designs. This research focuses only on two-level factorial designs, also
called 2k designs.

The 2k factorial design is a design in which each factor has two levels commonly called
high and low, represented by 1 and −1 respectively. These designs can be used to analyze
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both quantitative and qualitative factors [1]. The design matrix is an orthogonal array with
2k runs and k columns; this is illustrated in Table 1.
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Table 1. Example of a 23 factorial design matrix.

Run
Factors

A B C

1 −1 −1 −1

2 1 −1 −1

3 −1 1 −1

4 1 1 −1

5 −1 −1 1

6 1 −1 1

7 −1 1 1

8 1 1 1

A design is balanced when each column contains the same number of runs for each
factor level [2]. According to Birkes et al. (1999), the balance exists when there is an equal
number of observations for all combinations of factor levels [3]. Ríos (2009) mentions that
balance is an important property in experimental design, and a design is balanced when in
each column each possible factor level appears the same number of times [4].

Balanced experiments have two major advantages when it comes to analysis. First,
each experimental combination is estimated with the same precision. Secondly, in a bal-
anced factorial experiment, the effect of each factor can be evaluated independently from
other factors [5]. Pantoja et al. (2009), point out that balance is an important property
because it prevents the main effects and interactions from aliasing with the interception
column β0 [6]. Balance also plays another important role; it leads to a considerable simplifi-
cation of the calculations [7].

Balance property has been extensively mentioned in literature. In 1935, the term
balance was already included in articles published by Yates; in these articles, it was men-
tioned that to avoid sacrificing all the information about a possibly important interaction, a
balanced arrangement was used wherein the interaction was confused as little as possible.
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In 1938, Yates conducted research evaluating the extent to which a balanced experimental
design on human nutrition resulted in an efficiency gain, compared to several alternative
randomized block designs that could have been used to solve the same problem [8]. In 1965,
Nelder introduced the concept of general equilibrium for multi-stratum experiments. He
mentions that only in general equilibrium designs can information on any treatment effect
be obtained and combined from more than one [9]. In 1972, John and Smith introduced
the concept of orthogonal factorial structure for factorial designs; they mentioned that if
all the estimation is done in the lowest stratum, only in these designs can the factorial
effects be estimated independently [10]. Because of this feature, several later research
papers were restricted to this type of design (see, for example, Cotter et al. (1973) [11],
John (1981) [12], Mukerjbe (1979) [13], Mukerjee (1981) [14] and Gupta (1983) [15]). In 1978,
different existing methods for analyzing unbalanced designs were evaluated by using the
computer programs of the time [16]. In 1986, David G. Herr published an article in which
he talks about the history of unbalanced designs and the methods to deal with them [17].

In 1993, Shaw and Mitchel mention that unfortunately, for various reasons, it is rare
for a biological or ecological study to have fully balanced data, and that unbalance requires
care in analysis and interpretation. They also try to explain some of the consequences of
unbalance and give some guidelines for analyzing unbalanced data for models involving
fixed effects [18]. In 1996, Huber and Zwerina mentioned the importance of balance in
optimal experimental designs [19]. In 2001, balanced experimental designs were used in
conjunction with microarray models to choose an optimal experimental design suitable for
gene expression [20]. In 2009, Guo et al. presented the general metric balance, a parameter
that explains how to measure the degree of balance in a factorial design [21].

In 2010, Andy Hector et al. performed a study of variance for unbalanced data in the
areas of ecology and evolution. They summarized the main developments to deal with
unbalanced designs and highlighted the search for the right ANOVA method by which to
present one or several models that best fit the objectives of the analysis [22].

Ríos et al. (2011) present a sequential experimentation approach to increase Resolution
III fractions. This method was able to overcome the drawbacks of the general methods
while maintaining some of their benefits. They mention the importance of maintaining
balance and orthogonality [23]. Landsheer and Van Den Wittenboer in 2015 compared
balanced and unbalanced 2 × 2 designs. They used ANOVA correction methods with
the sum of squares type II and type III. The purpose was to determine which type of SS
provides lower H0 rejection rates, in their study. They compared 2 × 2 balanced and 2 × 2
unbalanced designs with an interaction to determine whether ANOVA correction methods
provide satisfactory results in the presence of an interaction. In this study, they compared
the methods for calculating ANOVA with balanced data, i.e., with the SS I method, to
calculate ANOVA with unbalanced designs they used the ANOVA SS II and SS III methods.
They concluded that ANOVA with SS II only works satisfactorily for unbalanced designs
when an interaction can be excluded, whereas the application of SS III, when there is an
interaction, showed a power about 1% to 5% lower than for the balanced datasets that were
simulated. The application of SS II cannot be recommended when there is an interaction in
an unbalanced design [24].

Voelkel in 2019 uses systematic methods to create optimal designs by using the balance
property and orthogonal arrays [25]. Balanced experiments have two major advantages
when it comes to analysis. First, each experimental combination is estimated with the same
precision. Secondly, in a balanced factorial experiment, the effect of the intercept or identity
column can be evaluated independently from the other factors [5].

Currently, one of the key factors for the success of any organization, whether industrial
or service, is to improve and make its products and processes more efficient. This is where
experimentation comes in, as it is one of the elements that can contribute the most to the
improvement of products and processes. The use of design of experiments (DOE) is an
effective tool for understanding and improving processes and products in the industry.
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However, in industrial experimentation, it is not uncommon to find that companies
resort to unbalanced experimental designs. These designs usually occur due to several
circumstances. One such circumstance may arise when the experimenter has made a
mistake at the time of experimenting or because some experimental conditions cannot be
created once the experiment is running. For example, this often occurs when a machine is
unavailable due to a breakdown or failure, or when a batch of raw material is unavailable,
either due to a shortage of material or a change of supplier. Another event that happens in
industries is the fact that an operator who was being taken as a level of the experiment is
missing. It also happens in industries such as the agri-food industry that, due to weather
conditions or natural disasters, crops that could be under experimentation are lost or pests
arise that are difficult to destroy.

In situations such as this, experimenters may be interested in knowing the conse-
quences of running an unbalanced design. With this research, experimenters will be able to
answer whether it is feasible to run an unbalanced design and the consequences of running
it. Experimenters will also be able to find out what levels of imbalance are most favorable
for the experiment if it is necessary to use an unbalanced design.

In this investigation, we worked with designs 24 to 28 by using four different balance
levels. The levels included: balanced, low unbalance, medium unbalance, and high unbal-
ance. The general balance metric (GBM) was used to measure the balance property given
that it is simple and effective minimum aberration criterion that measures the balance prop-
erty of experimental designs. GBM is a parameter that determines the degree of balance of
a given design matrix. According to Guo et al. (2009), GBM can be calculated for a matrix d
of size n × k, where n is the number of rows and k is the number of columns, dt(t = 1, . . . , k)
indicates the columns of interactions for the factors from 1 to k, and d1 represents the main
effects matrix [21].

As shown in Equation (1), GBM considers the difference between the number of times
that a factor level appears in a column and the number of times that it should appear if the
design were balanced. Equation (2) shows how these quantities are squared and added
for each submatrix of main effects two-factor interactions and three-factor interactions.
Finally, an array consisting of k numbers is obtained (Equation (3)) where H1 indicates the
balance for main effects, H2 for 2-factor interactions, and Hk for k-factor interactions. When
a design is balanced for main effects, two-factor interactions, and three-factor interactions,
the GBM is a vector of zeros (0, 0, 0) [26]. Alternatively, these three quantities can be added
to obtain a single number. If this number is zero, the model matrix is completely balanced.
The higher this number, the more unbalanced the design will be.

Therefore,

Ht
j = ∑

lt
j

r=1

(
Ct

rj −
n
lt
j

)2

(1)

Ht = ∑
(
t
k
)

j=1 Ht
j = ∑

(
t
k
)

j=1 ∑
lt
j

r=1

(
Ct

rj −
n
lt
j

)2

(2)

GBM = (H1, H2, . . . , Hk), (3)

where
Ct

rj is the number of times a level r appears in column j, and
lt
j is the number of levels that the column j contains.

The design matrices are governed by another property in addition to balance. This
property is known as orthogonality. Orthogonality ensures that the effects of the different
factors to which the experimental material is subjected. Orthogonality can be estimated
separately and without confusion [27]. In other words, orthogonality ensures that effects
can be estimated independently so each column provides different information to the
design [6].
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The orthogonality property can be measured through several highly sophisticated
criteria such as minimum generalized aberration [28], minimum aberration moment [29],
moment aberration projection [30], J2-optimality [31], J2-modified optimality, variance
inflation factors (VIF), dot product, simple correlation, and Pearson’s correlation index. For
practical purposes, we used VIF to measure orthogonality. VIF is a measure of the amount
of multicollinearity in a set of multiple regression variables. Experience indicates that if any
of the VIF are greater than 5, it is an indication that the associated regression coefficients
are poorly estimated due to multicollinearity. VIF is calculated as follows,

VIFi =
1

1 − R2
i

, (4)

where R2
i is the coefficient of determination of the auxiliary regression of the variable xi.

To complete this research, we made use of Monte Carlo simulation. The first step
consisted of the creation of true models. A true model is an equation that relates a response
variable, also known as dependent variable, to a set of regressors or independent vari-
ables [32] (see Equation (5)). Independent variables may also include two-factor interactions
given that these interactions occur frequently in practice. To establish this relationship, two
characteristics of the regression coefficients are determined by the experimenter, magnitude
(size of the coefficient), and direction (sign of the coefficient). In addition, a random error
from a normal distribution with mean zero and variance σ2 is introduced to emulate the
variability that occurs naturally in the process. The level of significance of the independent
variables is directly related to the size of the regression coefficient with respect to the
variance of the random error.

It is called a true model because the variables involved, the sizes and signs of the
regression coefficients, the level of noise, and the level of significance are determined by
the experimenter. True models are useful because they permit the user to simulate data, to
manipulate this data, and to observe changes in the regression coefficient estimates with
respect to their true values.

The general true model structure depicted in Equation (5) was chosen according to the
sparsity of the effects principle, which establishes that most processes are affected by main
effects and low order interactions (2FIs and 3FIs):

y = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β123x1x2 x3 + ε. (5)

Several unbalanced matrices were created, and their response variables were generated
by using the true models previously described; then these arrays were introduced in a
MATLAB computer program to perform simulations. The Monte Carlo method is used to
solve problems derived from stochastic phenomena, in which physical experimentation is
impracticable, and the creation of an exact formula is impossible; it is also adapted to the
resolution of complex deterministic problems [33].

The method by which the datasets were analyzed was stepwise regression. The
stepwise regression procedure starts by choosing an equation that contains the best variable
X and then tries to build with the subsequent additions of X’s one at a time, as long as it is
worthwhile. The order of addition is determined by using the partial values of the F test to
select which variable to enter next. The highest partial F-value is compared with an F-value
to enter (selected or default). After a variable is added, the equation is examined to see
if any variables should be removed [34]. In addition to regression coefficients estimates,
several performance indicators were analyzed. These include the following.

(i) % No error: indicates the efficiency of the method in picking up the right model:

% no error =
number of models without error × 100

number of simulated models
. (6)

(ii) Type I error [30] in statistics means the number of insignificant terms in the model. %
Type I error was calculated and measured as the percentage of times that the models
showed insignificant terms during the simulations [35]:
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% Type I error =
number of models with insignificant terms × 100

number of simulated models
. (7)

(iii) Type II error is the number of significant terms missing in the model [36]. % Type II
measure the percentage of times that the models showed significant missing terms
during the simulations:

% Type II error =
number of models with missing terms × 100

number of simulated models
. (8)

(iv) Type I and II error refers to a situation in which both errors are present. % Type I and
II error measure the percentage of times that the models presented insignificant and
significant missing terms in the model during the simulations:

% Type I and II error =
number of models with insignificant and significant missing terms × 100

number of simulated models
. (9)

(v) R2 is defined as the proportion of the variability in the response that can be explained
by the regressors included in the model (see Equation (10)). Clearly, values closer to 1
are more desirable. We have

R2 =
SSModel
SSTotal

, (10)

where
SSModel is the sum of squares corresponding to the model, and
SSTotal is the total sum of squares.

The use of AIC and BIC statistics would be a good complement to determine if the
best model has been chosen, but the computational complexity would increase, making the
simulations longer; however it would be interesting for future research to see how these
indicators behave in the absence of balance.

(vi) The R2
adj is a variation of the ordinary R2 statistic that reflects the number of factors

in the model (Equation (11)). It can be a useful statistic for more complex experiments
with several design factors when we wish to evaluate the impact of increasing or
decreasing the number of model terms [1]. We have

R2adj = 1 − SSE/d fE
SSTotal
d fTotal

, (11)

where d fE and d fTotal correspond to degrees of freedom (Equation (12)) from error
and total degrees of freedom (Equation (13)), respectively. We have

d fE = n − k − 1 (12)

d fTotal = n − 1, (13)

where:
n is the number of treatments in the experiment, and
k is the number of significant terms in the regression model.

(vii) R2 can be calculated for prediction based on the PRESS (see Equation (14)). Values
closer to 1 for this statistic are desirable because this indicates that the model will give
reasonable performance in prediction [1]. PRESS stands for prediction error sum of
squares; it is a measure of how accurate the model is to predict future observations.
Small values of PRESS are desirable. We have

R2 pred = 1 − PRESS
SSTotal

. (14)

2. Method

This research was conducted in four stages, which are represented in Figure 2.
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Figure 2. Research method.

2.1. Stage 1 Generate Unbalanced and Orthogonal Design Matrices for 2k Experiments

The first stage consisted of generating arrays with four balance conditions that preserve
the orthogonality property. Given that the objective was to quantify the effect of the lack
of balance on the errors and statistics described in the previous section, we did not want
orthogonality to be affected. By conducting the experiments in this way, we ensured that
the effect on the statistics can be attributed purely to the lack of balance.

An algorithm was developed to alter the signs in a of two-level factorial experimental
design to create arrays that are unbalanced but maintain orthogonality for main effects.
This algorithm is based on the additive multiplicative properties of equality.

These properties refer to the fact that if we change the sign of the elements of an array,
that is, multiplying by minus −1 each element in a row, the array will continue being
orthogonal because each element in the row has been multiplied by the same sign, thus
respecting the property of multiplicative equality. In addition, by changing the sign of
each element of the row, the balance of the matrix will be affected. This procedure would
unbalance a design matrix while maintaining the orthogonality property. The metric that
we used to measure the level of balance in an array was GBM. By using this metric, we
were able to determine different degrees for the lack of balance.

Figure 3 shows a design matrix with the respective VIFs and GBM to measure orthog-
onality and balance. In this figure, it can be seen that the design matrix is balanced because
the GBM takes a value of 0; on the contrary, when the GBM takes a value greater than zero,
the array is unbalanced. VIFs have also been observed in 1 so it is an orthogonal design.
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Figure 3. Balanced design matrix 23.

Figure 4 shows how the matrix can be unbalanced by multiplying 2 rows by −1. This
figure shows the design matrix shown in Figure 3 with two modified lines. The lines that
were modified are 2 and 4 respectively. After the modifications, the GBM takes a value of 16
which indicates that the matrix is now unbalanced. The table also shows that the VIFs are
less than or equal to 5; this means that the design matrix is still orthogonal for main effects.
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Figure 4. Unbalanced design matrix 23.

An analysis was performed to determine the number of rows that should be multiplied
by −1 to achieve a given level of unbalance. The levels of unbalance were defined as follows:
low unbalance refers to the lowest unbalance that can be achieved by altering n1 rows.
High unbalance refers to the highest level of unbalance (when a design column becomes a
column of 1s or −1s values) that can be achieved by altering n3 rows. Medium unbalance
is achieved by altering n2 rows where n2 is the number between n1 and n3. Table 2 shows
these quantities. Note that the number of rows to modify is different depending on the level
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of unbalance one wants to achieve and the experimental design in which one is working.
In addition, Table 2 shows the expected GBM.

Table 2. Number of rows to be modified to achieve a desired level of unbalance.

Design Low Unbalance GBM Value Medium Unbalance GBM Value High Unbalance GBM Value

23 1 8 2 16 3 24
24 2 32 3 42 5 74
25 5 140 9 268 13 396
26 7 398 14 816 21 1246
27 15 1808 30 3640 45 5488
28 33 8210 67 16,514 101 24,898

Note that the rows to be modified do not follow a specific order. They can be chosen
randomly from the design matrix. For example, if we want to create a medium level of
unbalance in a design with five factors, we could invert signs in any subset of nine rows.
This could be the first nine rows, the last nine rows, or any other possible combination.

2.2. Stage 2 True Model Generation

The true models generated were first-order models with two-factor and three-factor
interactions; interactions between two and three factors were included given that these
interactions are present in many real-world situations [37]. The factors and interactions
included in the true models were those that presented unbalance after some rows were
altered (multiplied by −1); all possible combinations for design size (five designs), level of
unbalance (four levels) and level of noise (four levels), were analyzed, and three different
models were created for each combination. These models were different regarding the
number of factors involved, starting with a model with few terms, then a model with more
terms, and finally a model with many terms. These conditions were established in order to
observe how the errors behave in the presence of more or fewer factors in the model. In the
end, 5 × 3 × 4 × 4 = 240 true models were generated.

The noise level was induced by modifying the size of the regression coefficients in
the true model with respect to the error variance. A low noise level is obtained when the
regression coefficients are approximately three times the error variance, a medium level
is when this relation is 2 to 1, a high level is obtained when the relation becomes 1 to 1,
and finally a very high noise level is obtained with a 1/2 to 1 relation; that is, regression
coefficients that are half the error variance. If the error variance is fixed to 2, the low,
medium, high, and very high noise levels are obtained by assigning values of 6, 4, 2, and 1
to the regression coefficients. The true models used for the different simulations are shown
in Tables 3–6. Each model has been assigned an item consisting of a number and the initial
of the noise level to which it belongs to identify it in later tables.

Table 3. True models with low noise.

Design Item True Models

24
1L Y = 10 − 6A − 6D + N(0,2)
2L Y = 10 − 6A − 6D + 6AC + N(0,2)
3L Y = 10 − 6A − 6D + 6AC + 6AD + 6ACD + N(0,2)

25
4L Y = 10 + 6A − 6D + 6E + 6AE + 6BD + N(0,2)
5L Y = 10 + 6A − 6D + 6E + 6AD + 6AE − 6BC + 6BD + N(0,2)
6L Y = 10 + 6A − 6D + 6E + 6AD + 6AE − 6BC + 6BD − 6DE + 6ADE + N(0,2)

26
7L Y = 10 − 6A + 6E − 6F + 6AC − 6AE + 6BE − 6BF + N(0,2)
8L Y = 10 − 6A + 6E − 6F + 6AC − 6AE + 6BE − 6BF + 6CF + 6DE+ N(0,2)
9L Y = 10 − 6A + 6E − 6F + 6AC − 6AE + 6BE − 6BF + 6CF + 6DE − 6DF + 6AEF + N(0,2)
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Table 3. Cont.

Design Item True Models

27
10L Y = 10 + 6A − 6F + 6G − 6AE + 6AF + 6AG − 6BC − 6BD + 6BE + N(0,2)
11L Y = 10 + 6A − 6F + 6G − 6AE + 6AF + 6AG − 6BC − 6BD + 6BE + 6CF + 6DF + N(0,2)
12L Y = 10 + 6A − 6F + 6G − 6AE + 6AF + 6AG − 6BC − 6BD + 6BE + 6CF + 6DF − 6FG + 6AFG + N(0,2)

28
13L Y = 10 + 6A + 6G + 6H − 6AF − 6AG + 6AH + 6BE + 6BF − 6BG + 6CF − 6CG + N(0,2)
14L Y = 10 + 6A + 6G + 6H − 6AF − 6AG + 6AH + 6BE + 6BF − 6BG + 6CF − 6CG + 6DF − 6DH + N(0,2)

15L Y = 10 + 6A + 6G + 6H − 6AF − 6AG + 6AH + 6BE + 6BF − 6BG + 6CF − 6CG + 6DF − 6DH + 6GH +
6AGH + N(0,2)

Table 4. True models with medium noise.

Design Item True Models

24
1M Y = 10 − 4A − 4D + N(0,2)
2M Y = 10 − 4A − 4D + 4AC + N(0,2)
3M Y = 10 − 4A − 4D + 4AC + 4AD + 4ACD + N(0,2)

25
4M Y = 10 + 4A − 4D + 4E + 4AE + 4BD + N(0,2)
5M Y = 10 + 4A − 4D + 4E + 4AD + 4AE − 4BC + 4BD + N(0,2)
6M Y = 10 + 4A − 4D + 4E + 4AD + 4AE − 4BC + 4BD − 4DE + 4ADE + N(0,2)

26
7M Y = 10 − 4A + 4E − 4F + 4AC − 4AE + 4BE − 4BF + N(0,2)
8M Y = 10 − 4A + 4E − 4F + 4AC − 4AE + 4BE − 4BF + 4CF + 4DE+ N(0,2)
9M Y = 10 − 4A + 4E − 4F + 4AC − 4AE + 4BE − 4BF + 4CF + 4DE − 4DF + 4AEF + N(0,2)

27
10M Y = 10 + 4A − 4F + 4G − 4AE + 4AF + 4AG − 4BC − 4BD + 4BE + N(0,2)
11M Y = 10 + 4A − 4F + 4G − 4AE + 4AF + 4AG − 4BC − 4BD + 4BE + 4CF + 4DF + N(0,2)
12M Y = 10 + 4A − 4F + 4G − 4AE + 4AF + 4AG − 4BC − 4BD + 4BE + 4CF + 4DF − 4FG + 4AFG + N(0,2)

28
13M Y = 10 + 4A + 4G + 4H − 4AF − 4AG + 4AH + 4BE + 4BF − 4BG + 4CF − 4CG + N(0,2)
14M Y = 10 + 4A + 4G + 4H − 4AF − 4AG + 4AH + 4BE + 4BF − 4BG + 4CF − 4CG + 4DF − 4DH + N(0,2)

15M Y = 10 + 4A + 4G + 4H − 4AF − 4AG + 4AH + 4BE + 4BF − 4BG + 4CF − 4CG + 4DF − 4DH + 4GH +
4AGH + N(0,2)

Table 5. True models with high noise.

Design Item True Models

24
1H Y = 10 − 2A − 2D + N(0,2)
2H Y = 10 − 2A − 2D + 2AC + N(0,2)
3H Y = 10 − 2A − 2D + 2AC + 2AD + 2ACD + N(0,2)

25
4H Y = 10 + 2A − 2D + 2E + 2AE + 2BD + N(0,2)
5H Y = 10 + 2A − 2D + 6E + 2AD + 2AE − 2BC + 2BD + N(0,2)
6H Y = 10 + 2A − 2D + 2E + 2AD + 2AE − 2BC + 2BD − 2DE + 2ADE + N(0,2)

26
7H Y = 10 − 2A + 2E − 2F + 2AC − 2AE + 2BE − 2BF + N(0,2)
8H Y = 10 − 2A + 2E − 2F + 2AC − 2AE + 2BE − 2BF + 2CF + 2DE+ N(0,2)
9H Y = 10 − 2A + 2E − 2F + 2AC − 2AE + 2BE − 2BF + 2CF + 2DE − 2DF + 2AEF + N(0,2)

27
10H Y = 10 + 2A − 2F + 2G − 2AE + 2AF + 2AG − 2BC − 2BD + 2BE + N(0,2)
11H Y = 10 + 2A − 2F + 2G − 2AE + 2AF + 2AG − 2BC − 2BD + 2BE + 2CF + 2DF + N(0,2)
12H Y = 10 + 2A − 2F + 2G − 2AE + 2AF + 2AG − 2BC − 2BD + 2BE + 2CF + 2DF − 2FG + 2AFG + N(0,2)

28
13H Y = 10 + 2A + 2G + 2H − 2AF − 2AG + 2AH + 2BE + 2BF − 2BG + 2CF − 2CG + N(0,2)
14H Y = 10 + 2A + 2G + 2H − 2AF − 2AG + 2AH + 2BE + 2BF − 2BG + 2CF − 2CG + 2DF − 2DH + N(0,2)

15H Y = 10 + 2A + 2G + 2H − 2AF − 2AG + 2AH + 2BE + 2BF − 2BG + 2CF − 2CG + 2DF − 2DH + 2GH +
2AGH + N(0,2)
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Table 6. True models with very high noise.

Design Item True Models

24
1VH Y = 10 − A − D + N(0,2)
2VH Y = 10 − A − D + AC + N(0,2)
3VH Y = 10 − A − D + AC + AD + ACD + N(0,2)

25
4VH Y = 10 + A − D + E + AE + BD + N(0,2)
5VH Y = 10 + A − D + E + AD + AE − BC + BD + N(0,2)
6VH Y = 10 + A − D + E + AD + AE − BC + BD − DE + ADE + N(0,2)

26
7VH Y = 10 − A + E − F + AC − AE + BE − BF + N(0,2)
8VH Y = 10 − A + E − F + AC − AE + BE − BF + CF + DE+ N(0,2)
9VH Y = 10 − A + E − F + AC − AE + BE − BF + CF + DE − DF + AEF + N(0,2)

27
10VH Y = 10 + A − F + G − AE + AF + AG − BC − BD + BE + N(0,2)
11VH Y = 10 + A − F + G − AE + AF + AG − BC − BD + BE + CF + DF + N(0,2)
12VH Y = 10 + A − F + G − AE + AF + AG − BC − BD + BE + CF + DF − FG + AFG + N(0,2)

28
13VH Y = 10 + 2A + 2G + 2H − 2AF − 2AG + 2AH + 2BE + 2BF − 2BG + 2CF − 2CG + N(0,2)
14VH Y = 10 + A + G + H − AF − AG + AH + BE + BF − BG + CF − CG + DF − DH + N(0,2)
15VH Y = 10 + A + G + H − AF − AG + AH + BE + BF − BG + CF − CG + DF − DH + GH + AGH + N(0,2)

2.3. Stage 3 MATLAB Simulations

This stage consisted in performing simulations for each of the true models generated
under different levels of balance and noise. To do this, it was necessary to develop a
computer program in MATLAB software. Each model was used to generate a response
variable by using a Monte Carlo simulation, and 50,000 iterations were performed for each
model. In each iteration, the regression coefficients were slightly varied at 10% above and
below the original value. This was done to create a diversity of models. Stepwise regression
was used to compute the regression coefficient estimates. Then the model errors were
computed and averaged to obtain a single data point. This process is shown in Figure 5.
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The simulation strategy was carried out by using design matrices with balance, low
unbalance, medium unbalance, and high unbalance. All of them are orthogonal for main
effects. The number of iterations was determined by observing that as the number of
iterations increased, convergence was achieved for the different errors. By convergence, we
mean that the averages stabilized; that is, it did not change significantly as the number of
simulations increased, indicating that the averages of the estimated errors were close to
their real value. This was accomplished by simulating 50,000 iterations for each model.

3. Results of Simulations

This section presents the results of the simulations in a series of tables and graphs. The
objective is to identify how the model errors behave under different conditions of balance
and noise. The results are show in Tables 7–10.

Table 7. % Error behavior with low noise.

Design 24 25 26 27 28

True Model 1L 2L 3L 4L 5L 6L 7L 8L 9L 10L 11L 12L 13L 14L 15L

Balanced

No error 62 66 74 68 76 85 62 69 77 53 59 66 48 54 59

Error I 38 34 25 32 24 15 38 31 23 47 41 34 52 46 41

Error II 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Error I and II 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Unbalance level

Low

No error 63 67 38 70 9 0 63 69 77 54 60 65 1 2 0

Error I 37 33 12 30 2 0 37 31 23 46 40 34 1 1 0

Error II 0 0 3 0 0 85 0 0 0 0 0 0 0 0 60

Error I and II 0 0 47 0 89 15 0 0 0 0 0 0 97 97 40

Medium

No error 64 68 44 0 0 0 62 69 77 49 55 0 0 0 0

Error I 36 32 14 0 0 0 38 31 23 36 30 0 0 0 0

Error II 0 0 37 71 81 86 0 0 0 0 0 66 52 58 61

Error I and II 0 0 5 29 19 14 0 0 0 15 16 34 48 42 39

High

No error 50 46 0 0 0 0 62 69 77 0 0 0 0 0 0

Error I 21 17 0 0 0 0 38 31 23 0 0 0 0 0 0

Error II 0 0 78 1 81 86 0 0 0 56 63 66 51 57 60

Error I and II 29 37 22 99 19 14 0 0 0 44 37 34 49 43 40

Table 8. % Error behavior with medium noise.

Design 24 25 26 27 28

True Model 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M 11M 12M 13M 14M 15M

Balanced

No error 66 66 57 68 76 85 61 69 77 60 59 65 49 54 59

Error I 34 34 19 32 24 14 39 31 23 40 41 35 51 46 41

Error II 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0

Error I and II 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Unbalance level

Low

No error 67 67 19 70 11 0 62 69 77 54 60 65 2 2 0

Error I 32 33 6 29 2 0 38 31 23 46 40 34 1 1 0

Error II 0 0 27 0 0 85 0 0 0 0 0 1 0 0 59

Error I and II 0 0 48 1 87 15 0 0 0 0 0 0 97 97 41

Medium

No error 68 68 22 0 0 0 63 70 77 45 51 0 0 0 0

Error I 32 32 7 0 0 0 37 30 23 33 28 0 0 0 0

Error II 0 0 41 71 81 85 0 0 0 0 0 66 51 59 60

Error I and II 0 0 30 29 19 15 0 0 0 22 21 34 49 41 40

High

No error 47 47 0 0 0 0 63 69 77 0 0 0 0 0 0

Error I 17 17 0 0 0 0 37 31 23 0 0 0 0 0 0

Error II 0 0 77 1 81 85 0 0 0 57 63 65 51 57 60

Error I and II 36 36 23 99 19 15 0 0 0 43 37 35 49 43 40
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Table 9. % Error behavior with high noise.

Design 24 25 26 27 28

True Model 1H 2H 3H 4H 5H 6H 7H 8H 9H 10H 11H 12H 13H 14H 15H

Balanced

No error 56 55 35 68 75 84 62 69 77 53 59 66 49 54 60

Error I 35 30 12 31 24 15 38 31 23 47 41 34 51 46 40

Error II 8 13 52 0 1 1 0 0 0 0 0 0 0 0 0

Error I and II 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Unbalance level

Low

No error 55 42 4 61 14 0 62 69 77 49 54 45 3 3 0

Error I 32 21 2 23 3 0 38 31 23 41 35 24 2 2 0

Error II 9 28 63 3 5 85 0 0 0 0 0 20 0 0 60

Error I and II 3 8 31 13 78 15 0 0 0 10 10 11 96 95 40

Medium

No error 52 47 3 0 0 0 63 69 77 32 35 35 0 0 0

Error I 29 22 1 0 0 0 37 31 23 21 18 18 0 0 0

Error II 11 19 67 70 80 85 0 0 0 10 12 12 52 58 62

Error I and II 8 12 28 30 20 15 0 0 0 37 34 35 48 42 38

High

No error 34 28 0 0 0 0 62 68 76 0 0 0 0 0 0

Error I 16 11 0 0 0 0 37 30 22 0 0 0 0 0 0

Error II 24 28 5 3 80 86 0 1 1 56 63 66 51 58 60

Error I and II 26 33 25 97 20 14 1 1 0 44 37 34 49 42 40

Table 10. % Error behavior with very high noise.

Design 24 25 26 27 28

True Model 1V 2V 3V 4V 5V 6V 7V 8V 9V 10V 11V 12V 13V 14V 15V

Balanced

No error 7 7 2 20 14 9 50 51 54 54 0 65 47 55 59

Error I 6 6 1 12 6 2 30 24 17 46 0 34 53 46 41

Error II 69 68 88 52 68 82 14 19 24 0 57 1 0 0 0

Error I and II 17 19 9 16 12 7 7 6 5 0 43 0 0 0 0

Unbalance level

Low

No error 3 3 0 5 14 0 44 46 41 27 31 2 5 6 0

Error I 3 2 0 2 3 0 26 19 13 23 19 1 4 4 0

Error II 70 70 79 60 5 86 19 24 37 1 1 63 0 0 59

Error I and II 24 24 20 33 78 14 10 11 9 49 49 34 91 91 41

Medium

No error 4 4 0 0 0 0 14 38 26 4 4 0 0 0 0

Error I 2 2 0 0 0 0 7 16 7 2 2 0 0 0 0

Error II 67 67 77 70 77 86 43 27 49 41 48 63 52 57 60

Error I and II 27 26 23 30 23 14 36 18 18 53 46 37 48 43 40

High

No error 2 2 0 0 0 0 15 12 12 0 0 0 0 0 0

Error I 1 1 0 0 0 0 7 4 4 0 0 0 0 0 0

Error II 65 65 77 21 79 85 43 51 62 52 57 60 51 57 58

Error I and II 31 32 23 79 21 15 35 32 22 48 43 40 49 43 42

The values of the tables were synthesized by taking the averages for each type of error
and balance level. Tables 11–14 show the synthesized values.

Tables 11–13 show similar behaviors for the different types of errors under low,
medium, and high noise.

Table 14 shows that when the noise is very high, the percentage of no error decreases
dramatically, predominating the type II error and type I and II error.

These tables show a tendency for balanced and low unbalanced designs to have high
percentages of no error and type I error. However, it is observed that when the designs
have medium and high unbalance, the percentages of no error and error type I decrease,
increasing in turn, the percentages of type II error and type I and II error.

The same procedure was used to evaluate the behavior of the R2, R2
adj, and R2

pred
statistics under different balance and noise levels. The results are shown Tables 15–17.
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Table 11. Values for different levels of unbalance with low noise.

Type Error

2k Design with Low Noise

Balanced
Unbalanced Level

Low Medium High

No error 0.65 0.43 0.33 0.20

Error I 0.35 0.22 0.16 0.09

Error II 0.00 0.10 0.34 0.40

Type I and II error 0.00 0.26 0.17 0.31

Table 12. Values for different levels of unbalance with medium noise.

Type Error

2k Design with Medium Noise

Balanced
Unbalanced Level

Low Medium High

No error 0.65 0.42 0.31 0.20

Error I 0.34 0.21 0.15 0.08

Error II 0.02 0.11 0.34 0.40

Type I and II error 0.00 0.26 0.20 0.32

Table 13. Values for different levels of unbalance with high noise.

Type Error

2k Design with High Noise

Balanced
Unbalanced Level

Low Medium High

No error 0.61 0.36 0.28 0.18

Error I 0.33 0.18 0.13 0.08

Error II 0.05 0.18 0.36 0.43

Type I and II error 0.00 0.27 0.23 0.31

Table 14. Values for different levels of unbalance with very high noise.

Type Error

2k Design with very High Noise

Balanced
Unbalanced Level

Low Medium High

No error 0.33 0.15 0.06 0.03

Error I 0.22 0.08 0.03 0.01

Error II 0.36 0.38 0.59 0.59

Type I and II error 0.09 0.39 0.32 0.37

Tables 15 and 16 show that the R2 and R2
adj statistics are robust to the different levels

of unbalance because their values do not change as the unbalance increases if the noise is
maintained in a fixed value. It can also be observed that they resist in a good way the low,
medium, and high noise level; however, a significant decrease in their values is noticed in
the presence of very high noise.

From Table 17 it can be observed that designs with a high level of unbalance are not
good for prediction because the R2

pred reduces drastically. It can also be seen that the
designs are not good at predicting when the noise level is very high.
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Table 15. Behavior of the R2 statistic at different noise and unbalanced levels.

R2

Level Noise Balanced
Unbalanced Level

Low Medium High

Low 0.99 0.99 0.99 0.99

Medium 0.98 0.98 0.98 0.98

High 0.93 0.93 0.93 0.92

Very high 0.78 0.79 0.79 0.77

Table 16. Behavior of the R2
adj statistic at different noise and unbalanced levels.

R2
adj

Level Noise Balanced
Unbalanced Level

Low Medium High

Low 0.98 0.99 0.99 0.98

Medium 0.96 0.98 0.98 0.96

High 0.87 0.88 0.88 0.87

Very high 0.65 0.67 0.67 0.66

Table 17. Behavior of the R2
pred statistic at different noise and unbalanced levels.

R2
pred

Level Noise Balanced
Unbalanced Level

Low Medium High

Low 0.96 0.93 0.88 0.79

Medium 0.92 0.86 0.85 0.77

High 0.74 0.72 0.72 0.70

Very high 0.47 0.49 0.50 0.50

4. Conclusions

This investigation analyzed how the lack of balance affects the experimental design
properties, specifically error types and R2, R2

adj, and R2
pred statistics. We analyzed how the

different types of errors change as the unbalance increases and how the R2, R2
adj, and R2

pred
statistics are modified in the presence of unbalance and experimental noise.

As a result of this research, it was observed that as the degree of unbalance increases,
the type II, as well as type I and II errors, become more probable in the model. It was also
observed that, in general, a design with any level of balance resists low, medium, and high
noise levels, given that errors become only significant when a very high degree of noise
is present.

Balanced designs are more desirable for obvious reasons, but if we have no option
and need to run an unbalanced design and it is intended that the errors generated are as
minimum as possible, it is advisable to run a design with a low level of unbalance. This is
because a design with low unbalance will provide the correct model about 40% of the times
as long as the noise level is low to high, and the errors will be distributed in the following
way: type I error 20%, type II error 13%, and type I and II error 26%, approximately.

When the design has medium unbalance and the level of noise is low to high, the
percentages are distributed in the following way: no error 30%, type I error 15%, type II
error 35%, and type I and II error 20%, approximately. If the design has high unbalance
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and the level of noise is low to high, the percentages are as follows: no error 19%, type I
error 8%, type II error 41%, and type I and II error 31%, approximately.

When the design has a very high noise level, only a balanced design will provide
acceptable percentages for error types. In this situation (very high noise), any degree of
unbalance will produce results that are not favorable given that no error will decrease and
error type II as well as error type I and II will increase significantly.

Regarding the R2 and R2
adj statistics, they are robust to the different levels of unbalance.

Under low, medium, and high noise levels, the R2 presents vales that range from 0.92 to
0.99 and the R2

adj ranges from 0.87 to 0.98. The R2 and R2
adj statistics reduce significantly

in the presence of a very high level of noise, taking values of 0.78 and 0.66, respectively.
Designs with a high level of unbalance are not good at predicting given that values

for R2
pred become low, and this situation is even worse if the noise level is very high. The

R2
pred begins to have significant changes when a medium level of unbalance is present and

reaches its lowest values when the noise level is very high.
As a general conclusion, perfect balance is not necessary in experimentation; a low

level of unbalance is tolerable given that it will produce acceptable values for errors and
statistics under low to high noise conditions.

Finally, similar behavior for errors and statistics can be expected in other types of
designs, such as fractional factorial designs, response surface designs, and mixed-level
designs, but an in-depth study is needed to determine for sure how they behave in the
presence of unbalance.
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