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Abstract: The current study on community evolution prediction ignores the problem of internal
community topology characteristics and does not take feature sets extraction into account. Therefore,
the MF-PSF (Multivariate Feature sets and Potential Structural Features) method based on multivari-
ate feature sets and potential structural features for community evolution prediction is proposed in
this paper. Firstly, the multivariate feature sets are built from four aspects: community core node
features, community structural features, community sequential features and community behavior fea-
tures. Secondly, the community’s potential structural characteristics based on DeepWalk and spectral
propagation theories are extracted, and the overall community’s internal structural characteristics
and vertex distribution are analyzed. Finally, the community’s multivariate structural features and
potential structural features are merged to predict community evolution events, and the importance
of each feature in the process of evolutionary prediction is discussed. The experimental results show
that compared with other community evolution prediction methods, the MF-PSF prediction method
not only provides a foundation for analyzing the influence of various feature sets on predicted events,
but it also effectively improves the accuracy of evolution prediction.

Keywords: social networks; community evolution prediction; network representation learning;
multivariate feature sets; structural features

MSC: 68U01

1. Introduction

Community evolution prediction has become a hot topic in dynamic social network
analysis. Because objects in complex networks and their connections change over time, it is
of great significance to study community evolution. The accurate prediction of community
evolution has a wide range of applications. In public health networks, the dynamic
tracking of infected communities can be used to discover the structural characteristics
of communities producing clusters of epidemics and prevent the spread of diseases. In
the process of spreading rumors in social networks, we can analyze the community topic
content of existing rumors and their spreading rules and predict the spreading trend and
public opinion center nodes of rumors, which control the spreading scope of rumors and
reduce the negative impact in a timely manner.

At present, most of the research in community evolution prediction describes and
tracks the process of community evolution through the framework of community evolution
and the extraction of community features to build models and predict community evolution.
Although these methods have achieved good research results, there are still shortcomings
in the extraction of a community’s structural features:
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(1) There is a lack of extraction of multidimensional community-evolution-related fea-
tures when constructing feature sets;

(2) The internal topological structure of the community is ignored, and the local cluster-
ing characteristics and overall structural characteristics of the vertex distribution in
the community are not fully considered, thus affecting the accuracy of community
evolution prediction.

To solve the above problems, the relevant features of community evolution from differ-
ent dimensions is extracted, and a community evolution prediction method MF-PSF based
on multivariate feature sets and potential structural features is proposed. This method
integrates multivariate feature sets and potential structural features to predict community
evolution and effectively improve the accuracy of community evolution prediction. The
main contributions of this paper are as follows:

(1) The multivariate feature sets of community evolution is constructed, and the relevant
features of community evolution are extracted from four aspects of the community
core node, community structure, community sequence and community behavior.

(2) Graph embedding encoding containing potential structural features of the community
is obtained using DeepWalk and spectral propagation, and community evolution is
predicted by combining the multivariate feature sets and potential structural features
based on the idea of network representation learning.

(3) The importance of each feature in the process of evolutionary prediction is analyzed
on different data sets, and the community evolutionary prediction method MF-PSF
effectively improves the accuracy of community evolution prediction.

This paper is organized as follows: In Section 2, the research works related to com-
munity evolution prediction are discussed. In Section 3, the process of constructing multi-
variate feature sets is explained. In Section 4, the process of extracting potential structural
features of communities and the merging of potential structural features with multivariate
feature sets are discussed. In Section 5, experiments are implemented based on the extracted
features, and the importance of each feature in prediction is analyzed. Finally, the full paper
is summarized, and future work is discussed.

2. Related Work

The evolution framework is used to describe and track community changes, and the
evolution events are predicted by extracting community features. Brodka et al. [1] used the
GED algorithm to identify and predict community evolution events. Gliwa et al. [2] adopted
two GED and SGCI community evolution event detection algorithms and extracted a variety
of community features to construct feature sets, including community leadership, density,
community cohesion and community size, which improved the accuracy of community
evolution prediction. Dakiche et al. [3] predicted the survival time of communities and
analyzed the relationship between extracted features and the survival time of communities.
Kairam et al. [4] extracted structural features and sequential features of communities and
analyzed the importance of features extracted from groups of different sizes in predicting
community life. Ilhan et al. [5] improved the process of evolutionary prediction through
feature selection and cross validation and used evolutionary chains of different lengths for
prediction. Takaffoli et al. [6] improved on the basis of the MODEC evolution model and
added evolutionary events representing changes in community cohesion into the evolution
type. Pavlopoulou et al. [7] extracted relatively complete community structural features and
community sequential features to predict community dissolving, continuing, shrinking and
growing events. He et al. [8] proposed a community evolution prediction method based
on the construction of multiple feature sets, which extracted community features from the
structure, time sequence and behavior of the community to construct the feature set, and
adopted the multi-length evolution chain method to learn and train the evolution features.
Shahriari et al. [9] extracted multi-community information such as key node information
and community structural features to construct community feature sets and analyzed the
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importance of each feature in community evolution prediction. Junyi et al. [10] used the
method based on Markov chains for the single-step prediction of community evolution
and studied the multi-step prediction of community evolution based on the classification
chain method. Hong et al. [11] proposed a fast incremental community evolution tracking
framework (FIET) to discover communities and track community evolution in slow and
highly evolving networks.

Scholars have also built various models to track and predict evolution. Ilhan et al. [12]
proposed the community evolution prediction model based on the ARIMA model, which
can predict the changes in the eigenvalues of the communities over time and used the
predicted eigenvalues to identify the evolutionary events. Li et al. [13] proposed a dynamic
community detection algorithm based on node persistence, and analyzed the community
ownership of some nodes. Khafaei et al. [14] proposed an EPDSN model to predict different
events occurring in dynamic communities. By introducing new definitions of survival
and decomposition events and comprehensively using seven features for prediction in
the model, the computational cost was reduced. Etienne et al. [15] proposed an analysis
method based on a sliding window, which simulated the evolution of community structure
by using an autoregression model and predicted the possible changes in a community by
using survival analysis technology. Appel et al. [16] proposed a shared decomposition
model called Chimera, extracted the potential semantic structure of the network through
multidimensional forms and effectively predicted the evolution of the future community.
Wu et al. [17] proposed a framework for tracking, modeling and predicting the dynamic
network structure; used the spectrum theory to track the potential feature vectors of the
network; and predicted the future network structure by learning the parameters. Pan
et al. [18] proposed the method of graph representation learning to carry out graph
embedding encoding on the network and adopted attention mechanism for feature fusion
and training. Kadkhoda et al. [19] proposed the AFIF algorithm to automatically find
the effective features of each community in the evolutionary process for prediction and
used the ICEM [20] algorithm to track the community evolutionary chain. Guidi et al. [21]
proposed a distributed protocol, SONIC-MAN, for detecting communities in dynamic
social networks; SONIC-MAN is based on a Temporal Trade-off approach and discovers
communities in the ego-network of the users. Revelle et al. [22] proposed a GNAN model
based on a graph neural network, which used the attention mechanism to learn the feature
representation of nodes and their neighbors in the community and predicted the community
evolution from two aspects of community structure and sequence.

3. The Construction of Multivariate Feature Sets

In order to describe the characteristics of community evolution completely, the multi-
variate feature sets is constructed from the features of core nodes, community structure,
community sequence and community behavior. The main feature of the core node is
to extract core and influential nodes in the community. Community structural features
are extracted from various structural indicators, which can reflect part of a community’s
structural features. The community sequence features represent the changes that occur
in the community itself as the previous community evolves into the current community.
The behavior features of a community are the evolutionary events that took place in the
previous time window.

3.1. Core Node Features

The community evolution is analyzed by obtaining the features of core nodes as part
of the multi-feature sets, and the features and descriptions of the core nodes extracted are
listed in Table 1 in this paper.
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Table 1. Core Node Features.

Feature Description Value Range

Core_node_num The number of core nodes [0 , ∞)
Mean_core_degree Average degree of core nodes [0 , ∞)

Core_ratio Core Node Percentage [0 , 1]

Core_closeness Average proximity centrality
of core nodes [0 , 1]

3.2. Community Structural Features

In order to quantify the structural characteristics of the community, different metrics
are used to obtain the structural characteristics of the community. Set C(Vc, Ec) as a com-
munity in the network G(V, E); V represents the total number of nodes in the network G;
E represents the total number of edges in the network G; Vc represents the total number of
nodes in the community C; and Ec represents the total number of edges in the community C.
OEC represents the outer edge of the community C, where |OEc| = |u, v ∈ E, u ∈ V, v /∈ V|.
The community structural features extracted are listed in Table 2, and the following is a
description of the structural characteristics of the community:

(1) SizeRatio, which is the ratio of the number of community nodes to the total number
of nodes in the network:

SizeRatio(C) = |Vc| / |V|; (1)

(2) EdgeRatio, which is the ratio of the number of community edges to the total number
of edges in the network:

EdgeRatio(C) = |Ec| / |E|; (2)

(3) Density, which is the ratio of the actual number of edges of the community to the
maximum number of edges the community may have:

Density(C) =
2|Ec|

|Vc|(|Vc| − 1)
; (3)

(4) Cohesion, which is the ratio of in-community edge density to out-community edge
density, where the number of connections of out-community nodes is OEc:

Cohesion(C) =
2|Ec |

|Vc |(|Vc |−1)
|OEc |

|Vc |(|V|−|Vc |)

=
2|Ec||Vc|(|V| − |Vc|)
|OEc||Vc|(|Vc| − 1)

; (4)

(5) AverageInDegree: Mean connectivity within a community:

AverageInDegree(C) =
2|Ec|

Vc
; (5)

(6) AverageExDegree: Community out-connectivity mean:

AverageExDegree(C) = |OEc|/|Vc|; (6)

(7) Clustering Coefficient: Reflects the density of connections within the community;
(8) Closeness_mean, used to react to the global influence of a node;
(9) Degree_mean, used to determine the difference degree between node degrees in a

network;
(10) Betweenness_mean, used to measure the independence degree between nodes in a

network.
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Table 2. Community Structural Features.

Feature Value Range

SizeRatio (0 , 1]
EdgeRatio (0 , 1]

Density (0 , 1]
Cohesion (0 , ∞)

ClusteringCoefficient (0 , 1]
AverageInDegree [1 , n− 1]
AverageExDegree [0 , ∞)

C_node_num [3 , ∞)
Closeness_mean (0 , 1]

Degree_mean (0 , 1]
Betweenness_mean (0 , 1]

3.3. Community Sequential Features

The sequential features are used to describe the characteristics of the community
changing over time. Consider the change in each structural attribute of the community,
that is, the difference between the value of the structural attribute of the community and
its predecessor. Then, the change in the nodes in the community, the survival time of the
community and the similarity between the community and its predecessors are considered.
We use Ct

i to represent the community i at time window t. The nodes of community Ct
i are

represented by Vt
i , and the edges are represented as Et

i . Its predecessor community is Ct−1
i ,

which represents the community i at time window t− 1. Its nodes are represented as Vt−1
i ,

and the edges are represented as Et−1
i . The community sequential features extracted are

listed in Table 3.

(1) DifferentStructure: The difference value of all structural features between the com-
munity at time window t and its predecessor community, where “structural features”
refers to all of the features in Table 2;

(2) JoinNodeRatio: The percentage of new nodes joining the community compared to its
predecessor community to the overall number of nodes in the community:

JoinNodeRatio(Ct
i , Ct−1

i ) = |Vt
i −Vt−1

i |/|Vt
i |; (7)

(3) LeftNodeRatio: Percentage of nodes that left compared to the predecessor community
compared to the total nodes:

Le f tNodeRatio = |Vt−1
i −Vt

i |/|Vt−1
i |; (8)

(4) LifeSpan: The length of the time slice that the community has survived, starting from
the first time slice that the community survived to the current time slice;

(5) JaccardCoefficient: Calculate the Jaccard similarity between a community and its
predecessor:

JaccardCoe f f icient
(

Ct
i , Ct−1

i

)
=
|Vt

i ∩Vt
i |

|Vt
i ∪Vt

i |
. (9)

Table 3. Community Sequential Features.

Feature Value Range

DifferentStructure –
JoinNodeRatio [0 , 1]
LeftNodeRatio [0 , 1]

LifeSpan [1 , t]
JaccardCoefficient [k , 1]
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3.4. Community Behavior Features

Community behavior is characterized by the formation, splitting, merging and size
change of the previous time window of the community. The extracted community behavior
features are shown in Table 4.

Table 4. Community Behavior Features.

Feature Value Range

PreForm {true, false}
PreSplit {true, false}

PreMerge {true, false}
PreContinue {true, false}

PreGrow {true, false}
PreShrink {true, false}

4. Extraction of Potential Structural Features

Graph embedding encoding based on the idea of network representation learning
constructs the potential structural features of the community in order to fully obtain the
topological structure information of nodes in the network community and improve the
accuracy of community evolution prediction.

4.1. Description of Potential Structural Features

The potential structural characteristics of the community are obtained by graph em-
bedding encoding, which could better reflect the distribution characteristics of the local
and overall structure of the community. Deepwalk and spectral propagation are used
to obtain the underlying structural characteristics of the community. In the DeepWalk
algorithm, the structural information around the node could be learned through the process
of random walking, and the truncated random walk sequence is input into the SkipGram
model to obtain the initial vector coding of the node. The node vector code learned in
this process only contains the topological structural information around the node. The
final constructed graph embedding code more fully contains the local information and
global clustering information of the graph in order to better predict the evolution of the
community. The obtained initial vector code is processed by spectral propagation, and the
acquisition process of node vector encoding is shown in Figure 1.

Figure 1. Node vector encoding acquisition process.

Spectral propagation is a general method to further integrate higher-order graph
information into graph embeddings and can be used to enhance existing graph embedding
algorithms.We used a part of the ProNE algorithm’s [23] steps for spectral propagation.The
final graph embedding representation is obtained with more local smoothing information
and global clustering information according to spectral propagation, which tunes the graph
structure spectrally through higher-order Cheeger inequalities to further integrate global
network properties.
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The graph space and the spectral space are connected according to the higher-order
Cheeger inequality, and the effect of higher-order global or local partitioning of the graph
is controlled by adjusting the eigenvalues of the spectral space, and the graph embedding
representation is propagated on the new graph. In this process, the graph-embedded
encoding of nodes will share the embedded information of points that belong to the
same higher-order structure with it, so that more local information and global clustering
information will be integrated into the graph embedding expression, that is, more internal
structural features of communities will be integrated.

4.2. Algorithm Description

The following steps are proposed for acquiring community potential structural fea-
tures:

(1) Input the network and set the parameters of the algorithm.
(2) Use random walking to generate the sequences and learn topological structural

features from surrounding nodes throughout the walking process.
(3) Using the SkipGram model to update the vector representation.
(4) Using the learned node vector representations construct node vector matrix Rd.
(5) Spectral propagation of the vector matrix Rd in the recursive approach of Chebyshev.
(6) Orthogonalization is carried out through SVD to obtain the node vector encoding

after spectral propagation.

Based on the above description steps, the potential structural features mining algo-
rithm is described in Algorithm 1:

Algorithm 1 Potential Structural Features.

Require: Graph G = G(V, E), Feature dimension of learning d, Number of walking per
node r, The length of the path walked by each node l

Ensure: Vector matrix representation of nodes Rd
1: Initialization: Sample φ from U|V|×d

2: /* Extract the initial node encoding according to DeepWalk idea*/
3: Build a binary Tree T from V
4: for i = 1 to r do
5: O = shu f f le(V)
6: for each Vi ∈ O do
7: Wvi = RandomWalk(G, vi, t)
8: SkipGram(φ, Wvi, w)
9: end for

10: end for
11: /* Spectral propagation of the initially obtained node codes */
12: Construct the node vector matrix Rd of the node vector network based on the obtained

node vector encoding
13: Spectral propagation by Chebyshev’s recursive approach to Rd
14: Orthogonalization Rd by SVD
15: return the graph embedding representation boosted by spectral propagation Rd

5. Experiments and Results Analysis

Three experimental data sets of different scales, Hepth, Enron and Bitcon, were se-
lected to form a social network graph. The significance of the multivariate features and
potential structural features of MF-PSF feature sets in community evolution prediction
was elucidated through experiments, and the effectiveness of the feature sets constructed
by MF-PSF method in improving the accuracy of community evolution prediction were
verified by comparative analysis with the feature sets constructed by other community
evolution prediction methods.
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5.1. Description of the Data Set

Sixty months of Hepth data were selected to divide the dynamic network into twenty con-
tinuous time snapshots in a three-month time window. The Enron data of 32 months were
divided the dynamic network into 32 continuous time snapshots in a one-month window.
The Bitcon dataset was selected for 61 months, and the dynamic network was divided into
30 consecutive snapshots with a time window of 3 months, with 1 month of data overlap
between adjacent snapshots. Information on the data sets is shown in Table 5.

Table 5. Description Of The Data Sets.

Data Set Number of Nodes Number of Edges Time Periods

Hepth 16,205 154,419 60 months
Enron 87,273 1,148,072 32 months
Bitcon 5881 35,592 61 months

5.2. Multivariate Feature Set Importance Analysis

The Random Forest prediction model was used to predict community evolution
combined with the extracted multivariate feature set in this paper. Random Forest is an
effective machine learning algorithm for classification and regression problems. It is flexible
and simple to use. The Random Forest algorithm has high accuracy, is excellent at handling
high-dimensional data and can rank the importance of features. Six community evolution
events are predicted by using four extracted features: core node features, community
structural features, community sequential features and community behavior features. The
importance of the extracted features in predicting each evolution event is studied. The
importance of each feature in the Hepth data set in predicting each evolutionary event
is shown in Figure 2. Dissolving, continuing, growing, merging, shrinking and splitting
are the six types of community evolutionary events depicted on the horizontal axis, and
the four categories of community features extracted are depicted on the vertical axis. The
depth of the color in the figure represents the importance of the feature in the process of
community evolution prediction. The darker the color, the more important the feature is in
predicting the community evolution events.

It can be seen from Figure 2 that the importance of each feature is different when
predicting different evolutionary events. In the Hepth dataset, for predicting dissolving
events, the four features of EdgeRatio, SizeRatio, Preform and LifeSpan are more important,
while the other features are less important. For continuing events, the community sequential
features and community behavior features are more important in the prediction process, and
the number of features that play an important role is more than that of other evolutionary
events. For shrinking and splitting events, the community structural features that play an
important role are more distributed in the community structural features, and the LifeSpan
feature also plays an important role in the prediction process.

The importance of the features of the Enron data set in predicting evolutionary events is
illustrated in Figure 3. In the Enron data set, the five characteristics of SizeRatio, EdgeRatio,
AverageInDegree, LifeSpan and PreForm are relatively important for predicting dissolving,
continuing and growing events, while the other characteristics are less important. The
overall importance of each feature in the process of dissolving event prediction is similar
to that in the Hepth data set. Community sequential features and community behavior
features play important roles in predicting continuing events, which are different from those
in the Hepth data set. For shrinking and splitting events, the community structural features
that play an important role in the prediction of shrinking events are mostly distributed in
the community structural features, while the community sequential features that play an
important role in the prediction of splitting events are more distributed in the community
structural features.

Figure 4 illustrates the significance of each Bitcoin data set attribute in predicting
each evolutionary event. When predicting dissolving events, the core node features and
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community structural features are crucial and the AverageExDegree, the SizeRatio and the
EdgeRatio are the most significant features.Community sequential features and community
behavior features play important roles in predicting continuing events. For the prediction
of growing events, shrinking events and splitting events, the community behavior features
play a little role, and the important features are distributed among the core node features,
community structural features and community sequential features.

(a) (b)
Figure 2. Distribution of the importance of each feature in the Hepth data set: (a) Core node
features and Community structural features; (b) Community sequential features and Community
behavior features.

(a) (b)
Figure 3. Distribution of the importance of each feature in the Enron data set: (a) Core node
features and Community structural features; (b) Community sequential features and Community
behavior features.



Mathematics 2022, 10, 3802 10 of 16

(a) (b)
Figure 4. Distribution of the importance of each feature in the Bitcon data set: (a) Core node
features and Community structural features; (b) Community sequential features and Community
behavior features.

In the prediction processes of the Hepth, Enron and Bitcon data sets, the analysis
shows that the importance of features in each evolutionary event varies depending on the
dataset. For different community evolution events in the same data set, the importance of
extracted community features is different. The experimental results show that it is very
important to extract sufficient and comprehensive features of community evolution in the
process of community evolution prediction.

5.3. Importance Analysis of Potential Structural Features

Based on the analysis of the importance of each feature in the multivariate community
feature set, the importance of the community potential structural features extracted that
contain information on the internal topology of the community is analyzed. A new feature
set is jointly constructed to predict community evolutionary events using the four types of
community features in the multivariate feature set, combined with the extracted community
potential structural features, and the importance of the features in the five new types of
feature sets is analyzed to verify the effectiveness of the potential structural feature. The
experimental results are shown in Figures 5–7.

Figure 5. Distribution of importance of various features in the Hepth data set.
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Figure 6. Distribution of importance of various features in the Enron data set.

Figure 7. Distribution of importance of various features in the Bitcon data set.

The horizontal axis shows the five types of community features, core node features,
community structural features, community sequential features, community behavior fea-
tures and community potential structural features, while the vertical axis shows the predic-
tion of six types of community evolution events: dissolving, continuing growing, merging,
shrinking, and splitting. The shade of the color in the graph represents the importance of
the features in the prediction process, with the darker the color indicating that the features
are more essential in predicting community evolutionary events.

Figure 5 shows the importance distribution of various features in the Hepth dataset
in predicting various evolutionary events. It can be seen that in the process of predicting
community evolutionary events, the importance of the five extracted features in predicting
each evolutionary event is significant. For the four types of community evolution events,
i.e., dissolving, growing, merging, and splitting, the potential structure of community is the
most important feature in evolutionary prediction, followed by the community structure.
For shrinking events, community structural features are the most important type of features,
and other features are of similar importance. For continuing events, community core node
features, community structural features, community sequential features and community
potential structural features are similar in importance.

Figure 6 shows the importance distribution of various features of the Enron dataset in
predicting evolutionary events. According to the experimental results, for the five types
of community evolution events, including dissolving, continuing, growing, merging and
splitting, the potential structural features of the community are the most important features
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in the prediction process. For shrinking events, community structural features are the most
important in the prediction process, and the importance of the other four features is similar.

Figure 7 shows the importance distribution of each type of feature in the Bitcon dataset
for predicting each evolutionary event. For the three types of community evolutionary
events (dissolving, growing and splitting), the potential structural features are the most
important features in the prediction process. For shrinking, merging and continuing
events, the importance of potential structural features, community structural features and
community sequential features are similar in the prediction process.

The experimental results show that the extracted multivariate features play a certain
degree of role in predicting each evolutionary event, and that the extracted potential
structural features are the most important in predicting most evolutionary prediction events,
indicating that the potential structural features extracted are effective in evolutionary
prediction in this paper.

5.4. Evolutionary Prediction Results

The proposed community evolution prediction method MF-PSF constructs a feature
set including four types of features in the multivariate feature set and the extracted com-
munity potential structural features. In order to verify the effectiveness of the feature
set extracted by the MF-PSF method, a Random Forest prediction model was used, and
the average F1 value was calculated by the ten-fold crossover algorithm. The feature set
F_1 in reference [18], F_2 in reference [7], F_3 in reference [6] and F_4 extracted by the
MF-PSF method were extracted for experiments, and the influence of each feature set on
the prediction accuracy of community evolution events was compared and analyzed.

The Random Forest classifier has higher accuracy compared to the KNN and SVM
classifiers, while the KNN and SVM classifiers also have the drawback of high computa-
tional complexity. Due to the characteristics of our data sets, linear classifiers also cannot
play a good role in community evolutionary event prediction. As a result, the Random
Forest classifier is used in this paper. As shown by the F1 values, better prediction results
for each data set are achieved based on the Random Forest classifier.

Figure 8 shows the comparison of the evolution results of each feature set predicted by
the Hepth data set. It can be seen that the accuracy of F_4 extracted by the MF-PSF method
is higher than the other feature sets in predicting all kinds of evolutionary events.

Figure 8. Hepth dataset prediction results.

For continuing events, the F_4 feature set constructed by the MF-PSF method is used
to predict community evolution, and the predicted F1 value is 0.870, which is 0.5%, 7.5%
and 4% higher than that of the F_1, F_2 and F_3 feature sets, respectively. For merging
events, the prediction F1 value of F_4 extracted by the MF-PSF method is 0.913, which is
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3.7% higher than that of the F_2 feature set, with a better prediction result. For splitting
events, the predicted F1 value of F_4 extracted by the MF-PSF method was 0.924, which
was 3.4%, 2.8% and 0.7% higher than that of F_1, F_2 and F_3, respectively. For growing
events, the F_4 feature set constructed by the MF-PSF method is significantly better than the
F_1, F_2 and F_3 feature sets, and the predicted F1 value increased by 6.8%, 6% and 9.8%,
respectively. For shrinking events, the prediction results of the F_1, F_2 and F_3 feature
sets are similar, and the F_4 extracted by the MF-PSF method is improved by about 4%
compared with other methods. For dissolving events, the prediction accuracy of the four
feature sets is slightly lower than that of other evolution events. Compared with F_1, F_2
and F_3, the prediction evaluation value of F_4 extracted by the MF-PSF method increased
by 7.8%, 1.6% and 13.4%, respectively.

Figure 9 shows a comparison of the predicted community evolution results for each
feature set in the Enron data set. For continuing events, the F_4 feature set constructed by
the MF-PSF method is used to predict community evolution, and the predicted F1 value
is 0.923, which is 6.2%, 7.8% and 14.7% higher than that of the F_1, F_2 and F_3 feature
sets, respectively. Therefore, it can be seen that the feature set F_4 improves the accuracy of
continuing event prediction. For merging events, the predicted F1 value of the F_4 feature
set was 0.926, which was 3.8%, 5.2% and 6.3% higher than that of the other three feature
sets, respectively. For splitting events, the F1 values predicted by the four feature sets are
all above 0.9, but the prediction result of F_4 extracted by the MF-PSF method is 0.923.
The F_4 feature set constructed by the MF-PSF method is superior to the F_1, F_2 and F_3
feature sets in terms of prediction results, and the predicted F1 values are increased by
7.7%, 7% and 10.8%, respectively. For the shrinking event, the predicted F1 values of the
four feature sets are similar, but the F_4 feature set constructed by the MF-PSF method is
still higher than the other three feature sets. For dissolving events, the prediction accuracy
of the four feature sets was slightly lower than that of other evolution events. Compared
with F_1, F_2 and F_3, the prediction evaluation value of F_4 extracted by the MF-PSF
method improved by 3.8%, 5.4% and 6.7%, respectively.

Figure 9. Enron dataset prediction results.

Figure 10 shows the comparison of the evolution results of each feature set predicted
by the Bitcon data set. For continuing events, the F_4 feature set constructed by the MF-PSF
method is used to predict community evolution, and the predicted F1 value is 0.889, which
is 9.3%, 1.0% and 2.3% higher than that of the F_1, F_2 and F_3 feature sets, respectively.
For growing events, the predicted F1 value of the F_4 feature set was 0.891, which was 4.3%,
4.9% and 8.3% higher than that of the other three feature sets, respectively. For splitting
events and shrinking events, the predicted F1 values of the four feature sets are similar,
but the F_4 feature set constructed by the MF-PSF method is still higher than the other
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three feature sets. For dissolving events, the F_4 feature set constructed by the MF-PSF
method is used to predict community evolution, and the predicted F1 value is 0.840, which
is 12.6%, 11.4% and 13.2% higher than that of the F_1, F_2 and F_3 feature sets, respectively.
Therefore, it can be seen that the feature set F_4 improves the accuracy of dissolving event
prediction. For merging events, the F_4 feature set constructed by the MF-PSF method
is significantly better than the F_1, F_2 and F_3 feature sets, and the predicted F1 value
increases by 4.3%, 7.1% and 1.1%, respectively.

Figure 10. Bitcon dataset prediction results.

According to the experimental results, the Random Forest classifier is also used
to predict various community evolution events in different data sets. The feature set
constructed by MF-PSF based on multivariate feature set and potential structural features
could describe community characteristics more effectively and improve the accuracy of
community evolution prediction.

6. Conclusions

A community evolution prediction method MF-PSF based on a multivariate feature
set and potential structural features is proposed in this paper. This method fully extracted
four types of community evolution multivariate feature sets, including community core
node features, community structural features, community sequential features and commu-
nity behavior features. Secondly, the potential structural features of the community are
used to obtain the topological information of the local and the global community through
network representation learning method, and the evolution of the community is predicted
by combining multivariate feature sets and potential structural features. Experiments were
performed on Hepth, Enron and Bitcon data sets to analyze the importance of various fea-
tures in predicting evolutionary events and to verify the validity of the potential structural
features extracted in predicting evolutionary events. Compared with other community
evolution prediction methods, the results show that the MF-PSF method can effectively
improve the accuracy of community evolution prediction. Future work will focus how to
identify evolutionary events in communities on non-neighboring time slices based on evo-
lutionary events in communities on neighboring time slices and to predict future evolution
over a long period of time.
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