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Abstract: Dust is one of the most burdensome hazards found in the environment. It is composed of
crushed solids that pose a threat to the health and life of people, machines and machine components.
At high concentration levels, it can reduce visibility. All of these negative phenomena occur during the
process of underground mining, where dust hazards are common. The negative impact of dust on the
efficacy of the mining process prompts research in this area. The following study presents a method
developed for model studies of dust dispersion in driven dog headings. This issue is immensely
important due to the fact that these dog headings belong to a group of unidirectional excavations
(including tunnelling). This paper presents the results of model studies on dust dispersion in driven
dog headings. The main focus is on the analysis of the distribution of dust concentration along a
dog heading during the mining process. In order to achieve this goal, a model test method based
on the finite volume method, which is included in the group of CFD methods, was developed.
Analyses were carried out for two different values of dust emission from the face of the excavation
for the transient state. The results made it possible to determine areas with the highest potential
for dust concentration. The size and location of these areas are mainly dependent on the amount of
dust emissions during the mining process. The results can support the process of managing dust
prevention and protection of workers during the mining excavation process.

Keywords: dust dispersion; driven dog heading; CFD model; underground mining

MSC: 76B15

1. Introduction

One of the most commonly reported threats associated with the extraction of solid
minerals in underground mines, including hard coal, is dust. In hard coal mines, this
hazard results from the common occurrence of coal and hard dust in mining excavations
(including a mixture of silica, aluminosilicates and other components, such as trace metals).
The dust is produced in the process of mining and transporting the mine output [1–3]. The
main reason for the formation of large amounts of dust in this process is current machining-
based technology used for mining the rock mass. During this process, the rock is crushed
and ground, which causes the formation of large amounts of rock and coal dust. In the
case of mining operations, quantities of dust are directly proportional to the amount of the
mine output.
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In addition, large amounts of dust are generated during horizontal and vertical trans-
port and repeated pouring of the mine output. The dust generated in the mining process is
very dangerous for both employees and machines [4]. It floats in the mine atmosphere and
can reach most mining excavation sites through a ventilation system, even those far from
its place of origin. This causes the dust hazard to occur in virtually all mining excavations.
However, the largest amount of dust can be found in excavations with unmined coal (coal
body), including driven dog headings.

Dog headings (tunnels) driven in coal and rock belong to a group of the so-called
“blind” or unidirectional excavations (Figure 1). This means that they only have one
connection to the central (general) ventilation system. This, in turn, means that both fresh
and exhaust air is transported through the same excavation. As a result, fresh air must be
delivered to the face zone, where the rock mass is mined, in such a way that it does not
impede the outflow of exhaust air and gases that are emitted into this dog heading from
the rock mass.
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The face of such excavations is also characterized as having the greatest amount of
dustiness [5]. In addition to profound harmfulness to employees’ health, this dustiness also
reduces visibility, leading to total darkness. This significantly hinders operations. Dust is
also considered to have an immensely negative effect on the operation of machines and their
individual elements. According to statistics, dust generated in the mining process accounts
for 60–80% of the dust generated in the entire mine [5]. The presence of dust in mine
workings poses a great threat to the health of workers, both physical and psychological, as
well as to the environment. Additionally, high concentrations of dust are the cause of very
dangerous dust explosions [5–8]. Thus, it can be assumed that dustiness, which cannot be
eliminated in the mining production process, is a very unfavorable phenomenon both to
the health and life of the crew and the efficiency of the mining process.

Due to the very unfavorable effects of dust in mine workings, this topic has been
addressed by many researchers. For example, probability experiments, direct field mea-
surements and numerical simulations have been used to study dust in mine workings.
Experimental studies have been conducted on scaled simulation models, among other
aspects. Tan et al. designed an experimental model for a fully mechanized face at the
Tongxin coal mine. They conducted a study of the distribution of dust concentrations of
different moisture contents generated during coal mining, casing shifting, collapse and coal
transport [9]. In turn, Shi et al. developed an experimental model to analyze the variation
of dust concentrations during coal mining at different ventilation air velocities [10]. The
simplifications they introduced to the structure and environmental conditions resulted in
large deviations from the actual measurement results.

In terms of direct measurements, it is worth mentioning a study [11] that measured the
distribution of PM2.5 dust concentrations in a coal face. Liu et al. carried out measurements
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of changes in dust concentrations along a driven dog heading during coal mining in a fully
mechanized coal face [12]. It should be noted that field studies also show a number of
shortcomings, including issues related to measurement uncertainty and the influence of
very harsh environmental conditions on the quality of these measurements. Oftentimes,
however, the results of these measurements are used to validate the accuracy of analytical
experiments and the numerical simulations carried out.

In the case of model studies (numerical simulations), measurements in real conditions
are crucial for mapping the studied region and the air flow field and diffusion behavior
of dust emitted from various sources. Therefore, it is clear that model studies using
structural models are now becoming an alternative to studies under real conditions. They
also provide extensive opportunities for multivariate analysis of different states of the
phenomenon under study. Therefore, their application in underground mining is becoming
increasingly widespread.

Due to these aspects, it is crucial to conduct research in the field in order to expand
knowledge of dust dispersion in mining processes. In this regard, both on-site and real-life
studies are conducted. Model studies are increasingly used to analyse phenomena that
would be hard to examine in real conditions.

Nevertheless, the use of model studies to examine the phenomenon of dustiness
requires analysing two media, namely a gas medium (Euler) and a solid medium (Lagrange).
Therefore, the analysis of dust dispersion in mining excavations requires a combination of
gas and solid media.

The main objective was to determine a method of dust dispersion in driven dog
headings and its concentration levels along these dog headings during the mining process.
In order to achieve this goal, a model study method based on the finite volume method
was developed. The study was performed for the actual driven dog heading, and the
ventilation parameters adopted as boundary conditions were obtained based on direct
studies. The analyses covered two different values of dust emissions from the face of the
driven dog heading and were carried out for the transient state. In addition to the emission
of dust into driven dog headings, the study also looked at the release of methane from the
excavated coal seam, which makes it possible to reflect the actual ventilation processes in
underground mine workings.

An important problem when modeling dust issues, including those in mine workings,
is the issue of particle size distribution. This problem is extremely complex and depends
on the type of seam being excavated and its geological properties, as well as the condition
of the knives of the excavating machine organ and the process of sprinkling the seam.
The analysis presented here adopts the distribution of dust particles according to the
Rosin–Ramler model, often used in studies of dusting processes. This distribution is used
to describe the diameter distribution of dust particles (materials) from processes such as
grinding, milling, mincing and crushing, as well as for the diameter distribution of particles
formed in other processes [13–17].

Adopting this model for the distribution of dust particles, taking into account the
release of methane and analyzing the pumping system represent a new approach to the
problem under study.

The ANSYS Fluent software was utilized for the analysis, which enabled the authors
to determine the parameters of the mine gas and dust mixture at individual points of the
studied dog heading (in a spatial arrangement).

2. Materials and Methods

The analysis of the impact of dust mass expenditure (quantity) on the dustiness of
the driven dog heading was conducted using the computational fluid mechanics (CFD)
in the Ansys Fluent software. In order to model a biphasic system, i.e., gas and solid, the
Eulerian–Lagrangian approach was used. This approach assumes that the gas phase is
regarded as a continuum by solving the Navier–Stokes equation, while the dispersed (dust)
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phase is solved by tracking the movement of a large number of particles in the calculated
continuous phase field.

In accordance with the principles of fluid mechanics, the flow of air stream (gas)
through the studied driven dog heading was adopted as a continuous phase, and dust was
adopted as a discrete phase.

2.1. Mathematical Model of the Gas Flow through a Dog Heading

The mathematical model of airflow consists of conservation equations of turbulent
mass, momentum, species and energy, as well as the scalar transport equations for the
turbulence model [18,19]:

∇·ρU = 0 (1)

∇·ρUU = ∇·σ + ρg (2)

where:
σ = −pI +

[
(µ + µt)

(
∇U + (∇U)T

)]
− 2

3
(((µ + µ)(∇·U)I)ρkI) (3)

∇·
(
ρcpUT

)
= ∇·

(
ke f f +

cpµt

Prt

)
∇T (4)

∇·(ρωiU) = ∇·
(

ρDi,e f f +
µt

Sci

)
∇ωi (5)

where: ρ is gas density (kg/m3); U is air velocity (m/s); p is pressure (Pa); g is gravity
acceleration (m·s−2); ωi is mass fraction of species i; µ/µt are dynamic viscosity, Pa·s−1;
T is temperature, K; Sci is the Schmidt number; Prt is Prandtl number; ke f f is effective
thermal conductivity, W·m−1·K−1; and Di,e f f is effective diffusivity of species i, m·s−2.

The stream of the air flowing through driven dog headings is turbulent in nature. In
order to model the turbulent flow, the k-ε model was used. This model is based on solving
Navier–Stokes equations averaged over time (the so-called RANS equation—Reynolds-
Averaged Navier–Stokes). These equations are incomplete; hence, it is necessary to solve
the variables k—the so-called kinetic turbulence energy and ε—energy dissipation, which
were introduced to close the equations. The equation of kinetic turbulent energy and the
equation of kinetic turbulent energy dissipation can be expressed as follows [20]:

∂
∂k
∂t

+
∂

∂xi
(ρkui) =

∂

∂xj
[(µ +

µt

σk
)

∂k
∂xj

] + Gk + Gb − ρε−YM + Sk (6)

∂
∂ε

∂t
+

∂

∂xi
(ρεui) =

∂

∂xj
[(µ +

µt

σε
)

∂ε

∂xj
] + C1ε

ε

k
(Gk + C3εGb)− C2ερ

ε2

k
+ Sε (7)

where: C1ε, C2ε, C3ε are constants; σk, σε are turbulent Prandtl numbers for k and ε; Gb
is the generation of turbulence kinetic energy due to buoyancy; Gk is the generation of
turbulence kinetic energy due to the mean velocity gradients; YM is a contribution of the
fluctuating dilatation in compressible turbulence to the overall dissipation rate; and Sk, Sε

are user-defined source terms.

2.2. Mathematical Model of the Coal Dust Flow through a Dog Heading

The Lagrange method is used to track the trajectory of DPM particles. In this method,
the motion of particles takes place according to Newton’s second law. The movement
of dust particles is influenced by many forces, which makes their interactions extremely
complex. These forces mainly include gravity, adhesive force, drag force, buoyancy force,
Magnus force, Saffman force, Basset force and False mass force [21]. However, since many
of these interactions are small, most of them are ignored, with resistance force, gravity and
pressure gradient force predominantly taken into account. According to Newton’s second
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law, the force acting on a single dust particle can be determined based on the following
relationship [22–26]:

mp
dvp

dt
= Fdrag + Fg (8)

where: mp is the mass of dust particles (kg); vp is the velocity of dust particles (m/s); Fdrag
is the drag force on the particles, (N); and Fg is gravity (N).

Therefore, Fdrag is expressed as:

Fdrag =
1
8 Cdρπd2

p
∣∣v− uvp

∣∣
v− vp

(9)

where: dp is the particle diameter (m); u is the air velocity (m/s); vp is the particle velocity
(m/s); and Cd is the drag coefficient.

Therefore, Cd is given as:

Cd =


24

Re·Cc
for Re ≤ 1

24(1+0.15Re0.687)
Re for 1 < Re ≤ 1000,

0.44 for Re > 1000

(10)

where: Cc is the Cunningham slip correction factor, which is expressed by:

Cc = 1 +
λ

dp

(
2.514 + 0.8e

−0.55dp
λ

)
, (11)

where: λ is the mean free path of gas molecules.
Velocity of dust particles with different sizes can be calculated by the following equation:

vp =

√
4(ρp − ρg)gdp

3ρgCd
, (12)

3. Problem Statement and Boundary Conditions

The basis for the numerical analysis was the dog heading model with its real geometry,
ventilation parameters (measured in real conditions) and equipment. The geometrical
parameters along with the location of the auxiliary air duct line are shown in Figure 2. The
diameter of the air duct line was 0.6 m. The air outlet of the air duct line was located 5.0 m
from the mined coal body. The air duct line was built at a height of 2.5 m, and 0.65 m from
the side wall of the dog heading (Figure 2). The source of dust was located on the surface
of the mined coal body (as in reality).

The study was conducted for a forced (air-duct) ventilation system through pressing.
This system is characterized by more intensive removal of noxious gases from the face than
in the case of suction or combined ventilation, lower air losses and more favorable climatic
conditions in the excavation. The disadvantage of this system is that used air flows through
the entire length of the excavation, which causes difficulties in removing methane gas
emitted from the excavated face, which tends to accumulate under the roof. With suction
ventilation, the dilution of gases is faster, and the conditions in the entire excavation are
more favorable because the gases do not flow out through the excavation, but through the
air-duct ventilation. Combined ventilation, on the other hand, combines the advantages of
suction and press ventilation. It is implemented by changing the direction of rotation of the
axial fans’ impeller, using a reversible device or two fans and bolts.

As previously mentioned, a pumping (pressing) system was used in this study. After
developing a geometric model and defining boundary conditions (Figure 2), discretization
of the developed model was carried out. This consisted of generating a polyhedral mesh
consisting of a finite number of control volumes (Figure 3).
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The boundary conditions were then adopted, including the physical model, which
was used for numerical calculations. The basic parameters of the calculation model are
shown in Table 1.
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Table 1. The major parameter setting.

Name Parametr Setting

Solver Type Pressure-Based

Viscous Model k-epsilon

Diameter Distribution Rosin-Rammler

Total Flow Rate, kg/s 0.00125/0.00075

Material Coal-hv

Max Diameter, m 0.001

Min Diameter, m 0.000001

Mean Diameter, m 0.0005

Density of dust, kg/m3 1200

Calculations were made for the transient state. The analysis time was 180 s. Two
variants of the emission volume of dust produced during the driving of the dog heading
were analysed: 0.00125 and 0.00075 kg/s.

For each of the studied variants, the air flow delivered to the driven dog heading by
means of the air duct line was the same and amounted to 376.8 m3/min.

The research focused on the analysis of dust dispersion in the face zone from the
commencement of mining the coal body. It was assumed that dust was released into
the dog heading from the fragment of mined forehead. The dust grain composition was
described according to the Rosin–Rammler distribution.

Numerical studies were conducted using Ansys Fluent 19.2 software (Canonsburg,
PA, USA).

4. Results and Discussions

Research on the impact of the mass expenditure (quantity) of dust released into the
dog heading during mining was carried out for the model, in which the biphasic medium
created from the continuous air phase and the discrete phase in the form of dust particles
was taken into account. The analysis involved the interaction between these phases.

A number of interesting results were obtained regarding both the ventilation parame-
ters of the air stream and the distribution of dust particles itself.

In the first stage, ventilation parameters were determined for the system without
dust. The air flow trajectories (without dust) through the driven dog heading are shown in
Figure 4.
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Based on the results, the highest air velocity was reported to occur in the face zone of
the driven dog heading, in the area of the air stream outlet from the air duct line. It was
also found that there was an area of significant air recirculation in this zone, where the
air flow was most turbulent. This is due to the fact that in this area, the air flowing out of
the air duct line hits the mined coal body and is bounced off, thereby changing its return
flow. At the same time, having bounced off the air duct line, the air stream encounters an
obstacle in the form of a road header.

In the second stage, the study looked at the impact of mass expenditure (quantity) of
dust released into the dog heading during mining on the level of dustiness.

Here, the focus was placed on the increase of dustiness in the face zone during mining.
During the analysis, dust dispersion in the studied dog heading was determined, with its
emission intensity being 0.00125 and 0.00075 kg/s, respectively. Dustiness in subsequent
phases of the analysis with consideration of the size of dust particles is presented in
Figures 5 and 6.

The results of the calculations help to trace changes in the level of dustiness in the
studied dog heading with the passage of time for both studied emissions. It is also possible
to trace how the dust spreads along with the moving air stream. The results also allow for
the determination of the location of individual dust grains for the selected timeframe. It is
clear that the greater the distance from the face of the dog heading, the smaller the dust
particles that move with the air stream will be. In turn, the larger dust particles fall on the
footwall of the dog heading, which is caused by the force of inertia. This phenomenon is
dangerous to the health of the workers, because these pathogenic particles of the smallest
diameter are transferred over considerable distances and are inhaled.

Dust concentration levels in vertical cross-sections of the dog heading for both emis-
sions are presented in Figures 7 and 8. They are shown in cross-sections of the dog heading
located every 5.0 m from the exposed surface of the mining area (for 10 cross-sections).

Based on the results, the authors were able to determine changes in dust concentration
levels along the measurement line located in the central plane of the dog heading at a
height of 1.75 m (average height of the human mouth and nose) from its base. Distributions
were determined after the total analysis time (180 s) for both studied emissions at 10 points
located on this line (Figure 9).
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The presented methodology of the research procedure and the results obtained com-
plement the previous level of knowledge in the field of modeling the flow of air with dust
through driven dog headings. Previous research in this area has focused on modeling the
air flow and determining the trajectories of the overflow for various ventilation systems and
the release of methane into them from the mined coal seam. These studies were carried out
for steady-state flow. On the other hand, the analyses presented in this paper represent the
first stage of research on dust dispersion in mine workings for conditions in underground
coal mines. The undoubted advantage is the inclusion of transients in the analysis, which
has not been used for this type of condition. Thus, there are no methods analyzing the
presented condition. By contrast, similar analyses have been carried out for the combustion
process and for turbulent flows with a dispersive phase [27–31].
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5. Conclusions

Dust emissions from both mining and tunnel excavations constitute a major technical,
organizational and health problem. Unfortunately, this dust has immensely harmful effects
on the mining process. In order to reduce these effects, it is necessary to take measures to
reduce dust emissions and movement in excavations. For this reason, it is important to
know how dust disperses and distributes over time for various ventilation parameters. The
method developed and presented in this paper allowed the authors to conduct such studies.
However, it required an analysis of a biphasic medium with interaction. This approach
makes it possible to trace the movement of dust particles in a gaseous medium for various
ventilation parameters and the intensity of such emissions.

The method presented in this paper enables the determination of many interesting pa-
rameters of the gas–dust mixture. Undoubtedly, it creates opportunities for a much broader
analysis of the phenomenon of dustiness in various areas and during various processes.
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The results clearly indicate that the main reason for dust dispersion in mining ex-
cavations is an active ventilation system that transports dust particles over considerable
distances from the place of their formation. The analysis of the distribution of this dust
and trajectories of individual grains shows that its concentration is very uneven. This
distribution largely depends on dust grain composition, the volume of emissions and
ventilation parameters.

Based on the findings, it can be concluded that:

(1) The highest concentrations of dust during the mining of the coal seam were reported
at the face of the driven dog heading. Due to the ventilation system used for such a
heading (press–air-duct ventilation), the diffusion of dust with high concentrations
along the length of this excavation was significant.

(2) The lowest dust concentrations, regardless of the size of dust emissions during the
mining process, was reported on the side of the heading without a built-in air-duct
ventilation system. This is because this side is where the air flows through the entire
heading.

(3) A significant decrease in dust concentrations was reported at a distance of about 40 m
from the seam being mined in the heading.

These conclusions should be widely used by the services responsible for mine safety.
The presented methodology, based on numerical simulations, makes it possible to

conduct a multivariate analysis of the state of dustiness, taking into account various
parameters of the studied phenomenon. The universality of this methodology also allows
its application for the analysis of dustiness, including dust reduction agents.
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