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Abstract: Many ecological models have received much attention in the past few years. In particular,
predator–prey interactions have been examined from many angles to capture and explain various
environmental phenomena meaningfully. Although the consumption of prey directly by the predator
is a well-known ecological phenomenon, theoretical biologists suggest that the impact of anti-
predator behavior due to the fear of predators (felt by prey) can be even more crucial in shaping
prey demography. In this article, we develop a predator–prey model that considers the effects of fear
on prey reproduction and on environmental carrying capacity of prey species. We also include two
delays: prey species birth delay influenced by fear of the predator and predator gestation delay. The
global stability of each equilibrium point and its basic dynamical features have been investigated.
Furthermore, the “paradox of enrichment” is shown to exist in our system. By analysing our system
of nonlinear delay differential equations, we gain some insights into how fear and delays affect on
population dynamics. To demonstrate our findings, we also perform some numerical computations
and simulations. Finally, to evaluate the influence of a fluctuating environment, we compare our
proposed system to a stochastic model with Gaussian white noise terms.

Keywords: predator–prey interactions; fear effect; stability; local bifurcations; time delays; Gaussian
white noises

MSC: 92D25; 92D40; 34C23

1. Introduction

The dynamical nature of predator–prey interactions is genuinely influential in mathe-
matical biology, particularly in ecosystems, where the prophecy of predator–prey interac-
tions and the predation process play a crucial role in maintaining balance and biodiversity.
Mathematical modeling is an effective method for studying the aforementioned biological
processes [1,2]. As a result, various models have been constructed and investigated. We
formally categorize them as deterministic models, especially those containing systems
governed by ordinary differential equations [2,3], partial differential equations [1,4,5], frac-
tional differential equations [6], stochastic systems [7], systems including time lags [8],
network models [9], etc.

Malthus, near the end of the eighteenth century, proposed a theory on population
dynamics based on the idea that population growth is proportionate to the population
density present in the ecosystem [10]. In this case, the populace will increase (or decrease)
exponentially, but the situation of exponentially increasing growth does not match the
real-world conditions. Verhulst [11] proposed the logistic growth model which incorporates
a constant per-capita population growth rate and intra-species competition proportional
to the current population size. In this circumstance, the population increases or decreases
as a function of its initial size, and in the long run, approaches the environment carrying
capacity from, respectively, above or below that level. The traditional Lotka-Volterra
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model [12], which was formulated for the predator–prey interaction, describes predation
as a linear, and hence unlimited, function of the prey population density. This original
theoretical form was later replaced with saturated curves called functional responses (of
predator to the prey density) and improved by including a logistic growth term for the
prey species. To simulate realistic behavior among predator and prey species, a number
of functional response forms were proposed. For the last few decades, the Lotka-Volterra
model has been evolving, incorporating diverse assumptions, such as the Allee effect, fear
effect, gestation delay, habitat complexity, additional food and switching feeding, to explore
how the system behaves locally and globally [13–15].

As predation is easy to witness in nature, most studies on predator–prey systems only
investigate the direct consumption of prey by the predator [16–18]. However, it is recognised
that the sheer presence of a predator could have psychological and physiological impacts on
the prey that are more harmful than direct consumption to the population. In general, animals
defend themselves against predators in the wild by altering habitat use, attentiveness, foraging
behavior and physiological changes [19,20]. Prey may move from a higher- to a lower-risk
zone to reduce predation and thereby lose energy, specifically if the conditions in the low-risk
zone is poor. Furthermore, scared prey may eat less, resulting in hunger and decreased repro-
duction [16,19]. Prey species are always under psychological stress due to the threat of assault,
and in some circumstances, they die solely through fear rather than direct consumption. Sev-
eral studies have found that many prey species spend a lot of time for watching predators and
less time gathering food, which leads to fewer eggs being produced [21–23]. Zanette et al. [23]
found that female song sparrows (Melospiza melodia) exposed to predatory noises produce 40%
fewer fledglings than birds exposed to non-predatory sounds. Creel et al. [24] used numerous
data to demonstrate that wolves implicitly affect elk reproductive physiology and population
dynamics through the cost of fear. Wang et al. [18] first developed a model that included the
fear effect and investigated whether large amounts of fear may stabilize the predator–prey
model by eliminating oscillatory behavior. In 2019, Zhang et al. [25] introduced the dynamic
behavior of a predator–prey interaction model, including both fear and prey refuge. In 2020,
Wang and Zou [26] studied a model incorporating a fear effect in a system of ordinary
differential equations as a cost; however, in this research article, they also considered
an anti-predation strategy and digestion delay. In 2022, Das et al. [27] constructed and
analysed a predator–prey system that introduces the cost of fear into the birth and death
rates of the prey population and a gestation delay.

In biological processes, a time delay is a common element. Time delays may occur in
population biology due to food digestion, maturation, newborn predators’ gestation and other
factors. We can get several extensive explanations regarding the usefulness of time delays in
practical systems from the classical books [28,29]. After consuming prey, the predator must wait
a certain amount of time to reproduce, mediated by the gestation period. As a result, in model
construction and biological elucidation, the time delay between prey capture and contribution
to the predator’s growth is crucial [30]. Such time-delay elements add realism and complexity
to the system. In general, delays exert destabilizing effects, which may occur as oscillations via
Hopf bifurcations [31–33]. Ruan [30] explored various forms of delays and the dynamics of the
associated systems in a review of works on predator–prey models with discrete delay.

Motivated by the preceding discussion, we have developed a predator–prey model
that considers the influences of fear on prey reproduction and the environment carrying
capacity of prey species. It also takes into account two delays: a prey birth delay and a
predator gestation delay. The effects of fear on the proposed dynamic system, and the
impacts of the delay factors, are the key research topics. This work is organized as follows.
The mathematical model is formulated in the next section. Section 3 is devoted to the
system’s well-posedness. The non-delayed system’s equilibrium points and their local
stability, along with the global stability, are examined in Section 4. Conditions for uniform
persistence are determined in Section 5. We look at local bifurcations, such as transcritical
and Hopf bifurcations, in Section 6. Section 7 deals with the stability analysis of the delay-
induced model. To show our theoretical findings, we have performed several numerical
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simulations, which are reported in Section 8. Additionally, the mortality rates of both species
are perturbed by Gaussian white noise terms to compare the deterministic system to the
stochastic model. Finally, Section 9 deals with the discussion and conclusions of this work.

2. Model Formation

A typical predator–prey population model in which prey logistic growth is considered
and prey is the only food source of predator (i.e., in the absence of prey, a predator will go
extinct) can be written as:

dx
dt = rx(1− x

k )−
αxy

1+αhx , x(0) > 0
dy
dt = γαxy

1+αhx − d2y, y(0) > 0
(1)

where x and y denote the prey and predator populations, respectively; r and k are the intrinsic
growth rate and the carrying capacity of the prey, respectively, (in absence of predator); α is
the intake rate; γ (0 < γ < 1) is the conversion rate of the predator; d2 is the natural mortality
rate of the predator; h is the prey handling time. Here, the interaction between prey and
predator is considered as a Holling type-II functional response αx

1+αhx [34–36].
Now, let r = b− d1, where b and d1 denote the birth rate and natural death rate of the

prey, respectively. Therefore, Equation (1) can be rewritten as:

dx
dt = bx− d1x− rx2

k −
αxy

1+αhx , x(0) > 0
dy
dt = γαxy

1+αhx − d2y, y(0) > 0.
(2)

Recent field observations and the results of the evidence suggest that the mere presence
of a predator could alter the natural behavior of prey, and that it could affect population
size. Defensive behaviors such as prevention, alertness, alarm calls and gathering against
the predator might reduce direct mortality from predation temporarily. Lifelong fitness
of the prey species can be damaged by reducing the growth rate and fecundity because
of reduced intake and mating opportunities. Thus, we multiply the reproduction term bx
by f1(k1, y) and the carrying capacity k by f2(k2, y), where f1(k1, y) and f2(k2, y) satisfy the
following conditions [18]:

fi(ki, 0) = 1, fi(0, y) = 1,
∂ fi(ki, y)

∂ki
< 0,

∂ fi(ki, y)
∂y

< 0, for i = 1, 2.

Here, the parameter ki, where i = 1, 2, describes the level of fear that drives the prey’s anti-
predation behavior. In particular, let f1(k1, y) = 1

1+k1y and f2(k2, y) = 1
1+k2y . Thus, by

incorporating the fear effects in model (2), we have obtained the following predator–prey system:

dx
dt = bx

1+k1y − d1x− β(1 + k2y)x2 − αxy
1+αhx , x(0) > 0

dy
dt = γαxy

1+αhx − d2y, y(0) > 0
(3)

where β = r
k , b

1+k1y ≤ b and k
1+k2y ≤ k. Throughout the analysis we will take b > d1, if not

stated otherwise. The description and unit of the model parameters are presented in Table 1.

Table 1. List of model parameters with units and their biological significance [37].

Parameter Description Unit

b intrinsic birth rate of the prey Time −1

ki, i = 1, 2 level of fear due to prey’s anti-predation behavior Mass −1

d1 natural mortality rate of the prey Time −1

β decay rate due to intra-specific competition of prey Mass−1 Time−1

α attack rate by predator Mass −1Time−1

h prey handling time Time
γ conversion efficiency of predator dimensionless

d2 natural mortality rate of predator Time −1
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Recently, Mondal and Samanta [38] explored a predator–prey interaction incorpo-
rating nonlinear prey refuge under the influence of the fear effect and additional food.
The following describes how Model (3) differs from the system investigated by Mondal
and Samanta [38].

1. In [38], the authors considered that fear of predators only suppresses the birth rate
of the prey species. However, in this work, we make the assumption that fear of
predators not only decreases the birth rate of prey, but also reduces the environmental
carrying capacity of prey species.

2. In [38], the authors presumed and analysed the dynamics of a predator–prey interplay
by including a nonlinear prey refuge function φ(x, y) = m1xy

a0+y , where a0 (>0) is a half-
saturation constant for refuge function and m1 (>0) is the coefficient of prey refuge.
On the other hand, the hypothesis used in this work is that the prey population does
not take refuge.

3. In [38], the authors did not examine the implications of environmental stochasticity
for the suggested predator–prey system. However, in this work, the influences of
environmental fluctuations have been taken into account too.

Furthermore, Sarkar and Khajanchi [39] proposed and analysed a predator–prey sys-
tem introducing the cost of fear as an indirect impact of predators on prey. The fundamental
difference between Model (3) and the model studied by Sarkar and Khajanchi [39] is the
form of a fear function. In the present work, it is assumed that when level of fear ki = 0,
i = 1, 2, the fear function fi(ki, y) seems to have no effect on birth, but in [39], they consid-
ered the fear function in such a manner that when fear level is zero, there is always some
minimal impact on the birth rate of prey; even if the predator population rises infinitely,
prey species will be under minimum fear because of the physiological impact of the prey
populations being habituated to fear from predator species. However, in this scenario,
an increase in predator population would have a significant impact on birth rate of prey
species, which might ultimately lead to the extinction of prey individuals. Since there are
not enough experimental data to confirm this theory employed by [39], we assume fear
functions as fi(ki, y) = 1

1+kiy
, where i = 1, 2, as considered by Wang et al. [18].

A predator–prey interaction model has been studied by Halder et al. [40] which takes
into consideration the fear effect and multiple foraging techniques. They have included
a harvesting term for both species and assumed a modified version of the Leslie–Gower
functional response. They took the foraging rate of the predator as linear with Holling type-
II or Holling type-III foraging. On the other hand, in this work, a logistic predator–prey
model with a Holling type-II functional response has been explored in the context of the
cost of fear due to predator. Studying the consequences of fear, as it is incorporated into the
carrying capacity of prey, and the implications of breeding delay and predator gestation
delay, are key interests of this work.

3. Positivity and Uniform Boundedness

Here, we check the existence, positivity and boundedness of the solution of System (3).

Theorem 1. The solution of system (3) exists and is positive for all values of t ≥ 0.

Proof. Let

Ψ1(x, y) =
b

1 + k1y
− d1 − β(1 + k2y)x− αy

1 + αhx
,

Ψ2(x, y) =
γαx

1 + αhx
− d2.
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Then, system (3) reduces to:

dx
dt = xΨ1(x, y), x(0) > 0
dy
dt = yΨ2(x, y), y(0) > 0

(4)

Clearly, xΨ1(x, y) and yΨ2(x, y) are continuous functions of x and y, and also locally
Lipschitzian in R2

+. Therefore, a solution of (3) exists in [0, ζ), where 0 < ζ < ∞.
Now, Equation (4) gives

x(t) = x(0) exp
(∫ t

0
Ψ1(x(s), y(s))ds

)
> 0, [∵ x(0) > 0]

y(t) = y(0) exp
(∫ t

0
Ψ2(x(s), y(s))ds

)
> 0, [∵ y(0) > 0]

Hence, the theorem is proved.

Theorem 2. All solutions of system (3) are uniformly bounded in the region B = {(x, y) : 0 <

x(t) + y(t)
γ ≤

b2

4βµ + δ, f or any δ > 0} if b > d1.

Proof. By taking the first equation of Model (3), we get

dx
dt

=
bx

1 + k1y
− d1x− β(1 + k2y)x2 − αxy

1 + αhx

≤ bx− d1x− βx2 − αxy
1 + αhx

,
[
∵

b
1 + k1y

≤ b
]

≤ (b− d1)x− βx2.

∴ lim sup
t→∞

x(t) ≤ b− d1

β
, provided b > d1. It should be mentioned that a greater death rate

is always harmful to all species and may cause extinction, which is not desirable from an
ecological perspective; therefore, b > d1 is assumed throughout this work.

Now, let Ω(x(t), y(t)) = x(t) + y(t)
γ . Then,

dΩ
dt

=
dx
dt

+
1
γ

dy
dt

=
bx

1 + k1y
− d1x− β(1 + k2y)x2 − d2y

γ

≤ bx− d1x− βx2 − d2y
γ

,
[
∵

b
1 + k1y

≤ b
]

= −β

(
x− b

2β

)2
+

b2

4β
− d1x− d2y

γ

≤ b2

4β
− d1x− d2y

γ

≤ b2

4β
− µΩ, where µ = min {d1, d2}.

∴
dΩ
dt

+ µΩ ≤ b2

4β
.

Therefore, by Gronwall inequality, we have

0 < Ω(x(t), y(t)) ≤ b2

4βµ

(
1− e−µt)+ Ω(x(0), y(0))e−µt
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∴ lim
t→∞

(
x(t) +

y(t)
γ

)
≤ b2

4βµ
+ δ, for any δ > 0.

Therefore, all solutions of (3) enter in the region:

B =

{
(x, y) : 0 < x(t) +

y(t)
γ
≤ b2

4βµ
+ δ, for any δ > 0

}
.

This completes the proof.

4. Equilibria and Their Stability Analysis

In this section, we evaluate the proposed system’s behavior analytically.

4.1. Equilibrium Points

System (3) has three feasible equilibrium points or steady states in R2
+, namely:

(i) E0(0, 0) (trivial equilibrium),

(ii) E1

(
b−d1

β , 0
)

(predator-free equilibrium) exists if b > d1,

(iii) E∗(x∗, y∗) (coexistence equilibrium) where x∗ = d2
α(γ−hd2)

provided 0 < d2 < γ
h and

y∗ is the unique positive root of the equation:

Ay2 + By + C = 0, provided C < 0. (5)

Here,

A = k1k2βγd2 + α2k1(γ− hd2)
2 (> 0),

B = βγd2(k1 + k2) + d1k1αγ(γ− hd2) + α2(γ− hd2)
2 (> 0),

C = βγd2 − γα(b− d1)(γ− hd2).

Thus, we have

y∗ =
−B +

√
B2 − 4AC

2A
.

These three equilibrium points are represented in Figure 1 using the parameter set men-
tioned in the figure caption.

0 2 4 6 8 10 12 14

x

0

1

2

3

4

5

y

Non-trivial prey nulcline

Non-trivial predator nulcline

Tivial prey nulcline

Trivial predator nulcline

E
*
(2,3.169)

E
0
(0,0)

E
1
(14.167,0)

Figure 1. Graphical representation of predator–prey nullclines for the parametric set: {b = 10,
d1 = 1.5, d2 = 0.5, k1 = 0.5, k2 = 0.01, β = 0.6, α = 2.5, h = 1.2, γ = 0.7}.
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Remark 1. If C > 0, i.e., if d2 >
γα
(

b−d1
β

)
1+αh

(
b−d1

β

) , the coexisting equilibrium E∗(x∗, y∗) goes to

predator-free equilibrium. Thus, the existence criterion of y∗ is biologically significant.

Remark 2. At E∗(x∗, y∗), x∗ is independent of the parameters k1 and k2. Thus, dx∗
dk1

= dx∗
dk2

= 0.
However, y∗ depends on both parameters. Moreover,

dy∗

dk1
= −

(βγd2 + αγd1(γ− hd2))y∗ +
(

βγd2k2 + α2(γ− hd2)
2)y∗2

B + 2Ay∗
< 0.

Therefore, at the coexistence equilibrium point E∗, increasing the level of fear (k1) can lower the size
of the predator population.

Again,
dy∗

dk2
= − βγd2y∗ + βγd2k1y∗2

B + 2Ay∗
< 0.

Therefore, at E∗(x∗, y∗), the growth of predator population decreases due to continuous increment
in k2.

4.2. Local Stability Analysis

Theorem 3. The trivial steady state E0(0, 0) is locally asymptotically stable (LAS) if b < d1 and
unstable if b > d1.

Proof. The Jacobian matrix J(0, 0) at E0(0, 0) is

J(0, 0) =


b− d1 0

0 −d2

.

Therefore, the eigenvalues are (b− d1) and −d2. Clearly, for the stability of steady
state E0(0, 0), we must have b < d1 and for instability b > d1.

Theorem 4. The axial steady state E1

(
b−d1

β , 0
)

is locally asymptotically stable if
γα
(

b−d1
β

)
1+αh

(
b−d1

β

) < d2

and unstable if
γα
(

b−d1
β

)
1+αh

(
b−d1

β

) > d2.

Proof. The Jacobian matrix corresponding to E1

(
b−d1

β , 0
)

is given by:

J
(

b− d1

β
, 0
)

=


−(b− d1) − bk1(b−d1)

β − k2(b−d1)
2

β − α(b−d1)
β+αh(b−d1)

0
γα
(

b−d1
β

)
1+αh

(
b−d1

β

) − d2

.

Thus, the eigenvalues of the Jacobian matrix J
(

b−d1
β , 0

)
are −(b− d1) and

γα
(

b−d1
β

)
1+αh

(
b−d1

β

) − d2.

Therefore, E1

(
b−d1

β , 0
)

is LAS if
γα
(

b−d1
β

)
1+αh

(
b−d1

β

) < d2 and unstable if
γα
(

b−d1
β

)
1+αh

(
b−d1

β

) > d2.
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Theorem 5. The coexistence steady state E∗(x∗, y∗) is LAS if −βx∗(1 + k2y∗) + α2hx∗y∗

(1+αhx∗)2 < 0.

Proof. The Jacobian matrix J(x∗, y∗) at the coexistence steady state E∗(x∗, y∗) is given by:

J(x∗, y∗) =


j11 j12

j21 j22

,

where

j11 = −βx∗(1 + k2y∗) +
α2hx∗y∗

(1 + αhx∗)2 ,

j12 = −x∗
[

bk1

(1 + k1y∗)2 + βk2x∗ +
α

(1 + αhx)

]
(< 0),

j21 =
γαy∗

(1 + αhx∗)2 (> 0),

j22 = 0.

Therefore, all the eigenvalues of J(x∗, y∗) will have negative real parts if j11 < 0. Thus,

E∗(x∗, y∗) is LAS if j11 = −βx∗(1 + k2y∗) + α2hx∗y∗

(1+αhx∗)2 < 0.

4.3. Global Stability Analysis

Theorem 6. The trivial steady state E0(0, 0) is globally asymptotically stable (GAS) if b < d1.

Proof. Consider a Lyapunov function:

V(x, y) = x(t) +
y(t)

γ
.

Then,

dV
dt

=
dx
dt

+
1
γ

dy
dt

=
bx

1 + k1y
− d1x− β(1 + k2y)x2 − d2y

γ

≤ bx− d1x− βx2 − d2y
γ

,
[
∵

b
1 + k1y

≤ b
]

= −(d1 − b)x− βx2 − d2y
γ

.

Thus, dV
dt < 0 if b < d1 and dV

dt = 0 at E0(0, 0). Therefore, using Lyapunov theorem, we can
conclude that the steady state E0(0, 0) is GAS if b < d1.

Theorem 7. The axial steady state E1

(
b−d1

β , 0
)

is GAS if d2 > γ
h .
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Proof. From the first equation of system (3),

dx
dt

=
bx

1 + k1y
− d1x− β(1 + k2y)x2 − αxy

1 + αhx

≤ bx
1 + k1y

− d1x− β(1 + k2y)x2

≤ bx− d1x− βx2,
[
∵

b
1 + k1y

≤ b
]

= (b− d1)x

1− x
b−d1

β


∴ lim sup

t→∞
x(t) ≤ b− d1

β
.

Now, second equation of (3) gives:

dy
dt

=
γαxy

1 + αhx
− d2y

≤ −
(

d2 −
γ

h

)
y

∴ lim
t→∞

y(t) = 0 if d2 >
γ

h
.

Additionally, x(t)→ b−d1
β as y(t)→ 0.

Theorem 8. The steady state E∗(x∗, y∗) of system (3) is GAS if 0 < γ− hd2 ≤ hb and 2hβd2 −
(αhb− β)(γ− hd2) ≥ 0.

Proof. Let

Φ1(x, y) =
bx

1 + k1y
− d1x− β(1 + k2y)x2 − αxy

1 + αhx

Φ2(x, y) =
γαxy

1 + αhx
− d2y.

Let us take Dulac function as:

χ(x, y) = x−1ym(1 + k1y)(1 + αhx),

where m is to be specified later. Let us now calculate the divergence of the vector :

D(x, y) =
∂

∂x

{
χ(x, y)Φ1(x, y)

}
+

∂

∂y

{
χ(x, y)Φ2(x, y)

}
≤ x−1ym{ f1(x, m)k1y + f2(x, m)},

where

f1(x, m) = −2αhβx2 + {α(m + 2)(γ− hd2)− β}x− d2(m + 2),

f2(x, m) = −2αhβx2 + {α(m + 1)(γ− hd2)− β + αhb}x− d2(m + 1).

Now,

f2(x, m)− f1(x, m) = [−α(γ− hd2) + αhb]x + d2 > 0 for x ∈ [0, ∞)
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if 0 < γ− hd2 ≤ hb. Therefore, D(x, y) < 0, (x, y) ∈ R2
+ if

f2(x, m) ≤ 0 for x ∈ [0, ∞). (6)

Therefore, it is sufficient to find a m so that condition (6) is satisfied. However, condition (6)
holds if

g(m + 1) = : [α(m + 1)(γ− hd2)− β + αhb]2 − 8αhβd2(m + 1) ≤ 0. (7)

For convenience, let m + 1 = m̃. Then, (7) becomes:

g(m̃) = [αm̃(γ− hd2)− β + αhb]2 − 8αhβd2m̃ < 0,

⇒ g(m̃) = α2(γ− hd2)
2m̃2 + 2[(αhb− β)(γ− hd2)− 4hβd2]αm̃ + (αhb− β)2 < 0. (8)

The existence of a m̃ satisfying (8) means:

g
(
−α(αhb− β)(γ− hd2)− 4αhβd2

α2(γ− hd2)2

)
≤ 0,

which is equivalent to

[α(αhb− β)(γ− hd2)− 4αhβd2]
2 − α2(γ− hd2)

2(αhb− β)2 ≥ 0,

i.e., 2hβd2 − (αhb− β)(γ− hd2) ≥ 0.

Thus, there exists m such that D < 0 for (x, y) ∈ R2
+. By the Bendixson–Dulac

theorem, system (3) has no closed orbits in the first quadrant, provided 0 < γ− hd2 ≤ hb
and 2hβd2 − (αhb− β)(γ− hd2) ≥ 0. Hence, E∗ is globally asymptotically stable.

5. Uniform Persistence

Theorem 9. System (3) is uniformly persistent if b > d1 and
γα
(

b−d1
β

)
1+αh

(
b−d1

β

) > d2.

Proof. Let us consider the following average Lyapunov function:

$(x, y) = x$1 y$2 , (x, y) ∈ R2
+ (9)

where $i > 0, for i = 1, 2. Here, $(x, y) is a continuously differentiable non-negative
function defined on R2

+. Differentiating Equation (9) with respect to t, we have:

$̇

$
= $1

ẋ
x
+ $2

ẏ
y

⇒ Λ = $1

{
b

1 + k1y
− d1 − β(1 + k2y)x− αy

1 + αhx

}
+ $2

{
γαx

1 + αhx
− d2

}

where Λ = $̇
$ . By computing Λ at E0(0, 0) and E1

(
b−d1

β , 0
)

, we get:

Λ(0, 0) = $1(b− d1)− $2d2,

Λ
(

b− d1

β
, 0
)
= $2

 γα
(

b−d1
β

)
1 + αh

(
b−d1

β

) − d2

.
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We choose $1 and $2 in such a way that Λ(0, 0) > 0 provided b > d1. Again, Λ
(

b−d1
β , 0

)
>

0, if
γα
(

b−d1
β

)
1+αh

(
b−d1

β

) > d2. Therefore, system (3) is uniformly persistent [41] if b > d1 and

γα
(

b−d1
β

)
1+αh

(
b−d1

β

) > d2.

Remark 3. Persistency implies instability of the boundary equilibria.

6. Local Bifurcations
6.1. Transcritical Bifurcations

In bifurcation theory, a transcritical bifurcation is a particular kind of local bifurcation
in which a stationary point exchanges its stability with another stationary point due to
continuous incrementation of the bifurcation parameter.

Theorem 10. System (3) experiences a transcritical bifurcation around the trivial steady state
E0(0, 0) with bifurcating parameter d1 at d[tc]1 = b.

Proof. Let d1 = d[tc]1 be the critical value of d1 for which exactly one eigenvalue of J(0, 0) is

zero. Thus, d[tc]1 = b. Now, the eigenvectors of J(0, 0) and [J(0, 0)]T for the zero eigenvalue
are U = (u1, u2)

T = (1, 0)T and W = (w1, w2)
T = (1, 0)T , respectively. Let us calculate

∆1 = WT .Gd1

(
0, 0; d[tc]1

)
= (1, 0).

 ∂G1
∂d1
∂G2
∂d1


E0

= (1, 0).

(
−x

0

)
E0

= 0,

where G = (G1, G2)
T ; G1 = bx

1+k1y − d1x− β(1 + k2y)x2 − αxy
1+αhx , G2 = γαxy

1+αhx − d2y.

∆2 = WT .
[

DGd1

(
0, 0; d[tc]1

)
U
]

= (1, 0).

 ∂2G1
∂x∂d1

∂2G1
∂y∂d1

∂2G2
∂x∂d1

∂2G2
∂y∂d1


E0

.

(
1

0

)

= −1 6= 0.

∆3 = WT .
[

D2G
(

E0; d[tc]1

)
(U, U)

]
= (1, 0).D

 ∂G1
∂x u1 +

∂G1
∂y u2

∂G2
∂x u1 +

∂G2
∂y u2


E0

.

(
u1

u2

)
= −2β < 0.

Therefore, by Sotomayor’s theorem, a transcritical bifurcation occurs around E0 at d[tc]1 =
b.



Mathematics 2022, 10, 3795 12 of 38

Theorem 11. System (3) exhibits a transcritical bifurcation around the axial equilibrium point

E1

(
b−d1

β , 0
)

with a bifurcating parameter d2 at d[tc]2 =
γα
(

b−d1
β

)
1+αh

(
b−d1

β

) .

Proof. Let d2 = d[tc]2 be the critical value of d2 for which J
(

b−d1
β , 0

)
has exactly one zero

eigenvalue at d2 = d[tc]2 . Thus, d[tc]2 =
γα
(

b−d1
β

)
1+αh

(
b−d1

β

) . Now, the eigenvectors of J
(

b−d1
β , 0

)
and

[
J
(

b−d1
β , 0

)]T
for the zero eigenvalue are U = (u1, u2)

T and W = (0, 1)T , respectively.

Here, u2 = 1 and u1 =
− bk1(b−d1)

β − k2(b−d1)
2

β − α(b−d1)
β+αh(b−d1)

b−d1
. Let us calculate ∆1, ∆2, ∆3:

∆1 = WT .Gd2

(
0, 0; d[tc]2

)
= (0, 1).

 ∂G1
∂d2
∂G2
∂d2


E1

= (0, 1).

(
0

−y

)
E1

= 0,

where G = (G1, G2)
T ; G1 = bx

1+k1y − d1x− β(1 + k2y)x2 − αxy
1+αhx , G2 = γαxy

1+αhx − d2y.

∆2 = WT .
[

DGd2

(
0, 0; d[tc]2

)
U
]

= (0, 1).

 ∂2G1
∂x∂d2

∂2G1
∂y∂d2

∂2G2
∂x∂d2

∂2G2
∂y∂d2


E1

.

(
u1

u2

)

= −1 6= 0.

∆3 = WT .
[

D2G
(

E0; d[tc]2

)
(U, U)

]
= (0, 1).D

 ∂G1
∂x u1 +

∂G1
∂y u2

∂G2
∂x u1 +

∂G2
∂y u2


E1

.

(
u1

u2

)

=
2γα(

1 + αh
(

b−d1
β

))u1 < 0,

∵ u1 =
− bk1(b−d1)

β − k2(b−d1)
2

β − α(b−d1)
β+αh(b−d1)

b− d1
< 0

.

Therefore, by Sotomayor’s theorem, a transcritical bifurcation is exhibited around E1 by
taking d2 as the bifurcating parameter.

Theorem 12. System (3) exhibits a transcritical bifurcation around the axial equilibrium point
E1

(
b−d1

β , 0
)

with bifurcating parameter γ at γ[tc] = d2

(
1 + β

α(b−d1)

)
.

Proof. The proof is similar to the proof of Theorem 11.

6.2. Hopf Bifurcation

A Hopf bifurcation takes place whenever a periodic solution or limit cycle surrounding
an equilibrium point appears or disappears as a parameter’s value changes. We shall show
that the proposed model exhibits a Hopf bifurcation as we change the value of k1. Now,
the characteristic equation at the steady state E∗(x∗, y∗) is

λ2 − Tλ + D = 0, (10)
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where T = trace of J(x∗, y∗) = −βx∗(1 + k2y∗) + α2hx∗y∗

(1+αhx∗)2 and D = determinant of

J(x∗, y∗) = γαx∗y∗

(1+αhx∗)2

[
bk1

(1+k1y∗)2 + βk2x∗ + α
(1+αhx)

]
.

We know that in the case of complex conjugate roots of Equation (10), the equilibrium
point E∗(x∗, y∗) is a stable spiral if the real part of the roots of Equation (10) are negative
and an unstable spiral for the positive real part. Therefore, a stability switch takes place
when Equation (10) contains purely imaginary roots.

Theorem 13. System (3) exhibits a Hopf bifurcation around the coexistence equilibrium point
E∗(x∗, y∗) when the bifurcation parameter k1 crosses a threshold value k[H]

1 , provided T(k[H]
1 ) = 0,

D(k[H]
1 ) > 0 and

[
dT
dk1

]
k1=k[H]

1

6= 0.

Proof. Suppose k1 = k[H]
1 is the critical value of k1 at which Equation (10) gives purely

imaginary roots, so T(k[H]
1 ) = 0 and D(k[H]

1 ) > 0. Therefore, in an open neighborhood

of k[H]
1 , the zeros of Equation (10) take the following form: λ1 = p(k1) + iq(k1) and

λ2 = p(k1) − iq(k1), where p(k1) and q(k1) are real valued functions of k1. By putting
λ(k1) = p(k1) + iq(k1) in Equation (10) and differentiating with respect to k1, we have

2(p(k1) + iq(k1))( ṗ(k1) + iq̇(k1))− Ṫ(k1)(p(k1) + iq(k1))− T(k1)( ṗ(k1) + iq̇(k1))

+Ḋ(k1) = 0.

By separating the real and imaginary parts, we get

X1 ṗ(k1)− X2q̇(k1) + X3 = 0 (11)

X2 ṗ(k1) + X1q̇(k1) + X4 = 0, (12)

where

X1 = 2p(k1)− T(k1)

X2 = 2q(k1)

X3 = −p(k1)Ṫ(k1) + Ḋ(k1)

X4 = −Ṫ(k1)q(k1).

By solving Equations (11) and (12) for ṗ(k1), we get:

ṗ(k1) = −
X1X3 + X2X4

X2
1 + X2

2
. (13)

Now, for k1 = k[H]
1 , we consider the following cases:

Case-1

p = 0, q =
√

D. Therefore, X1 = 0, X2 = 2
√

D, X3 = Ḋ, X4 = −Ṫ
√

D. Hence,
from Equation (13), we have

[ ṗ]
k1=k[H]

1
=

[
dp(k1)

dk1

]
k1=k[H]

1

=
1
2

[
dT
dk1

]
k1=k[H]

1

.
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Case-2

p = 0, q = −
√

D. Therefore, X1 = 0, X2 = −2
√

D, X3 = Ḋ, X4 = Ṫ
√

D. Hence,
from Equation (13), we have:

[ ṗ]
k1=k[H]

1
=

[
dp(k1)

dk1

]
k1=k[H]

1

=
1
2

[
dT
dk1

]
k1=k[H]

1

.

According to the Hopf bifurcation theorem [3], system (3) switches its stability behavior
through Hopf bifurcation, provided[

d
dk1

(Reλ(k1))

]
k1=k[H]

1

=

[
dp(k1)

dk1

]
k1=k[H]

1

6= 0

is satisfied.
Thus, for the existence of Hopf bifurcation at k1 = k[H]

1 , we must have[
dT
dk1

]
k1=k[H]

1

6= 0.

This completes the proof.

Theorem 14. System (3) exhibits a Hopf bifurcation around the coexistence equilibrium point
E∗(x∗, y∗) when the bifurcation parameter k2 crosses a threshold value k[H]

2 , provided T(k[H]
2 ) = 0,

D(k[H]
2 ) > 0 and

[
dT
dk2

]
k2=k[H]

2

6= 0.

Proof. The proof is similar to the proof of Theorem 13.

7. Delayed Dynamical System

A time delay is present in many biological processes, both natural and artificial.
Exploring the time lags renders the mathematical model more authentic than the non-
delayed model. A delay differential equation also explains significantly better intricate
dynamics compared to a simple differential equation.

The predator’s fear diminishes the birth rate of prey biomass, resulting from a combi-
nation of psychological changes, foraging behavioral changes and other factors. The cost of
fear cannot be instantaneous because prey requires time to assess the predation risk. As a
result, we cannot employ the cost of fear diminishing the prey’s birth rate right away. A
certain time delay, τ1 (say), is needed to perform the complete process. Again, in reality,
the conversion of consumed prey into predator reproduction does not occur instantly;
instead, there is a time delay for predator biomass gestation. Thus, we assume that a
constant time delay called gestation delay (τ2) that governs the reproduction of predator
population following prey hunting. To acquire the rich dynamics of (3), we introduce both
these delays τ1 and τ2 in system (3). Therefore, after incorporating delays, the modified
form of system (3) is:

dx
dt = bx(t−τ1)

1+k1y(t−τ1)
− d1x− β(1 + k2y)x2 − αxy

1+αhx ,
dy
dt = γαx(t−τ2)y(t−τ2)

1+αhx(t−τ2)
− d2y,

(14)

Let C denote the Banach space of continuous functions ψ : [−ξ, 0] −→ R2
+ equipped with

supremum norm

‖ψ‖ = sup
−ξ≤s≤0

{
| ψ1(s) |, | ψ2(s) |

}
x(s) = ψ1(s), y(s) = ψ2(s), ψi(s) > 0, s ∈ [−ξ, 0], ψi(0) > 0, i = 1, 2.

(15)
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with ξ = max {τ1, τ2}.
By linearizing system (14) about E∗(x∗, y∗), we have:

dX
dt

= AX(t) + BX(t− τ1) + CX(t− τ2)

where A, B, C are 2× 2 matrices given by

A =

[
a11 a12

0 a22

]
, B =

[
b11 b12

0 0

]
, C =

[
0 0

c21 c22

]
,

where
a11 = −d1 − 2βx∗(1 + k2y∗)− αy∗

(1+αhx∗)2 , a12 = −βk2x∗2 − αx∗
1+αhx∗ , a22 = −d2, b11 =

b
1+k1y∗ , b12 = −k1bx∗

(1+k1y∗)2 , c21 = γαy∗

(1+αhx∗)2 , c22 = γαx∗
1+αhx∗ .

The characteristic equation of the delay system is

λ2 + A1λ + A2 + (B1λ + B2)e−λτ1 + (C1λ + C2)e−λτ2 + D1e−λ(τ1+τ2) = 0 (16)

where

A1 = −(a11 + a22), A2 = a11a22, B1 = −b11, B2 = a22b11, C1 = −c22,

C2 = a11c22 − a12c21, D1 = b11c22 − b12c21.

As Equation (16) is transcendental, it would have an infinite number of complex roots.
To study the local stability behavior of E∗, we should investigate the signs of real parts of
the zeros of Equation (16), which is hard in the presence of both time delays. As a result,
we first examine Equation (16) in the absence of delay, then in the presence of a single time
delay. After that, the local asymptotic stability behavior conditions of equilibrium E∗ will
be derived using the same analytic arguments mentioned in [42,43], in the presence of both
the time delays.

Case I

τ1 = τ2 = 0.
In absence of both the time delays, system (14) is reduced to system (3). We have

already described the condition of the stability of E∗ in Theorem 5 in absence of τ1 and τ2.

Case II

τ1 > 0, τ2 = 0.
Therefore, the characteristic equation, Equation (16), becomes

λ2 + M1λ + M2 + (N1λ + N2)e−λτ1 = 0, (17)

where M1 = A1 + C1, M2 = A2 + C2, N1 = B1, N2 = B2 + D1.
For τ1 = 0, Theorem 5 gives the criteria for which all the zeros of Equation (17) are

negative or have negative real parts, whereas for τ1 > 0, it has an infinite number of roots.
According to Rouche’s theorem and continuity in τ1, the signs of the roots of Equation (17)
will change if they cross the imaginary axis. Thus, by putting λ = iω (ω > 0) in (17) and
separating the real and imaginary parts, we get

N2 cos ωτ1 + N1ω sin ωτ1 = ω2 −M2 (18)

N1ω cos ωτ1 − N2 sin ωτ1 = −M1ω. (19)

By squaring and adding Equations (18) and (19), we get

ω4 + (M2
1 − N2

1 − 2M2)ω
2 + M2

2 − N2
2 = 0. (20)
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By substituting ω2 = σ, we get the following equation in σ:

Ω(σ) = σ2 + (M2
1 − N2

1 − 2M2)σ + M2
2 − N2

2 = 0. (21)

If there is no positive real root in Equation (21), real ω does not exist. Thus, for any τ1 > 0,
E∗ is locally asymptotically stable. If Equation (21) has a positive real root, say σ∗ such that
ω10 = ±

√
σ∗. Thus, λ = ±ω10 are two purely imaginary roots of (17).

From (18) and (19), we get the values of τ1 as:

τ
j
1 =

1
ω10

cos−1

(
(N2 −M1N1)ω10

2 − N2M2

N2
2 + N2

1 ω10
2

)
+

2jπ
ω10

, (22)

for j = 0, 1, 2, . . . . Thus, if Theorem 5 holds, system (14) will be LAS around the interior
equilibrium E∗ for τ1 = τ2 = 0. Therefore, by Butler’s lemma, E∗ is stable for τ1 < τ0

1 ,

where τ0
1 = min

j
τ

j
1, and E∗ is unstable for τ1 ≥ τ0

1 , provided the transversality condition is

satisfied. We now verify the transversality condition
[

dRe(λ)
dτ1

]
τ1=τ0

1

6= 0. By differentiating

Equation (17) with respect to τ1, we get:

dλ

dτ1
=

λ(N1λ + N2)e−λτ1

2λ + M1 + N1e−λτ1 − τ1(N1λ + N2)e−λτ1
.

This gives (
dλ

dτ1

)−1
=

2λ + M1 + N1e−λτ1

λ(N1λ + N2)e−λτ1
− τ1

λ
.

Now,

sgn
[

dRe(λ)
dτ1

]
τ1=τ0

1

= sgn
[

dRe(λ)
dτ1

]−1

τ1=τ0
1

= sgn

[
Re
(

dλ

dτ1

)−1
]

λ=iω10

= sgn

[
2ω10

2 + (M2
1 − N2

1 − 2M2)

N2
1 ω10

2 + N2
2

]

= sgn

[
Ω
′
(ω10

2)

N2
1 ω10

2 + N2
2

]
.

Therefore, the transversality condition is satisfied, and so Hopf bifurcation occurs at τ1 = τ0
1

if Ω
′
(ω10

2) 6= 0. The following theorem can now be stated.

Theorem 15. Suppose that equilibrium E∗ exists and is LAS for τ1 = τ2 = 0. Additionally, let
σ∗ = ω10

2 be a positive root of Equation (21). Then, ∃ τ1 = τ0
1 such that equilibrium E∗ of system

(14) is LAS when 0 < τ1 < τ0
1 and unstable for τ1 > τ0

1 , where

τ
j
1 =

1
ω10

cos−1

(
(N2 −M1N1)ω10

2 − N2M2

N2
2 + N2

1 ω10
2

)
+

2jπ
ω10

,

for j = 0, 1, 2, . . . . Furthermore, system (14) will exhibit a Hopf bifurcation around E∗ when
τ1 = τ0

1 provided Ω
′
(ω10

2) 6= 0.

Case III

τ1 = 0, τ2 > 0.
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Here, we consider the case when breeding delay (τ1) is absent but gestation delay (τ2)
is present. Therefore, the characteristic equation, Equation (16), becomes

λ2 + a1λ + a2 + (b1λ + b2)e−λτ2 = 0, (23)

where a1 = A1 + B1, a2 = A2 + B2, b1 = C1 and b2 = C2 + D1. We can state the following
theorem by relying on the same analysis as in Case II.

Theorem 16. Suppose that equilibrium E∗ exists and is LAS for τ1 = τ2 = 0. Additionally, let
(A2 + B2)

2 < (C2 + D1)
2 when τ1 = 0. Then, ∃ τ2 = τ0

2 such that equilibrium E∗ of system (14)
is LAS when 0 < τ2 < τ0

2 and unstable for τ2 > τ0
2 , where

τ
j
2 =

1
ω20

cos−1

(
(b2 − a1b1)ω20

2 − b2a2

b2
2 + b2

1ω202

)
+

2jπ
ω20

,

for j = 0, 1, 2, . . . . Furthermore, system (14) will exhibit a Hopf bifurcation around E∗ when
τ2 = τ0

2 , provided
[

dRe(λ)
dτ2

]
τ2=τ0

2

6= 0.

Case IV

τ2 ∈ (0, τ0
2 ), τ1 > 0.

Assume τ2 as a fixed number in the interval (0, τ0
2 ) and τ1 > 0. Let λ = u + iv be the

root of the characteristic equation, Equation (16). By putting this value into Equation (16),
we have

u2 + 2uvi− v2 + A1u + A1vi + A2 + {(B1u + B2) + B1vi}(cos vτ1 − i sin vτ1)e−uτ1+

{(C1u + C2) + iC1v}(cos vτ2 − i sin vτ2)e−uτ2 + D1[cos (τ1 + τ2)v− i sin (τ1 + τ2)v]
e−(τ1+τ2)u = 0;

(24)

comparing real and imaginary parts,

u2 − v2 + A1u + A2 + {(B1u + B2) cos vτ1 + B1v sin vτ1)}e−uτ1 + {(C1u + C2)

cos vτ2 + C1v sin vτ2}e−uτ2 + D1e−(τ1+τ2)u cos (v(τ1 + τ2)) = 0
(25)

and
2uv + A1v + [B1v cos vτ1 − (B1u + B2) sin vτ1]e−uτ1 + {C1v cos vτ2
−(C1u + C2) sin vτ2}e−uτ2 − D1e−(τ1+τ2)u sin (v(τ1 + τ2)) = 0.

(26)

The root of the characteristic equation, Equation (16), must be purely imaginary for equi-
librium E∗ to change in stability. Therefore, by putting u = 0 in Equations (25) and (26),
we get

(B2 + D1 cos vτ2) cos vτ1 + (B1v− D1 sin vτ2) sin vτ1 − v2 + A2 + C2 cos vτ2
+C1v sin vτ2 = 0,

(27)

(B1v− D1 sin vτ2) cos vτ1 − (B2 + D1 cos vτ2) sin vτ1 + A1v + C1v cos vτ2
−C2 sin vτ2 = 0.

(28)

By squaring and adding Equations (27) and (28), we have

v4 + δ1v3 + δ2v2 + δ3v + δ4 = 0, (29)

δ1 = −2C1 sin vτ2

δ2 = A2
1 + C2

1 − B2
1 − 2A2 + 2(A1C1 − C2) cos vτ2

δ3 = 2(A2C1 − A1C2 + B1D1) sin vτ2

δ4 = A2
2 − B2

2 + C2
2 − D2

1 + 2(A2C2 − B2D1) cos vτ2.
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If δ4 < 0, Equation (29) has a positive root, say, v = ω∗10. Consequently, Equation (16)
has a pair of imaginary roots λ = ±ω∗10 for some fixed τ2 ∈ (0, τ0

2 ). Therefore, by solving
Equations (27) and (28) for τ1 at v = ω∗10, we get:

τ∗1
j =

1
ω∗10

cos−1

[
(η1ω∗10

2 − η2) + (η3ω∗10
2 − η4) cos (ω∗10τ2) + η5ω∗10 sin (ω∗10τ2)

B2
2 + D2

1 + B2
1ω∗10

2 + 2B2D1 cos (ω∗10τ2)− 2B1D1ω∗10 sin (ω∗10τ2)

]
+

2π j
ω∗10

(30)

for j = 0, 1, 2, . . . , where η1 = (B2 + A1B1), η2 = (D1C2 + A2B2), η3 = (D1 − C1B1),
η4 = (A2D1 + B2C2) and η5 = (A1D1 + B1C2 − B2C1).

Now, if equilibrium E∗ is LAS in absence of both the time delays, then by Butler’s
lemma, it will remain stable for 0 < τ1 < τ∗1

0, such that τ∗1
0 = min

j≥0
τ∗1

j and system (14)

undergoes Hopf bifurcation (around E∗) at τ∗1
0, provided the transversality condition,[

dRe(λ)
dτ1

]
τ1=τ∗1

0 6= 0, is satisfied.

By differentiating Equations (25) and (26) with respect to τ1, we get:

P1

[
dRe(λ)

dτ1

]
τ1=τ∗1

0
+ P2

[
dIm(λ)

dτ1

]
τ1=τ∗1

0
= R1 (31)

− P2

[
dRe(λ)

dτ1

]
τ1=τ∗1

0
+ P1

[
dIm(λ)

dτ1

]
τ1=τ∗1

0
= R2 (32)

where

P1 = A1 + (B1 − τ∗1
0B2) cos (ω∗10τ∗1

0)− τ∗1
0B1ω∗10 sin (ω∗10τ∗1

0) + (C1 − C2τ2) cos (ω∗10τ2)

−C1ω∗10τ2 sin (ω∗10τ2)− D1(τ
∗
1

0 + τ2) cos (ω∗10(τ
∗
1

0 + τ2)),

P2 = −2ω∗10 + (B1 − τ∗1
0B2) sin (ω∗10τ∗1

0) + τ∗1
0B1ω∗10 cos (ω∗10τ∗1

0) + (C1 − τ2C2)

sin (ω∗10τ2) + C1ω∗10τ2 cos (ω∗10τ2)− D1(τ
∗
1

0 + τ2) sin ω∗10(τ
∗
1

0 + τ2),

R1 = −B2ω∗10 sin (ω∗10τ∗1
0) + B1ω∗10

2 cos (ω∗10τ∗1
0)− D1ω∗10 sin (ω∗10(τ

∗
1

0 + τ2)),

R2 = −B1ω∗10
2 sin (ω∗10τ∗1

0)− B2ω∗10 cos (ω∗10τ∗1
0)− D1ω∗10 cos (ω∗10(τ

∗
1

0 + τ2)).

By solving Equations (31) and (32), we get:[
dRe(λ)

dτ1

]
τ1=τ∗1

0
=

P1R1 − P2R2

P2
1 + P2

2
. (33)

Therefore, Hopf bifurcation (around E∗) occurs at τ∗1
0 if P1R1 − P2R2 6= 0.

Theorem 17. If equilibrium E∗ exists and is LAS in absence of both the time delays, then for
τ2 ∈ (0, τ0

2 ) if δ4 < 0, there exists τ1 = τ∗1
0 such that equilibrium E∗ is LAS when 0 < τ1 < τ∗1

0

and unstable when τ1 > τ∗1
0, where

τ∗1
j =

1
ω∗10

cos−1

[
(η1ω∗10

2 − η2) + (η3ω∗10
2 − η4) cos (ω∗10τ2) + η5ω∗10 sin (ω∗10τ2)

B2
2 + D2

1 + B2
1ω∗10

2 + 2B2D1 cos (ω∗10τ2)− 2B1D1ω∗10 sin (ω∗10τ2)

]
+

2π j
ω∗10

for j = 0, 1, 2, . . . . Further, system (14) will exhibit a Hopf bifurcation around E∗ for τ1 = τ∗1
0,

provided P1R1 − P2R2 6= 0.

Case V

τ1 ∈ (0, τ0
1 ), τ2 > 0.

We can state the following theorem relying on the same analysis as in Case IV.

Theorem 18. If equilibrium E∗ exists and is LAS in absence of both the time delays, then for
τ1 ∈ (0, τ0

1 ) if δ̄4 < 0, there exists τ2 = τ∗2
0 such that equilibrium E∗ is LAS when 0 < τ2 < τ∗2

0

and unstable when τ2 > τ∗2
0, where



Mathematics 2022, 10, 3795 19 of 38

τ∗2
j =

1
ω∗20

cos−1

[
(η̄1ω∗20

2 − η̄2) + (η̄3ω∗20
2 − η̄4) cos (ω∗20τ2) + η̄5ω∗20 sin (ω∗20τ2)

C2
2 + D2

1 + C2
1ω∗20

2 + 2C2D1 cos (ω∗20τ2)− 2C1D1ω∗20 sin (ω∗20τ2)

]
+

2π j
ω∗20

for j = 0, 1, 2, . . . . Further, system (14) will exhibit a Hopf bifurcation around equilibrium E∗ for
τ2 = τ∗2

0, provided P̄1R̄1 − P̄2R̄2 6= 0 where

η̄1 = (C2 + A1C1), η̄2 = (D1B2 + A2C2), η̄3 = (D1 − B1C1),

η̄4 = (A2D1 + B2C2), η̄5 = (A1D1 − B1C2 + B2C1),

P̄1 = A1 + (C1 − τ∗2
0C2) cos (ω∗20τ∗2

0)− τ∗2
0C1ω∗20 sin (ω∗20τ∗2

0) + (B1 − B2τ1) cos (ω∗20τ1)

−B1ω∗20τ1 sin (ω∗20τ1)− D1(τ
∗
2

0 + τ1) cos (ω∗20(τ
∗
2

0 + τ1)),

P̄2 = −2ω∗20 + (C1 − τ∗2
0C2) sin (ω∗20τ∗2

0) + τ∗2
0C1ω∗20 cos (ω∗20τ∗2

0) + (B1 − τ1B2)

sin (ω∗20τ1) + B1ω∗20τ1 cos (ω∗20τ1)− D1(τ
∗
2

0 + τ1) sin ω∗20(τ
∗
2

0 + τ1),

R̄1 = −C2ω∗20 sin (ω∗20τ∗2
0) + C1ω∗20

2 cos (ω∗20τ∗2
0)− D1ω∗20 sin (ω∗20(τ

∗
2

0 + τ1)),

R̄2 = −C1ω∗20
2 sin (ω∗20τ∗2

0)− C2ω∗20 cos (ω∗20τ∗2
0)− D1ω∗20 cos (ω∗20(τ

∗
2

0 + τ1)),

δ̄4 = A2
2 + B2

2 − C2
2 − D2

1 + 2(A2B2 − C2D1) cos vτ1.

8. Numerical Analysis

In this section, we show numerical simulations to reveal the dynamical behavior of the
proposed system (3). First, we have selected the parameter set: {b = 5.5, d1 = 5.6, d2 = 0.2,
k1 = 2, k2 = 1, β = 0.2, α = 1.2, h = 1 and γ = 0.8}. Here, we see that the death rate, d1, of
prey is greater than the birth rate, b, of the prey; therefore, as time goes by, the prey species
will become extinct, and in the absence of prey, predator species will also become extinct.
We have depicted the corresponding time series in Figure 2. Then, we have decreased the
parameter d1 from 5.6, while leaving all other parameters to be the same as in Figure 2, and
we can see that at d[TC2]

1 = 5.5, i.e., when d1 = b, one eigenvalue is zero, and the stability of
trivial equilibrium point, E0(0, 0), exchanges with that of the axial equilibrium point, E1,
i.e., transcritical bifurcation occurs. If we further decrease d1, at d[TC1]

1 = 5.444, the axial
equilibrium point exchanges its stability with that of the positive interior equilibrium point
E∗, and finally at d[H0]

1 = 2.952, system (3) undergoes stable Hopf bifurcation around the
positive interior equilibrium point (see Figure 3).

0 5 10 15 20 25 30 35 40

Time t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
o
p
u
la

ti
o
n

x

y

Figure 2. Stability nature of E0(0, 0) under the parametric set: {b = 5.5, d1 = 5.6, d2 = 0.2, k1 = 2,
k2 = 1, β = 0.2, α = 1.2, h = 1, γ = 0.8}.
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Figure 3. Bifurcation diagram regarding parameter d1, and all other parameters are the same as in
Figure 2.

To study the stability nature of the predator-free (axial) equilibrium point, we took
the parameter set: {b = 5.5, d1 = 0.1, d2 = 0.95, k1 = 2, k2 = 1, β = 0.2, α = 1.2,

h = 1 and γ = 0.8}. Here, b > d1 and the stability condition
γα
(

b−d1
β

)
1+αh

(
b−d1

β

) < d2 is satisfied.

Therefore, E1

(
b−d1

β , 0
)
≡ E1(27, 0) is stable. We have drawn the corresponding time series

in Figure 4. In the next stage, taking all other parameters to be the same as in Figure 4, we
have decreased the value of b and noticed that at b[TC] = 0.1, E1 exchanges its stability with
that of E0 (see Figure 5a). We have seen a similar type of behavior when we increase the
parameter value of d1 from zero onward up to d[TC]

1 = 5.5; the stability of E1 exchanges
with that of E0 (see Figure 5b). In the case of parameter h, the stability of E1 exchanges with
that of the equilibrium point E∗ at h[TC] = 0.8112 (see Figure 6), as we diminish h, while
taking all other parameter values to be the same as in Figure 4. However, the death rate d2
of the predator and the conversion rate γ of the predator have effective impacts on system
(3), as the existence of a positive interior equilibrium condition 0 < d2 < γ

h , C < 0, depends
on γ and d2. For both the parameters, d2 and γ, we have found transcritical and Hopf
bifurcation as we varied any one of the parameters at a time, while taking other parameter
values to be the same as in Figure 4 (see Figure 7).

To study the stability nature of E∗(x∗, y∗), we chose the parametric set: {b = 10,
d1 = 1.5, d2 = 0.5, k1 = 0.5, k2 = 0.01, β = 0.6, α = 2.5, h = 1.2 and γ = 0.7}, which
satisfies the existence and stability criteria of the coexistence steady state E∗. We depict
the corresponding time series and phase portrait in Figure 8. From here, it is stated that
the coexistence steady state E∗(x∗, y∗) ≡ E∗(2, 3.169) is LAS. We check the population
sizes of both the prey and predator numerically by varying the fear parameter k1 and
taking other parameters to be the same as in Figure 8 and find that model (3) exhibits a
Hopf bifurcation (around E∗) at k[H1]

1 = 0.337 (see Figure 9). Both the prey and predator
populations move from a stable nature to an oscillatory nature as the fear level k1 increases.
This outcome is biologically significant, since the prey species is alert and shows signs of
habituation after a certain fear threshold. Numerical simulation of the proposed system
indicates that the parameter β has the property of taking system (3) from being unstable to
stable by destroying Hopf bifurcation around the coexistence steady state and creating a
transcritical bifurcation for a comparatively large value of it. We increase the value of β
from zero while all other parameters’ values remain same as in Figure 8 (see Figure 10).
However, α has the opposite nature in the sense that it makes system (3) go from stable
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to unstable by creating a Hopf bifurcation around E∗ as we increase it from α[TC] = 0.353
(see Figure 11). Figure 12 illustrates the growth of the predator population with respect to
k2 when the other parameters are same as those in Figure 8. This choice of parameter set
suggests that the predator population will decline with the rising value of k2. Figure 13
shows that as parameter b increases, the coexistence equilibrium becomes unstable through
a Hopf bifurcation, and predator–prey oscillation ensues. We know this phenomenon as
the "paradox of enrichment". The parameter b (birth rate of prey) may be visualized as
the enrichment parameter, since after simplification of Model (3), we get the expression
for carrying capacity as b−d1

β ; therefore, it is appropriate to consider b as the enrichment
parameter while keeping other parametric values unchanged.
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Figure 4. Stability nature of the predator-free steady state, E1

(
b−d1

β , 0
)

, under the parametric set:

{b = 5.5, d1 = 0.1, d2 = 0.95, k1 = 2, k2 = 1, β = 0.2, α = 1.2, h = 1, γ = 0.8}.
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Figure 5. Bifurcation diagram regarding parameters (a) b and (b) d1. All other parameters are the
same as in Figure 4.
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Figure 6. Bifurcation diagram regarding parameter h, and all other parameters are the same as in
Figure 4.
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Figure 7. Bifurcation diagrams regarding parameters (a) d2 and (b) γ. All other parameters are the
same as in Figure 4.
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Figure 8. Stability nature of the coexistence steady state E∗(x∗, y∗) ≡ E∗(2, 3.169) under the para-
metric set: {b = 10, d1 = 1.5, d2 = 0.5, k1 = 0.5, k2 = 0.01, β = 0.6, α = 2.5, h = 1.2, γ = 0.7}.
(a) Time series; (b) Phase portrait.
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Figure 9. Bifurcation diagram regarding parameter k1, the other parameters are the same as those in
Figure 8. (a) Prey population; (b) Predator population.
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Figure 10. Bifurcation diagram regarding parameter β when the other parameters are the same as
those in Figure 8. (a) Prey population; (b) Predator population.
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Figure 11. Bifurcation diagram regarding parameter α when the other parameters are the same as
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Figure 12. Nature of the growth of predator population with respect to k2 when the remaining
parameters are the same as those in Figure 8.
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Figure 13. Bifurcation diagram of prey population regarding parameter b when the other parameters
are the same as those in Figure 8. (a) k1 = 0, k2 = 0; (b) k1 = 0.5, k2 = 0; (c) k1 = 0.5, k2 = 0.01.

Considering a parametric set as {b = 5.5, d1 = 0.1, d2 = 0.2, k1 = 2, β = 0.2, α = 1.2
h = 3.4 and γ = 0.8}, the bifurcation diagram with respect to k2 is depicted in Figure 14.
The figure shows that for a high level of fear (k2), the environmental carrying capacity of
prey changes the system’s oscillatory behavior to be stable around coexistence equilibrium
E∗. Figure 15 represents two parametric bifurcation diagrams in the (k2 − k1) plane, where
the solid red line indicates the Hopf curve. In the region above the Hopf-curve, one
coexistence steady state (E∗) exists and it is locally asymptotically stable and E∗ loses
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its stability through a super-critical Hopf bifurcation when the parametric value passes
the Hopf-curve.

(a) (b)

Figure 14. Bifurcation diagram regarding parameter k2 when taking the parameter set: {b = 5.5, d1 =

0.1, d2 = 0.2, k1 = 2, β = 0.2, α = 1.2 h = 3.4 γ = 0.8}. (a) Prey population; (b) Predator population.

Figure 15. Two parametric bifurcation diagrams in the (k2 − k1) parametric plane with all other
parameters the same as in Figure 14.

8.1. Effects of Time Delays on Predator–Prey Population

In this section, we discuss numerically the analytical findings of the delayed system,
(14). Here, we take the parameter set as: {b = 8.7, d1 = 1.5, d2 = 0.5, k1 = 1.5, k2 = 0.1,
β = 0.2, α = 2, h = 1, γ = 0.6} and it is seen that when τ1 = 0 and τ2 = 0, all the stability
conditions (as mention in Theorem 5) of coexistence equilibrium points are satisfied; i.e., the
coexistence equilibrium point E∗(x∗, y∗) ≡ E∗(2.5, 1.564) is stable (see Figure 16).

For the delay (Case II), when τ2 = 0 and τ1 > 0, we have analytically found that
delayed system, (14), exhibits a Hopf bifurcation at some critical value of τ1 = τ0

1 = 2.125.
After choosing the same parameter set as in Figure 16, we have drawn the corresponding
Hopf bifurcation diagram (see Figure 17). For Figure 18, we have taken τ1 = 1.5 < τ0

1 ,
and we can see that the delayed system, (14), is stable, whereas in Figure 19, we can
observe the oscillatory nature of delayed system (14) around E∗(x∗, y∗) ≡ E∗(2.5, 1.564) for
τ1 = 2.5 > τ0

1 . Therefore, the delay parameter τ1 can make system (14) go from stable to
unstable as we increase the value of τ1 from zero onward while taking τ2 = 0.

For Case III: when τ1 = 0 and τ2 > 0, we found that delayed system (14) undergoes a
Hopf bifurcation for some critical value of τ2 = τ0

2 = 0.813, as depicted in Figure 20. Again,
we took τ2 = 0.5 < τ0

2 = 0.813 and τ2 = 2.1 > τ0
2 = 0.813 to draw the time series. We can
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observe the stability and oscillatory nature of system (14), as depicted in Figure 21 and
Figure 22, respectively.

Figure 23 is the Hopf bifurcation diagram with the delay parameter τ1 when
τ2 = 0.2 ∈ (0, τ0

2 = 0.813) and Hopf bifurcation occurs at τ∗1
0 = 1.51. Additionally,

we have drawn the time series of the delayed system, (14), with τ1 = 1.2 < τ∗1
0 (see

Figure 24), τ1 = 2 > τ∗1
0 (see Figure 25) and fixed τ2 = 0.2.

It can be observed in Figures 24 and 25 that when 0 < τ2 < τ2
0, the system is stable

for τ1 < τ∗1
0 and unstable otherwise. However, numerically it can be noticed that when

τ2 ≥ τ2
0, for any positive value of τ1, the system is always unstable and forms a limit cycle

around the coexistence state E∗(2.5, 1.564) (see Figure 26). As a consequence, system (14)
does not exhibit any switching behavior for any τ2 ≥ τ2

0, regardless of the value of τ1.
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Figure 16. Stability nature of the coexistence equilibrium point E∗(x∗, y∗) ≡ E∗(2.5, 1.564) when
τ1 = τ2 = 0 and b = 8.7, d1 = 1.5, d2 = 0.5, k1 = 1.5, k2 = 0.1, β = 0.2, α = 2, h = 1 and γ = 0.6.
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Figure 17. Bifurcation diagram regarding delay parameter τ1 when τ2 = 0 and all other parameter
values are the same as in Figure 16.
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Figure 18. Stability nature of E∗(x∗, y∗) ≡ E∗(2.5, 1.564) when τ1 = 1.5 < τ0
1 = 2.125 when τ2 = 0

and all other parameter values are the same as in Figure 16.
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Figure 19. Oscillatory nature of E∗(x∗, y∗) ≡ E∗(2.5, 1.564) when τ1 = 2.5 > τ0
1 = 2.125, when τ2 = 0

and all other parameter values are the same as in Figure 16.

Figure 20. Bifurcation diagram regarding delay parameter τ2 when τ1 = 0 and all other parameter
values are the same as in Figure 16.



Mathematics 2022, 10, 3795 28 of 38

0 200 400 600 800 1000

Time (days)

1

2.8

4.6

6.4

P
re

y
(x

)

0 200 400 600 800 1000

Time (days)

0.9

1.1

1.3

1.5

1.7

P
re

d
a

to
r(

y
)

Figure 21. Stability nature of E∗(x∗, y∗) ≡ E∗(2.5, 1.564) when τ1 = 0, τ2 = 0.5 < τ0
2 = 0.813 and all

other parameter values are the same as in Figure 16.
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Figure 22. Oscillatory nature of the delayed system, (14), around E∗(x∗, y∗) ≡ E∗(2.5, 1.564) when
τ1 = 0, τ2 = 2.1 > τ0

2 = 0.813 and all other parameter values are the same as in Figure 16.
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Figure 23. Bifurcation diagram regarding delay parameter τ1 when τ2 = 0.2 ∈ (0, τ0
2 ) = (0, 0.813)

and all other parameter values are the same as in Figure 16.
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Figure 24. Stability nature of E∗(x∗, y∗) ≡ E∗(2.5, 1.564) when τ2 = 0.2 ∈ (0, τ0
2 ) = (0, 0.813),

τ1 = 1.2 < τ∗1
0 = 1.51 and all other parameter values are the same as in Figure 16.
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Figure 25. Oscillatory nature of the delayed system, (14), around E∗(x∗, y∗) ≡ E∗(2.5, 1.564) when
τ2 = 0.2 ∈ (0, τ0

2 ) = (0, 0.813), τ1 = 2 > τ∗1
0 = 1.51 and all other parameter values are the same as in

Figure 16.
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(b) Phase Portrait
Figure 26. (a) Oscillatory nature with time t and (b) limit cycle around E∗(2.5, 1.564) when τ2 ≥ τ2

0

and τ1 > 0. All parameters are the same as in Figure 16.

Finally, in Case V: for τ1 = 1 ∈ (0, τ0
1 ) = (0, 2.125) and τ2 > 0, we have drawn the

bifurcation diagram with τ2. It can be observed that system (14) exhibits a Hopf bifurcation
at some critical point τ∗2

0 = 0.456 (see Figure 27). We have drawn the time series for system
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(14) with τ2 = 0.25 < τ∗2
0 = 0.456 (see Figure 28) and τ2 = 1 > τ∗2

0 = 0.466 (see Figure 29),
which is consistent with the bifurcation diagram in Figure 27.
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Figure 27. Bifurcation diagram regarding delay parameter τ2 when τ1 = 1 and all other parameter
values are the same as in Figure 16.
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Figure 28. Stability nature of E∗(x∗, y∗) ≡ E∗(2.5, 1.564) when τ1 = 1 ∈ (0, τ0
1 ) = (0, 2.125),

τ2 = 0.25 < τ∗2
0 = 0.456 and all other parameter values are the same as in Figure 16.
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Figure 29. Oscillatory nature of the delayed system, (14), around E∗(x∗, y∗) ≡ E∗(2.5, 1.564) when
τ1 = 1 ∈ (0, τ0

1 ) = (0, 2.125), τ2 = 0.5 > τ∗2
0 = 0.456 and all other parameter values are the same as

in Figure 16.
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Figures 28 and 29 illustrate that the system is stable for τ2 < τ∗2
0 provided 0 < τ1 < τ1

0,
and unstable otherwise. However, it is evident from numerical simulations that an unstable
limit cycle is generated when τ1 ≥ τ1

0 for any positive value of τ2 (see Figure 30). This leads
to the conclusion that system (14) has no switching behavior for any τ1 ≥ τ1

0, irrespective
of the values of τ2.
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Figure 30. (a) Oscillatory nature with time t and (b) limit cycle around E∗(2.5, 1.564) when τ1 ≥ τ1

0

and τ2 > 0. All parameters are same as in Figure 16.

8.2. Study of System (3) with Environmental Stochasticity

Environmental fluctuations are not incorporated in deterministic models. However,
these are only ecologically beneficial if the dynamical patterns revealed are still in evidence
when stochastic influences are incorporated. Environmental stochasticity is generally
considered to cause uncertain population birth and mortality rates. Temperature, humidity,
parasites and pathogens, environmental pollution, food quality and other factors influence
reproduction, growth and death. As these phenomena are difficult to predict, it is preferable
to use a stochastic approach instead of a deterministic one. Assume that the environmental
fluctuations will manifest themselves primarily as fluctuations in the natural mortality rate
of each species, since these are the main parameters subject to coupling of a prey–predator
pair with its environment. This parameters are perturbed by Gaussian white noise, which
is one of the most useful forms of noise for modeling rapidly fluctuating phenomena.

Therefore, we perturbed the parameters d1 and d2 with Gaussian white noises γ1
and γ2 in system (3), where γ1 and γ2 are independent Gaussian white noises with the
following characteristics:

〈γi(t)〉 = 0 and 〈γi(t1)γi(t2)〉 = µ2
i δi(t1 − t2) for i = 1, 2.

Here, µi > 0 is the intensity or strength of γi, and the Dirac delta function δ is defined
as follows: {

δ(x) = 0, for x 6= 0,∫ ∞
−∞ δ(x)dx = 1

where 〈·〉 is the ensemble average of the stochastic process under consideration. Thus,
system (3) was modified as follows:

dx
dt

=
bx

1 + k1y
− (d1 + γ1(t))x− β(1 + k2y)x2 − αxy

1 + αhx
,

dy
dt

=
γαxy

1 + αhx
− (d2 + γ2(t))y,

i.e., dx
dt = bx

1+k1y − d1x− β(1 + k2y)x2 − αxy
1+αhx − µ1x dw1

dt ,
dy
dt = γαxy

1+αhx − d2y− µ2y dw2
dt .

(34)

We took γ1 = µ1
dw1
dt and γ2 = µ2

dw2
dt , where w = {w1(t), w2(t) | t ≥ 0} denotes standard

Brownian motion in two-dimension. It was assumed that di + γi(t) is positive and bounded
for i = 1, 2.
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Thus, from (34), we have the following stochastic system:

dx =
[

bx
1+k1y − d1x− β(1 + k2y)x2 − αxy

1+αhx

]
dt− µ1xdw1,

dy =
[

γαxy
1+αhx − d2y

]
dt− µ2ydw2.

(35)

We already defined the parameters in Section 2. The Euler Maruyama method was used in
MATLAB to determine the dynamical behavior of system (35).

In Figures 31 and 32, the impacts of environmental fluctuation on the species are
depicted for the parameter set in Figure 8. It is noticeable that, following some initial
transients, prey and predator oscillate around the deterministic steady-state values 2 and
3.169, respectively. Figures 31 and 32 indicate that prey and predator species will never go
extinct with this parameter set. Hence, system (35) will persist. We have further depicted
the stationary distributions of prey and predator populations at t = 300 in Figure 33.

Figure 31. Prey population’s stochastic trajectory. Here, the prey population fluctuates around the
deterministic equilibrium value 2. Parameters µ1 = µ2 = 0.001 and all other parameter values are
the same as in Figure 8.

Figure 32. Predator population’s stochastic trajectory. Here, the predator population fluctuates
around the deterministic equilibrium value 3.169. Parameters µ1 = µ2 = 0.001 and all other
parameter values are the same as in Figure 8.
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By choosing the same parameter values as in Figure 2, we have drawn the stochastic
trajectories of prey and predator populations in Figure 34, while taking the intensities
of the fluctuations µ1 = µ2 = 0.01. Since, for this parameter set, the death rate of the
prey population, d1 = 5.6, is greater than the birth rate, b = 5.5, after certain time, the
prey population goes extinct. Consequently, in the absence of food (prey), the predator
population also goes extinct (see Figure 34).

In Figure 35, we depict the stochastic trajectories of both populations with the parame-
ter set of Figure 4. As the death rate, d2 = 0.95, is greater than the birth rate, the predator
population cannot persist in the ecosystem, yet the prey species survive properly without
predation.

Figure 33. Histograms of prey and predator populations corresponding to system (34).

Figure 34. Extinction of both species when µ1 = µ2 = 0.01 and all other parameter values are the
same as in Figure 2.
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Figure 35. Extinction of the predators when µ1 = µ2 = 0.01 and all other parameter values are the
same as in Figure 4.

9. Discussion and Conclusions

One of the key themes in ecology and evolutionary biology is the study of the dy-
namics of predator–prey interactions, in which the predator consumes the prey population
directly. Current field observations of the fear effect in predator–prey dynamics have
highlighted the necessity of improving existing systems that do not consider the fear effect.
Over the last few years, researchers have been introducing an anti-predation mechanism
in mathematical model formulations to take into account the effect of fear, which results
in a cost in reproduction. By studying these models, they were able to acquire some con-
clusions on the impact of such an anti-predation reaction [13,18,26,44,45]. Wang et al. [18]
first developed a mathematical model that included the fear effect, and they investigated
the model using two different functional responses: (i) Holling type I (linear) and (ii)
Holling type II (rectangular hyperbola). In this study, we have conducted an analysis
of a Holling type-II functional response mediated by the prey’s anti-predation reaction.
The functions f (ki, y) = 1

1+kiy
, where i = 1, 2, are incorporated into the model to account

for prey’s anti-predation response with positive parameters ki, where i = 1, 2, measuring
the level of fear. Clearly, f (ki, y) is decreasing with increasing ki, i = 1, 2 and y, respectively.
The analytical results reveal how the cost of fear of prey’s anti-predation reaction affects the
population dynamics. We also include two different types of delays: the breeding delay of
the prey species influenced by fear and the gestation delay of the predator. The dynamical
characteristics, feasibility conditions and stability (local and global) criteria for each steady
state of the proposed system have been demonstrated. Some numerical simulations are
explored to confirm analytical results showing how fear and biomass transfer delay will
affect the population dynamics. Fear effects can affect our formulated system in a variety
of ways, as indicated by our analytical and numerical results, which can be stated in the
following manner:

1. The predator’s death rate, d2, and conversion rate, γ, each has an effective impact on
the proposed model because the feasibility criteria 0 < d2 < γ

h and C < 0 of the coex-
istence equilibrium depend on γ and d2 as mentioned in Equation (5). Consequently,
as we vary d2 and γ individually, both transcritical and Hopf bifurcation can be found

(see Figure 7a,b). Theorem 11 states that at some threshold value d[tc]2 =
γα
(

b−d1
β

)
1+αh

(
b−d1

β

) ,

the system experiences transcritical bifurcation. The predator-free equilibrium point
exchanges its stability with an interior equilibrium point at this threshold value,
d[tc]2 . The effect of the death rate of the predators, d2, has been numerically studied,
as shown in Figure 7a. Whenever the value of death rate d2 exceeds its threshold
value, d[tc]2 , the predator-free equilibrium point is stable; that is, a higher mortality
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rate of predators leads to the extinction of the species. However, if it is less than the
critical point d[tc]2 , the coexistence equilibrium point is stable up to some threshold

value of d[H]
2 . The prey and predator populations oscillate periodically if d2 diminishes

further. Again, Theorem 12 states that at γ[tc] = d2

(
1 + β

α(b−d1)

)
, the system exhibits

transcritical bifurcation. As the value of γ crosses this critical value, the predator-free
equilibrium point dies out, and the coexistence steady state becomes stable up to
some threshold value, as shown in Figure 7b. The populations of prey and predator
oscillate periodically if γ increases further.

2. Theorem 13 states that system (3) exhibits Hopf bifurcation around coexistence state
at some critical value of fear level k1. A numerical simulation depicted that as
the fear level, k1, rises, prey and predator populations exhibit a more stable na-
ture (see Figure 9). Additionally, for fear level k2, incorporated into carrying ca-
pacity of prey species, it can be observed that a higher value of k2 can stabilize
the proposed model by excluding the existence of periodic solutions, which is also
analytically shown in Theorem 14. These studies demonstrate that the prey pop-
ulation does not stop reproduction due to fear. These types of results have also
been obtained in the prey–predator models studied by Mondal et al. (2018) [44],
Mondal and Samanta (2021) [13] and Wang et al. (2016) [18]. These findings are sig-
nificant from a biological perspective due to the fact that the prey species is cautious
and shows signs of habituation when a specific threshold of fear has been reached.
That is, once the prey population reaches a certain level, the fear no longer has an
effect, since the prey are now aware of the predator and exhibit signs of habituation.

3. At E∗(x∗, y∗), x∗ is independent of the parameters k1 and k2. However, y∗ depends

on both parameters. Moreover, dy∗
dk1

< 0, so at an interior steady state, successive
incrementation of fear level (k1) can decrease the prosperity of the predator population
(see Figure 9b). Again, dy∗

dk2
< 0; therefore, at E∗(x∗, y∗), the growth of the predator

species also decreases because of continuous incrementation of k2 (see Figure 12). Such
phenomena are ecologically significant because the prey’s anti-predation behavior
continuously improves as a result of the ongoing improvement in the cost of predation
fear (ki, i = 1, 2). Therefore, the predator population cannot get enough prey for
their survival.

4. Numerical simulations show that a Hopf-bifurcation is exhibited around E∗(x∗, y∗) if
we increase the birth rate (b) of the prey species. From our study, it can be observed
that coexistence equilibrium E∗ of system (3) is stable when b[TC] < b < b[H] and is
unstable with oscillatory nature when b > b[H] (Figure 13). Thus, the proposed model
supports oscillation with a higher birth rate of prey population. That is, the “paradox
of enrichment” is visible in the proposed system (3) with parameter b (birth rate of
prey population) as the enrichment parameter because when we simplify the system
(3), we determine carrying capacity as b−d1

β ; thus, use of b as the enrichment parameter
while keeping other parametric values as constants is appropriate. Figure 13 expresses
this phenomenon in various circumstances.

5. Among the analytical findings of delayed system (14), it can be observed that there
are critical values of delay parameters τ1 and τ2 in all four cases, such that model (14)
experiences Hopf bifurcation under some conditions, as stated in Theorems 15–18.
Numerical simulations of the delayed system also support this with analytical out-
comes. It has been shown that in all the delay cases, as the value of the delayed
parameter increases gradually, there is some threshold value such that the model
exhibits periodic solution through supercritical Hopf bifurcation around an interior
equilibrium point, which has already been discussed in Section 8.1.

6. Finally, the proposed model (3) is compared numerically to a stochastic system (35)
incorporating Gaussian white noise terms in the death rates of prey and predator
species because of environmental fluctuations.
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(a) It can be noticed that, following some initial transients, the biomass values of
prey and predator populations for stochastic model (35) oscillate around the
deterministic equilibrium values of 2 and 3.169, respectively (see Figures 31
and 32). Additionally, these two figures (Figures 31 and 32) depict that for both
systems (35) (stochastic system) and (3) (deterministic model), neither predator
nor prey goes extinct.

(b) In both systems, (3) and (35), if we consider b < d1, i.e., if the birth rate (b)
of the prey species is less than the death rate (d1), the prey population is not
able to survive in ecosystem, and the predator population eventually becomes
extinct due to a shortage of food (see Figures 2 and 34).

(c) For both models, (3) and (35), if the death rate of the predator d2 is greater than
its birth rate, then the predator species will move towards extinction, but the
prey species could persist in the ecosystem (see Figures 4 and 35).

The proposed model has been constructed under certain limitations, such as (i) prey
being the only food source for predators, such that the predators cannot sustain themselves
without it and will eventually go extinct. In spite of this, when there is a lack of prey,
predators will always search for other sources of sustenance in real life. It is plausible
that the alternative food source will not be as nutritious or will not appeal to predator as
much. Therefore, providing the predator with an extra source of food would represent
a step toward a more realistic scenario. Das and Samanta [45] formulated and analysed
a stochastic system that includes additional food sources for the predator species and
introduced Gaussian white noise to the death rates of prey and predator. As a result, one
could upgrade the considered system (3), by incorporating additional food supplies for the
predator. (ii) In the context of an ecological environment, carryover effects will occur in any
scenario in which a person’s previous experiences and history may explain how they are
now performing in a particular situation. Here, in the considered system (3), carry-over
effects due to fear are not included. Mondal and Samanta [46] investigated the dynamics
of predator–prey interplay and the impact of fear (felt by prey) of the predator and its
carry-over effects. (iii) Model (3) neglects to take into consideration the advantageous
effects of the anti-predation response. Wang and Zou [26] explored the dynamical behavior
of a predator–prey system incorporating the cost of fear through adaptive avoidance of
predators. Incorporating these facts (additional food sources for the predator, carry-over
effects, the benefit of the anti-predation response, adaptive avoidance of predators, etc.)
into our model (3) will make it much more realistic. Furthermore, through the use of
diffusion-driven instability, it would be possible to develop a plausible mathematical model
that could be used to investigate the impact of spatial diffusion on pattern formation.
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