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Abstract: The non-degenerate Chenciner bifurcation of a discrete dynamical system is studied
using a transformation of parameters which must be regular at the origin of the parameters (the
condition CH.1 of the well-known treatise of Kuznetsov). The article studies a complementary
case, where the transformation is no longer regular at the origin, representing a degeneration. Four
different bifurcation diagrams appear in that degenerated case, compared to only two in the non-
degenerated one. Degeneracy may cause volatility in economics systems modeled by discrete
Chenciner dynamical systems.
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1. Introduction

Continuous and discrete-time dynamical systems can be used for modeling many
applications in the surrounding world [1–3]. Discrete dynamical systems may appear in
“practical applications when a phenomenon cannot be observed continuously in time” [4],
but in certain moments of time [5]. Additionally, they can be obtained from dynamic
systems with continuous time by discretizing time, that is, if we only take certain values
for time [6] or as return maps that are return applications defined by the intersections of
the system flows with certain “surfaces transversal to the flows” [4].

From a computational point of view, the use of dynamical systems with discrete time
is more efficient in modeling because it can capture complex behaviors that cannot be easily
captured otherwise [7–9]. Among the most “important topics in the qualitative theory” [10]
of continuous and discrete dynamic systems is the analysis of bifurcations (see [11]).

One of the topics of interest in discrete dynamical systems is represented by the
Chenciner bifurcation. Using the notations of the fundamental book of Kuznetsov, [12],
page 405, a discrete Chenciner bifurcation happens when r(0) = 1, Re(b1(0)) = 0 and
L2(0) 6= 0.

A parametric transformation (α1, α2)→ (β1, β2) is needed in the regular case where
the functions

β1(α) =
p

∑
i+j=1

aijα
i
1α

j
2 + O(|αp+1|)

β2(α) =
q

∑
i+j=1

bijα
i
1α

j
2 + O(|αq+1|), p, q ≥ 1,

a10 =
∂β1

∂α1
|α=0; a01 =

∂β1

∂α2
|α=0; b10 =

∂β2

∂α1
|α=0; b01 =

∂β2

∂α2
|α=0 (1)

and so on, see [12], page 405. That transformation must be regular at the origin in order to
have a non-degenerated Chenciner bifurcation.
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The non-degenerate Chenciner bifurcation was firstly studied in the papers [6,13,14].
More recently this bifurcation appears in many papers from different areas of research,
in “biology, physics, economy, informatics” [15] as well as multidisciplinary and applied
sciences [12,16–30]. For example, in [31], the Chenciner bifurcation was observed when a
potential mechanism from bifurcation analyses was used for studying the occurrence of
modulated oscillations in synchronous machine nonlinear dynamics, being reported for
the first time in power engineering for this bifurcation. Other authors have analyzed the
normal forms to provide the parameter conditions for the Chenciner bifurcation [32] or the
conditions to obtain a Chenciner bifurcation in macroeconomics [33].

Rational expectations are the foundation of modern finance. However, in principle,
the efficient market hypothesis cannot help accurately predict future prices. There is ample
empirical evidence that developments in financial time series, in the form of “stylized facts”,
cannot be explained by fundamentals alone, and markets appear to have specific internal
dynamics. Among the so-called “stylized facts” is volatility clustering. It appears that if
changes in asset prices are unpredictable, the magnitude of those changes is predictable;
Thus, “large changes tend to be followed by large changes” [19] (either increasing or
decreasing), while“ small changes tend to be followed by small changes” [19]. That is why
it is found that asset price fluctuations present “episodes of high volatility” [19] (with large
price changes), which alternate irregularly with “episodes of low volatility” [19] (with small
price changes).

In economics, in a series of empirical studies, the used model is useful only for a
statistical description of the data [34]. However, these models cannot explain the clustering
of volatility that is recorded in many financial time series. Typically, such models assume
that volatility clustering is generated by factors external to the analyzed system.

Some structural explanations of volatility clustering are provided by “multi-agent systems”
[19], where financial markets have been approached as “complex evolutionary systems” [19].
In such systems, two large categories of traders have been identified: fundamentalists (who
state that prices are oriented toward the value of their fundamental rational expectations,
generated by future dividends) and technical analysts (who, starting from the past prices,
and based on some established models, try to project them in the future). Such systems
show an irregular transition between low volatility situations (during which prices tend
toward the fundamental price and then the market is dominated by fundamentalists)
and high volatility situations (during which “prices move away from the fundamental
price” [19] and then the market is dominated by technical analysts) [19]. In these conditions,
the grouping of volatility can have endogenous explanations, that is, it could be caused and
even amplified by the process of the heterogeneity of trading, but also by the interaction
between agents, as well as by the phenomenon of adaptive learning.

The evolutionary model proposed by A. Gaunersdorfer, C.H. Hommes and F.O.O.
Wagener presents the “coexistence of a stable state and a stable limit cycle” [19]. When such
a system is subject to dynamic noise, there is an irregular switching between fundamental
equilibrium fluctuations close to rational expectations (in which “the market is dominated
by fundamentalists) and large-amplitude price fluctuations” [19] (in which the market is
dominated by technical analysts). “The coexistence of a stable equilibrium state and a
stable limit cycle ” [19] is explained mathematically by means of the discrete Chenciner
bifurcation. This is not caused by a particular specification of the model, but “is a generic
feature for nonlinear systems with two or more parameters” [19].

The discrete degenerated Chenciner bifurcation is produced when the above men-
tioned regularity of the β transformation is not fulfilled. That results in a much more
difficult scenario. A first type of such a degenerated Chenciner discrete dynamical was
solved in [4]. Two other types of possible degeneration were studied in [10,15]. Each of
those cases has a quite different method of solving. In the present article, we study another
case of a possible degeneration. So, why bother with such particular cases, each having
a specific kind of approach? An Edmund Hillary type of answer would be, “because
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they exist”, and also one may see the complexity of nature’s singularities reflected by
mathematics.

In [4], the bifurcation diagrams were discovered in a general case, where the functions
β1(α) and β2(α) both have linear terms different from zero that satisfy the degeneracy
condition a10b01− a01b10 = 0, or a10 = a01 = 0, see (1). In that case, 32 bifurcation diagrams
were obtained. A parallel approach to that of [4] is studied in [35] by using another regular
transformation of parameters, where the product a10a01b10b01 6= 0. In the article [15], the
functions β1(α) and β2(α) have a10 = 0; a01 = 0; b10 = 0; b01 = 0, obtaining four bifurcation
diagrams. Ref. [10] studied the case when a20 = a11 = a02 = 0 and b10 6= 0, b01 6= 0 or
a20 = a11 = a02 = 0 and b10 = 0, b01 = 0, obtaining 18 different bifurcation diagrams. The
stability of the fixed point O for |α| that is sufficiently small and, respectively, “the existence
of closed invariant curves in the” [4] truncated normal form in all the cases was treated
before [10,15,35].

A possible application of the degenerated Chenciner bifurcation was presented in [15],
but one could analyze in all previous mentioned Chenciner papers what happens when
degeneration occurs. For example, the volatility of the economics systems based on discrete
Chenciner bifurcation may be interpreted as a variant of input data implying the degenera-
tion of the bifurcation. One possible cause of that may be the presence of a noise, rendering
a sequence of different degenerated and non-degenerated variants of the initial system in
case the coefficients aij have small values.

The purpose of this article is to investigate the behavior of the dynamical system
when β1(α) or β2(α) has a zero linear part a10 = a01 = 0 or b10 = b01 = 0, see (1), and the
second function has at least a term of order one different from zero. This aspect has not
been analyzed before. As it is not possible to choose new coordinates β1, β2, the idea is to
use only the initial parameters (α1, α2). This leads to the modifications of the structure of
the sets of points B1,2 and C, thus obtaining concurrent lines at the origin, similar to the
situation analyzed in other articles [10,15], but different from the cases studied in [4,35].
We want to specify how many bifurcation diagrams are obtained, many or few. The first
case studied, when ∆1 > 0, is the most important and complex of the two and requires
different methods of approach (the second is when ∆1 < 0).

The starting hypothesis in this study is that in the case of a degeneracy, a larger
number of bifurcation diagrams is needed than in a non-degeneracy setting. The objective
of this article is to verify the mentioned hypothesis in a degeneracy case that does not
involve resonance.

The work is structured in six sections; after the Introduction (Section 1 and
Appendices A and B), Section 2 presents the analysis of degenerate Chenciner bifurca-
tion that “means the existence and stability of equilibrium points and invariant closed
curves” [4] for this form of degeneracy, known as non-transversality, i.e., the “transforma-
tion of parameters is not regular at (0, 0)” [35]. In Section 3, it is described the existence
of bifurcations curves and their dynamics in the parametric plane (α1, α2) in Theorem 1.
Section 4 shows the bifurcation diagrams for this type of degeneracy of Chenciner bifur-
cation when the smooth function β1(α) is of order two. These bifurcation diagrams are
different from the bifurcation diagrams from the non-degenerate framework. In Section 5,
several numerical simulations using Matlab check the theoretical results from the previous
section. Section 6 indicates the relevant discussions and conclusions of the paper.

2. Materials and Methods

Since Chenciner bifurcation happens for the discrete dynamical system, we consider

xn+1 = f (xn, α) (2)

where xn ∈ R2, n ∈ N, α = (α1, α2) ∈ R2 and f is a smooth function of class Cr with r ≥ 2.
In order to avoid indices, the Equation (2) is sometimes written in the form

x 7−→ f (x, α) (3)
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or x̃ = f (x, α).
A bifurcation as in (A4) which satisfies r(0) = 1 and Re(b1(0)) = 0 but L2(0) 6= 0 is

known as “the Chenciner bifurcation (or generalized Neimark–Sacker bifurcation)” [4]. It
follows from β1(0) = 0 that

L2(0) =
1
2

(
Im2(b1(0)) + 2Re(b2(0))

)
.

When the transformation of parameters

(α1, α2) 7−→ (β1(α), β2(α)) (4)

is regular at (0, 0), then the dynamics system of (A4) can be put in a simpler form. “This
is the non-degenerated Chenciner bifurcation” [15] as it is studied in [12]. However, “the
degenerate case when the change of parameters is not regular at (0, 0) is not any” [15]
longer considered there. The purpose of the present article is to study an aspect of the
degenerate Chenciner bifurcation. Since it is not possible to choose new coordinates β1, β2,
the idea is to work only using the initial parameters (α1, α2).

3. Bifurcation Curves

Analysis of degenerated Chenciner bifurcation is performed in Appendix B and [4]. Since
the smooth functions β1,2(α) can be written as β1(α) = a10α1 + a01α2 + ∑i+j≥2 aijα

i
1α

j
2 and

β2(α) = b10α1 + b01α2 +∑i+j≥2 bijα
i
1α

j
2, the transformation (4) is not regular at (0, 0) and, thus,

“the Chenciner bifurcation is degenerate” [4], if and only if ∂β1
∂α1

∂β2
∂α2
|α=0 − ∂β1

∂α2

∂β2
∂α1

∣∣∣
α=0

= 0, that is,

a10b01 − a01b10 = 0. (5)

Remark 1. In [4], we studied “the case when (5) is satisfied with non-zero terms” [15], that is
a10b01a01b10 6= 0. In this work, we assume “that the linear part of β1(α) nullifies, while β2(α) has
at least one linear term” [15]. Thus, “the degeneracy condition (5) remains valid while the functions
β1,2(α) become

β1(α) = aα2
2 + bα1α2 + cα2

1 +
p1

∑
i+j=3

aijα
i
1α

j
2 + O

(
|α|p1+1

)
(6)

and

β2(α) = pα1 + qα2 +
q1

∑
i+j=2

bijα
i
1α

j
2 + O

(
|α|q1+1

)
(7)

for some p1 ≥ 3 and q1 ≥ 2, where abcq 6= 0” [15]. We denote by a = a02, b = a11 and
c = a20, respectively, p = b10 and q = b01.

Denote also by B1,2 and C the following sets of points in R2

B1,2 =
{
(α1, α2) ∈ R2, β1,2(α) = 0, |α| < ε

}
(8)

and
C =

{
(α1, α2) ∈ R2, ∆(α) = 0, |α| < ε

}
(9)

for some ε > 0 that is sufficiently small. The expression ∆(α) = β2
2(α) − 4β1(α)L2(α)

becomes

∆(α) = hα2
2(1 + O(|α|)) + kα1α2(1 + O(|α|)) + lα2

1(1 + O(|α|)) (10)
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where h = q2 − 4aL0, k = 2pq− 4bL0 and l = p2 − 4cL0. Assume hkl 6= 0. When p = 0 and
h 6= 0, this condition is satisfied in general since bcL0 6= 0. Notice that

∆2 = k2 − 4hl = 16L2
0

(
b2 − 4ac

)
+ 16L0

(
ap2 − bpq + cq2

)
. (11)

In the following, we prove a theorem that was only stated in [15]. The structure of
the set of points B1,2 and C represents the main result in order to obtain the bifurcation
diagrams; see also Remark 2. Recalling that a = a02, b = a11, c = a20, p = b10, q = b01, h =
q2 − 4aL0, k = 2pq− 4bL0, l = p2 − 4cL0 and ∆1 = b2 − 4ac, ∆2 = k2 − 4hl, the following
theorem is stated:

Theorem 1. 1. The set B2 is a smooth curve of the form

α2 = d1α1 + d2α2
1 + O

(
α3

1

)
, (12)

d1 = − p
q , d2 = − 1

q
(
b02 + d2

1b20 + d1b11
)
, tangent to the line pα1 + qα2 = 0.

2. If ∆1 = b2 − 4ac > 0, the set B1 is a reunion of two smooth curves of the form

α2 = e1,2α1(1 + O(α1)), (13)

where e1 = −b−
√

∆1
2a and e2 = −b+

√
∆1

2a . If ∆1 < 0, then sign(β1(α)) = sign(a) for |α| < ε.
3. If ∆2 = k2 − 4hl > 0, the set C is a reunion of two smooth curves of the form

α2 = m1,2α1(1 + O(α1)), (14)

where m1 = −k−
√

∆2
2h and m2 = −k+

√
∆2

2h . If ∆2 < 0, then sign(β1(α)) = sign(h) for
|α| < ε.

Proof. 1. Consider the function β2 : V0 ⊂ R2 → R given by (7), where V0 =
{

α ∈ R2, |α| < ε
}

for ε > 0 sufficiently small. Then β2(0, 0) = 0 and ∂β2
∂α2

(0, 0) = q 6= 0. Thus, from the implicit
function theorem (IFT) applied to β2, there exists a unique curve α2 = α2(α1), which
satisfies β2(α1, α2(α1)) = 0 for |α1| that is small enough and can be written in the form (12).
Notice that d1 can be 0.

2. One further writes β1(α) in the form
β1(α) = aα2

2(1 + O(|α|)) + bα1α2(1 + O(|α|)) + cα2
1(1 + O(|α|)). Then β1(α) = 0

becomes

aα2
2 + bα1α2(1 + O(|α|)) + cα2

1(1 + O(|α|)) = 0. (15)

Solving for α2 in (15), one obtains α2 = e1,2α1(1 + O(|α|)), where ∆1 = b2 − 4ac and

e1,2 = −b±
√

∆1
2a , when ∆1 > 0. Denote further by

F(α1, α2) = α2 − e1,2α1(1 + O(|α|)),

where F : V0 ⊂ R2 → R. Since F(0, 0) = 0 and ∂F
∂α2

(0, 0) = 1 6= 0, the IFT yields the
conclusion. When ∆1 < 0, it does not exist α 6= 0 with |α| < ε such that β1(α) = 0.
Thus, β1(α) keeps a constant sign on V0, which is given, for example, by β1(α2, 0) =
aα2

2(1 + O(|α|)). This yields the conclusion. For 3, one proceeds similarly to 2.

Theorem 1 was only stated in [15], but the proof is also given here because it is used
in the present article. In this theorem, the structure of the sets of points B1,2 and C is
established, i.e., what kind of curves appear in the three situations from points 1,2 and 3;
Theorem 1 provides the necessary theoretical basis for drawing bifurcation diagrams.
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4. Bifurcation Diagrams

Assume β1,2(α) and ∆(α) have nonzero coefficients in their lowest terms, that is,
abcq 6= 0 and hkl 6= 0. Thus, “the three bifurcation curves are well-defined when |α| is
sufficiently small ” [4]. B2 is a unique curve, while each of B1 and “C is a reunion of two
curves” [15].

Remark 2. Figure A1 presents generic phase portraits “corresponding to different regions of the
bifurcation diagrams, including the phase portraits on the bifurcation curves defined by ∆(α) =
0,” [4] respectively, β1(α) = 0. We summarize in Table A1 the correspondence between ∆, β1,2, L0
and “the generic phase portraits, respectively, different regions from bifurcation diagrams. When
β1,2(α) = 0, then α = 0” [4].

The sign of a 2-nd degree polynomial of two real variables is discussed below.
Let us consider a polynomial

∆(α1, α2) = aα2
2 + bα1α2 + cα2

1, a, b, c ∈ R∗.

Considering its associated one-variable-polynomial δ(m) = am2 + bm + c, the signs
of ∆(α1, α2) and δ(m) are the same, for all the pairs (α1, α2), which are solutions of the
equation, α2 = mα1.

We use the convention that

m1 =

{
−b−

√
∆1

2a , if a > 0
−b+

√
∆1

2a , if a < 0

and the corresponding formula for m2.
The sign of ∆(α1, α2) is shown in Figure 1a for a > 0, and in Figure 1b for a < 0, where

(di) : α2 = miα1, for i = 1, 2.

    
  

                                                              

                                    

  

 

 

d2 

 

2 

1 

 

d1 
(a)

    
  

                                                              

                                    

  

 

 

d2 

 

2 

1 

 

d1 
(b)

Figure 1. The sign of ∆(α1, α2) when (a) a > 0; (b) a < 0.

4.1. Bifurcation Diagrams When the First Discriminant Is Strictly Positive

Bifurcation diagrams for ∆1 > 0 are given in this subsection.
Firstly, we suppose that ∆2 > 0, and we consider the polynomials of R∗[T] : β1(T) =

aT2 + bT + c, δ(T) = hT2 + kT + l, having the distinct real roots e1, e2, respectively,
m1, m2.

There will be considered the following cases of root ordering:

I : e1 < e2 < m1 < m2,
II : e1 < m1 < e2 < m2,
III : e1 < m1 < m2 < e2,
IV : m1 < e1 < e2 < m2,
V : m1 < e1 < m2 < e2.

There is only one more case, m1 < m2 < e1 < e2, which will not be taken into account,
since it is a rotated case of I.
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That ordering will be applied to the associated polynomials of β1(α1, α2), ∆(α1, α2),
that is β1(T), δ(T); see Section 4.

Theorem 2. The polynomials β1(T) and δ(T) have the following properties:

1. δ(e1) + δ(e2) > 0
2. β1(m1) · β1(m2) ≥ 0

Proof. 1. δ(e1) + δ(e2) = he2
1 + ke1 + l + he2

2 + ke2 + l by Viete relations
δ(e1) + δ(e2) = 1

a2 (b2h− 2ach− abk + 2a2l), and by using the relations (11), δ(e1) +

δ(e2) = 1
a2q2 [2a2( p

q )
2 − 2ab p

q + b2 − 2ac], which is positive since the polynomial P(T) =

2a2T2 − 2abT + b2 − 2ac > 0, (∀)T ∈ R.
Indeed, the reduced discriminant of P is ∆

′
= −a2∆1 < 0.

2. β1(m1) · β1(m2) = a2m2
1m2

2 + abm1m2(m1 + m2) + ac(m2
1 + m2

2) + b2m1m2 +

bc(m1 +m2) + c2 by using Viete relations β1(m1) · β1(m2) =
1
h2 (a2l2− abkl + ack2− 2achl +

b2hl − bchk + c2h2).
Using (11), one concludes that

β1(m1)β1(m2) =
1

h2q4

[
a2
(

p
q

)4
− 2ab

(
p
q

)3
+ (2ac + b2)

(
p
q

)2
− 2bc p

q + c2
]
=

= a2

q4h2

(
p
q −

b+
√

∆1
2a

)2
·
(

p
q −

b−
√

∆1
2a

)2
.

Corollary 1. The cases II and V do not fulfill condition (2) of Theorem 2, and therefore they are
eliminated.

Considering the possible sub-cases of I, III, and IV, depending on the signs of a, h, one remarks
that the numbers of sub-cases is halved by condition (1) of Theorem 2.

The left sub-cases are graphically represented in Figures 2–4.
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Figure 2. Graphical representation of ∆1,2. Case I (e1 < e2 < m1 < m2) when (a) a > 0, h > 0;
(b) a < 0, h > 0.

    
  

                                                              

                                    

  

 

 

T 

 

e1 

 

m2 

 

m1 

 

𝛿(e1) 

𝛽(m2) 

𝛿(e2) 

 

𝛽(m1) 

e2 

 

(a)

    
  

                                                              

                                    

  

 

 

𝜹(𝒆𝟏) 

e2 

 

T 

 

e1 

 

m1 

 

m2 

 

𝜹(𝒆𝟐) 

𝜷(𝒎𝟏) 

𝜷(𝒎𝟐) 

(b)

Figure 3. Graphical representation of ∆1,2. Case III ( e1 < m1 < m2 < e2): (a) a > 0, h > 0;
(b) a < 0, h > 0.
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Figure 4. Graphical representation of ∆1,2. Case IV ( m1 < e1 < e2 < m2): (a) a < 0, h < 0;
(b) a > 0, h < 0.

Theoretically, for any of the previous sub-cases, one must consider two possibilities,
depending on the sign of the L0. However, the following theorem assigns a determined
sign for any case.

Theorem 3. The sign of β(m1) + β(m2) equals that one of L0.

Proof. We calculate β(m1) + β(m2) = a(m2
1 + m2

2) + b(m1 + m2) + 2c =
= 1

h2 (ak2 − ahl − bhk + 2ch2).
By using the relation (11): β(m1) + β(m2) =

1
4hL0

(2h2 p2 − 2hlq2 − 2hkpq + k2q2).
Hence, the sign of β(m1) + β(m2) is that of the expression in T:
L0(2h2T2 − 2hkT + k2 − 2hl).
The reduced discriminant of the last parenthesis is ∆

′
= −4h2∆2 < 0. Therefore,

sign(β(m1) + β(m2)) = sign(L0).

Corollary 2. By the previous theorem, one may specify the sign of L0 in the following cases:

1. I a, III b, IV b have L0 > 0,
2. I b, III a, IV a have L0 < 0.

We may further reduce the sub-cases by the following theorems:

Theorem 4. Denoting M = ap2 − bpq + cq2, N = hp2 − kpq + lq2, it results that N =
−4L0M.

Proof. N = hp2 − kpq + lq2 equals, by (11), (q2 − 4aL0)p2 − (2pq − 4bL0)pq + (p2 −
4cL0)q2 = −4L0M.

Corollary 3. In cases I a, III b, and IV b, M and N have different signs, and for the rest of the
sub-cases, they have the same sign.

Theorem 5. The sum M + N has no definite sign.

Proof. M + N = (a + h)p2 − (b + k)pq + (c + l)q2, and by (11), M + N = (1− 4L0)(ap2 −
bpq + cq2). L0 is fixed, so 1− 4L0 has a fixed sign. The second parenthesis has no fixed sign
for all p, q ∈ R, since ∆1 > 0.

Corollary 4. If M, N have the same sign, then M + N has a definite sign for all p, q ∈ R. If
M, N do not have the same sign, then M + N do not have a definite sign for all p, q ∈ R. Hence,
by Theorem 5 and Corollary 3, we may eliminate the cases I b, III a, and IV a. The remaining cases
are I a, III b, and IV b.
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By Corollary 4, the cases for the graphical representation of the lines B1, B2, C are
as follows:

I a1 : a > 0, h > 0, L0 > 0, M < 0, N > 0.
I a2 : a > 0, h > 0, L0 > 0, M > 0, N < 0.

III b1: a < 0, h > 0, L0 > 0, M < 0, N > 0.
III b2: a < 0, h > 0, L0 > 0, M > 0, N < 0.
IV b1: a > 0, h < 0, L0 > 0, M > 0, N < 0.
IV b2: a > 0, h < o, L0 > 0, M < 0, N > 0.

The bifurcation diagrams of cases I a1, III b1, and IV b2 are the same, represented
in Figure 5a, and the bifurcation diagrams of cases I a2, III b2, and IV b1 are the same
represented in Figure 5b.

    
  

                                                              

                                    

  

 

 ② B1 

 

① 

C 

1 

 

① 

C 

 

⑧ 

① 

② 

①

Type equation here. 

② 

B1 

⑧ 

2 

 

⑥

⑥ 

② ⑥ 

(a)

    
  

                                                              

                                    

  

 

 

② 

⑧ 

B1 

 

① 

C 

 

1 

 

① 

C 

 

② ⑧ 

① 

② 

② 

2 

 

B1 

① 

⑥ 

⑥ 

(b)

Figure 5. Bifurcation diagrams when ∆1 > 0 and (a) when case I a1, III b1, or IV b2 holds; (b) when
case I a2, III b2 or IV b1 holds. The numbers represent the corresponding phase portraits.

Remark 3. The case ∆1 > 0, ∆2 < 0 is solved by Theorem 1, Section 3 since if ∆2 < 0, then
signβ1(α) = sign(h) for all |α| < ε. That is, the single straight line which remains is B1, and this
case is trivial.

4.2. Bifurcation Diagrams When the First Discriminant Is Strictly Negative

Bifurcation diagrams for ∆1 < 0 are given in this subsection.

Remark 4. If ∆1 < 0 and aL0 < 0 then ∆(α) > 0. We will show that the single bifurcation curve
is β2(α) = 0 in this case.

We observe that h = q2− 4aL0 and by aL0 < 0 we have that h > 0. Taking into account
Theorem 1, (3), we have that sign(β1(α)) = sign(a) and sign(∆(α)) = sign(h).

There are more two trivial bifurcation diagrams which are not taken into account due
to their triviality:

Remark 5. (a) If ∆1 < 0, a > 0 and L0 < 0 then the bifurcation diagrams contain only region
3.

(b) If ∆1 < 0, a < 0 and L0 > 0, then the bifurcation diagrams contain only region 1.

Proof of Remark 4. Using aL0 < 0 results in h = q2 − 4aL0 > 0. Taking into account that
∆1 < 0, we obtain ∆1h < 0. Because

∆3 = b2q2 − 4aL0∆1 − 4acq2 = q2(b2 − 4ac)− 4aL0∆1 = ∆1(q2 − 4aL0) = ∆1h

it follows that ∆3 < 0. However,

∆2 = k2 − 4hl = 16L2
0(b

2 − 4ac) + 16L0(ap2 − bpq + cq2) =

= 16L0[l0(b2 − 4ac) + ap2 − bpq + cq2] = 16L0[L0∆1 + ap2 − bpq + cq2] =
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= 16L0(ap2 − bpq + cq2 + L0∆1)

and by aL0 < 0, we have that ∆2 < 0.
Using Theorem 1, (3) and that ∆2 < 0, h > 0, we have sign(∆(α)) = sign(h) > 0.

Case 4.2.1 When ∆1 < 0, aL0 > 0 and h > 0.
We see that ∆3 = ∆1h < 0, and from aL0 > 0, it follows that ∆2 > 0. Thus, the

equation ∆(α) = 0 has two real distinct roots, m1,2 = −k±
√

∆2
2h . We notice that m1 < m2.

We consider the expression P = (m1 +
p
q )(m2 +

p
q ).

By calculus, we obtain P = 1
h

(
p2

q2 h− k p
q + l

)
. We replace further in the previous expression

h by q2− 4aL0, k by 2pq− 4bL0, and l by p2− 4cL0, and we have P = − 4L0
hq2

(
ap2 − pqb + cq2).

Now using that aL0 > 0, h > 0 and ∆1 < 0, we will find that P < 0. In this situation
we have only the following two systems:{

m1 +
p
q > 0

m2 +
p
q < 0

or

{
m1 +

p
q < 0

m2 +
p
q > 0 .

By solving these systems, we find only the solution m1 < − p
q < m2 because m1 < m2.

In the previous case, two sub-cases arise:

Remark 6. (a) If a > 0, L0 > 0 and − p
q ∈ (m1, m2), then the following bifurcation diagram

appears in Figure 6a:
(b) If a < 0, L0 < 0 and − p

q ∈ (m1, m2), then the following bifurcation diagram appears in
Figure 6b:

    
  

                                                              

                                    

  

 

 

② 

⑧ 

a>0,L0 >0,h>0 
m1<-p/q< m2 

B2 

 

② 

C 
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⑥ 

C 

② ② 

② 

② 

② 

② 

(a)

    
  

                                                              

                                    

  

 

 

⑦ 

④ 

a<0,L0 <0,h>0 
m1<-p/q< m2 

B2 

 

④ 

C 

2 

1 

 
④ ④ 

C 

④ ④ 

④ 

⑤ 

④ 

⑤ 

(b)

Figure 6. Bifurcation diagrams corresponding to the case: (a) a > 0, L0 > 0, − p
q ∈ (m1, m2);

(b) a < 0, L0 < 0, − p
q ∈ (m1, m2).

Case 4.2.2 If ∆1 < 0, aL0 > 0, and h < 0, then ∆3 > 0 and the equation ∆2 = 0 has
two real and distinct roots:

p1,2 =
bq±

√
∆3

2a
=

bq±
√

h∆1

2a
.

Taking into account that h < 0, aL0 > 0 and ∆1 < 0. We obtain this time that P > 0.
Now we compute also the sum, S, thus

S = m1 + m2 + 2 p
q = − k

h + 2p
q = 4L0(bq−2ap)

qh .
From here, two cases arise.
When {

P > 0
S > 0

or
{

P > 0
S < 0.

first sub-case,
{

P > 0
S > 0

, is equivalent to
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L0

(
b− 2a p

q

)
< 0, and in this point we also have two possibilities:

(a)

{
L0 > 0
b− 2a p

q < 0 or (b)

{
L0 < 0
b− 2a p

q > 0.

In case (a), from L0 > 0 we obtain a > 0 and then b
2a < p

q .

In case (b), from L0 < 0 we have a < 0 and further b
2a < p

q .
This means that {

m1 +
p
q > 0

m2 +
p
q > 0

and using that m2 < m1, we obtain − p
q < m2 < m1.

Now, the second sub-case becomes L0

(
b− 2a p

q

)
> 0, and in this point, we also have

two possibilities:

(a)

{
L0 > 0
b− 2a p

q > 0 or (b)

{
L0 < 0
b− 2a p

q < 0.

In case (a), from L0 > 0 we obtain a > 0 and then b
2a > p

q .

In case (b), from L0 < 0 we have a < 0 and further b
2a > p

q .

Therefore, now we have instead,

{
m1 +

p
q < 0

m2 +
p
q < 0

and using that m2 < m1, we obtain

− p
q > m1 > m2.

Here, it does not appear to be the case that m2 < − p
q < m1.

Case 4.2.2 I If p ∈ (p1, p2), then ∆2 < 0 and from here, using that h < 0, we obtain
∆(α) < 0.

There are other two more trivial bifurcation diagrams which were not taken into
account due to their triviality.

Remark 7. (a) If a > 0, L0 > 0 and p ∈ (p1, p2) then the bifurcation diagram contain only the
region 2 in the whole plane of coordinates, α1Oα2.
Using that sign(β(α)) = sign(a) = +, sign(∆(α)) = −, L0 > 0 and taking into account
that β(α) can have any sign, we see in Table A1 that for this configuration of signs will appear
only the region 2.

(b) If a < 0, L0 < 0, p ∈ (p1, p2) then the bifurcation diagram will contain only region 4 in the
whole plane of coordinate α1Oα2.
By the same reason, using that sign(β1(α)) = sign(a) = −, sign(∆(α)) = −, L0 < 0 and
taking into account that β(α) can have any sign, we see in Table A1 that for this configuration
of signs, it will appear only in region 4.

4.2.2 II If p ∈ (−∞, p1)∪ (p2, ∞), then ∆2 > 0. However, h < 0 and therefore ∆(α) has
two distinct real roots m1 and m2.

sign(∆(α)) =
{

+, m ∈ (m1, m2);
−, m ∈ (−∞, m1) ∪ (m2, ∞).

Because − p
q is not between m2 and m1, we see that sign(∆(α)) = −.

Remark 8. In this case, the bifurcation diagrams are as in the case 4.2.1, Figure 6a,b, and only the
conditions are different, not the dispersion of the regions.
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5. Numerical Simulations

In order to numerically illustrate “the existence of closed invariant curves” [4] in
some of the studied cases, the Matlab software was used. In the particular case when the
two-dimensional map is given in polar coordinates by

ρn+1 = ρn + β1(α)ρn + β2(α)ρ
3
n − ρ5

n and ϕn+1 = ϕn + θ0,

|α| being sufficiently small and L0 = −1, θ0 = 0.2, we choose

β1(α) = α2
1 − α1α2 + α2

2, β2(α) = −α1 − 3α2, α1 = 0.1, α2 = −0.1.

Figure 7a,b shows the phase portraits 3 and 1 obtained when the conditions of
Remark 5a,b are satisfied, respectively. In Figure 7a, the magenta orbit starting from
(ρ1, ϕ1) = (0.7, 0) approximates the invariant closed curve (invariant circle) from Theo-
rem 1 [4], being obtained for N = 400 steps starting from the outside of the circle. The
blue orbit starts from (ρ2, ϕ2) = (0.06, 0) and it is also obtained for N = 400, which ap-
proximates the invariant circle starting from the inside and staying inside the circle. The
red orbit starts in (ρ3, ϕ3) = (0.4, 0), approximates the invariant circle from the inside,
and is obtained for N = 400 steps. The green orbit starts from (ρ4, ϕ4) = (0.59, 0), from
the outside of the invariant circle and approximates it. This is how the phase 3 portrait
appears here, the conditions in Remark 5a, Case 4.2 being satisfied (∆1 = −3 < 0, a =
1 > 0, L0 = −1 < 0). For the invariant circle, the radius is ρn =

√
y2 = 0.547; in our case,

having β1(α) = 0.03, β2(α) = 0, 2 > 0, ∆(α) > 0, L0 = −1, we are also in the conditions
of Theorem 1 (2) (b) [4]. We consider the particular case where the two-dimensional map is
given in polar coordinates by

ρn+1 = ρn + β1(α)ρn + β2(α)ρ
3
n + ρ5

n and ϕn+1 = ϕn + θ0,

|α| being sufficiently small, θ0 = 0.1, α1 = 0.1, α2 = −0.1,

β1(α) = −α2
1 − α1α2 − α2

2, β2(α) = −α1 − 3α2, L0 = 1, .

It is observed that L0 > 0, a = −1 < 0, ∆1 < 0, so the conditions in Remark 5b are sat-
isfied, and then the bifurcation diagram contains only phase portrait 1 (corresponding to re-
gion 1). We choose 3 orbits starting from the points (ρ1, ϕ1) = (0.2035223739, 0), (ρ2, ϕ2) =
(0.181, 0) and (ρ3, ϕ3) = (0.187, 0) of the colors magenta, red and blue, respectively, and
which have N = 850, N = 4000 and N = 4000 steps, respectively; see Figure 7b. The
magenta orbit moves away from the invariant circle and may escape to infinity, while the
red orbit tends toward the origin (0, 0), and the blue orbit likewise tends toward the origin.
In addition, the radius of the invariant circle will be ρn =

√
y1 = 0.2035 (the conditions of

Theorem 1 (2), (a) being satisfied) (L0 > 0, β1(α) = −0.01 < 0, β2(α) = 0.2 > 0).

Figure 7. Numerical simulation for the map (A7) and (A8) with: (a) β1(α) = α2
1−α1α2 + α2

2, β2(α) =

−α1−3α2 and L0 = −1, α1 = 0.1, α2 = −0.1; (b) β1(α) = −α2
1−α1α2−α2

2, β2(α) = −α1−3α2 and
L0 = 1, α1 = 0.1, α2 = −0.1.
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For Figure 6a, we wanted to check on a particular case where the appearance of regions
2, 6, and 8 corresponds to phase portraits 2, 6, and 8. We consider the map given in polar
coordinates by

ρn+1 = ρn + β1(α)ρn + β2(α)ρ
3
n + ρ5

n and ϕn+1 = ϕn + θ0,

|α| being small enough L0 = 1, θ0 = 0.1. We took β1(α) = α2
1 + α1α2 + α2

2, β2(α) =
α1 + 3α2, α1 = 0.1, α2 = −0.1 and we notice that the conditions are checked (a > 0, L0 > 0,
h > 0, −p/q ∈ (m1, m2), m1 = −1, m2 = 0.6 and α1

α2
= m1) to be on one of the straight lines

that form the curve (C) in Figure 6a, the point (α1, α2) being in quadrant IV, so it is region 6.
For the orbits of blue, red, magenta and yellow colors from Figure 8a, starting at points
(ρ1, ϕ1) = (0.023, 0), (ρ2, ϕ2) = (0.35, 0), (ρ3, ϕ3) = (0.38, 0) and (ρ4, ϕ4) = (0.078, 0),
respectively, we consider N = 4000, N = 141, N = 54 and N = 4000 steps, respectively.
It can be seen that the blue orbit approximates the invariant circle, the red orbit tends to
infinity (if we increase the number of steps to N = 142 and N = 58 for the red and magenta
curves, we obtain Figure 8b), the magenta orbit, like the red one, tends at infinity moving
away from the invariant circle, and the yellow orbit, like the blue one, approximates (tends
to) the invariant circle. This proves that we have phase portrait 6, so region 6 (as in the
figure) is in accordance with the theoretical results. More than that, ρn =

√
y1 = 0.3162, is

the radius of the invariant circle, and because ∆(α) = 0, the equation y2 − 0.2y + 0.01 = 0
has a double root.

Figure 8. Numerical simulation for the map (A7) and (A8) with (a) β1(α) = α2
1 + α1α2 + α2

2, β2(α) =

α1 + 3α2 and L0 = 1, α1 = 0.1, α2 = −0.1; (b) like (a), but the step number is increased, and N = 142
and N = 58 for red orbit and magenta orbit, respectively.

However, with α1 = 0.1 and α2 = 0.1, the point (α1, α2) is in quadrant I, α1
α2

will be
different from m1 and m2, and in Figure 6a, region 2 will appear. For the orbits of blue,
green and brown colors starting from points (ρ1, ϕ1) = (0.087, 0), (ρ2, ϕ2) = (0.06, 0) and
(ρ3, ϕ3) = (0.04, 0), respectively, the numbers of steps are considered N = 35, N = 45 and
N = 60, respectively. The 3 orbits tend to infinity corresponding to phase 2 portrait (region
2); see Figure 9a. If we take N = 39, N = 50 and N = 64 instead of the previous 3 values,
we obtain Figure 9b, and it is observed that the last values increase a lot. Then, choosing
α1 = −0.01, α2 = −0.5, the pair (α1, α2) is in quadrant III, and α1

α2
will be different from m1

and m2.
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Figure 9. Numerical simulation for the map (A7) and (A8) with: (a) β1(α) = α2
1 + α1α2 + α2

2, β2(α) =

α1 + 3α2 and L0 = 1, α1 = 0.1, α2 = 0.1; (b) like to (a) but the step number is increased to N = 39,
N = 50 and N = 64, respectively, for blue orbit, green orbit and brown orbit.

The six orbits start in Figure 10 from din (ρ1, ϕ1) = (0.087, 0), (ρ2, ϕ2) = (0.78, 0),
(ρ3, ϕ3) = (0.35, 0), (ρ4, ϕ4) = (1.14724966464545445, 0), (ρ5, ϕ5) = (0.023, 0) and (ρ6, ϕ6) =
(1.127, 0) having the colors yellow, magenta, red, green, blue and cherry, respectively, with
steps N = 400, N = 54, N = 141, N = 15, N = 400 and N = 400, respectively. The
cyan-colored orbit is the outer invariant circle. The cherry and magenta orbits approximate
the inner invariant circle from the outside, and the blue, yellow and red orbits approximate
the inner invariant circle from the inside. The green orbit moves away from the outer
invariant circle tending to infinity, thus observing that the orbits move away from the outer
circle and tend toward the inner invariant circle. We thus have the portrait of phase 8,
region 8. The radii of the two invariant circles are known from Theorem 1 [4].

Figure 10. Numerical simulation for the map (A7) and (A8) with β1(α) = α2
1 + α1α2 + α2

2, β2(α) =

α1 + 3α2 and L0 = 1, α1 = −0.01, α2 = −0.5.

6. Discussions and Conclusions
6.1. Discussions

In this study, the truncated normal form of the Chenciner bifurcation was analyzed
in a degeneracy case, where the degeneracy condition is given by a10b01 − a01b10 = 0 and
a10 = a01 = 0 or b10 = b01 = 0, as an answer to the problem open in [4,35].

In this article, all eight regions corresponding to the eight phase portraits (see Figure A1)
appear in the bifurcation diagrams, unlike [15] or [10], where all of these are not present.
In [15], only regions 1–4 appear in the bifurcation diagrams. If in a previous study [15]
only two alternating regions appeared, in this article, more alternating regions (4 and
3 regions, respectively) appear in the bifurcation diagrams. This situation indicates a
more complex structure of bifurcation diagrams. By modifying the structure of the sets of
points B1,2 and C, concurrent lines at the origin are obtained in the bifurcation diagrams,
as in some recent studies [10,15], and different from other previous works [4,35]. When
∆1 > 0 (Section 4.1) the analysis of the six cases obtained leads to the first two diagrams in
Figure 5a,b. When ∆1 < 0 (Section 4.2) Figure 6 presents the last two nontrivial bifurcation
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diagrams. However, in this last case, there are additionally four trivial situations when the
bifurcation diagrams contain only one region in the whole plane (see Remarks 5a,b and
7a,b) and therefore do not require the creation of an additional representation.

The obtained theoretical results could be verified by means of the Matlab program,
which allowed the realization of several representative simulations.

The Chenciner bifurcation in this case acts similar to an “organizing center” of dynamic
behavior, generating “global dynamic phenomena such as the creation or disappearance of
stable limit cycles” [19]. Near a Chenciner bifurcation point, “there is an open region in the
parameter space where a stable equilibrium state and a stable limit cycle coexist” [19].

6.2. Conclusions

The advantage of using Chenciner degenerate bifurcation for modeling economics
volatility versus chaotic behavior is that the transition to chaos amplifies itself and requires
several iterations, but the volatility may be transitory. The case studied in this article has
the advantage that it leads to the reduction of the large number of bifurcation diagrams that
appeared in [4,10]. Thus, the hypothesis that was made is confirmed: if the degeneracy is
not so large, we have a small number of bifurcation diagrams. The limitations of the present
procedure is that it is applicable to degenerated cases, which seldom represent cases that
have importance in special situations. Moreover, the more restrictive method leading to a
new parameter change as in [35] is not necessary for this study. The results obtained for
“the truncated normal form give an approximate description of the complicated bifurcation
structure, near a generic Chenciner bifurcation” [4]. As in the case of the Neumark–Sacker
bifurcation and in the case of the degenerate Chenciner bifurcations, it is observed that
the normal form thus obtained captures “only the appearance of a closed invariant curve
but does not describe the structure of the orbit on this curve” [12]. The article completes
the studies started in another reference material on the degenerate Chenciner bifurcation
[4] and not addressed in other cases of degeneracy [10,15]. In the mentioned articles,
the functions β1 and β2 do not contain any terms of the first degree [15], one of the two
functions does not contain terms of the first or second degree, and the other may or may
not contain terms of the first degree [10].

A number of four different bifurcation diagrams were obtained instead of “two as in
the non-degenerate Chenciner case” [15]. The first two bifurcation diagrams were obtained
in Case 4.1 when ∆1 > 0, and the last two bifurcation diagrams were generated in Case 4.2
when ∆1 < 0. Several subcases that appeared (discussed) in Case 4.1 could be removed.

So, the conclusion is that eight different bifurcation diagrams were recorded, four of
them being trivial.

In the case studied now, the linear part of β1 cancels, and β2 has at least one linear
term. Compared to the mentioned articles [4,10], much fewer bifurcation diagrams appear.
Thus, eight bifurcations diagrams result (if we also consider the four trivial ones from
Remark 5 and Remark 7), and only four non-trivial ones are recorded, which are different
from those previously highlighted [15].

The obtained results “can be used in bifurcation theory” [15] as a field of dynamic
systems, but could also be exploited in other fields of activity, where the evolution of some
processes and phenomena is in the form of discrete dynamic systems (economy, biology,
ecology, medicine and computers).
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Appendix A. Chenciner Bifurcation

The discrete-time system 2 may be written in complex coordinates as

z→ z.δ(α) + g(z, z, α), (A1)

where δ and g are smooth functions of their arguments, given by

δ(α) = eiθ(α).r(α) and g(z, z, α) = ∑
i+l≥2

gil(α)zizl

i!l!
,

also r(0) = 1, θ(0) = θ0 and gil are smooth functions with complex values.
Following the same steps as in [12], it will turn (A1) into

w→ w.
(

eiθ(α).r(α) + ww.a1(α) + w2w2.a2(α)
)
+ O(|w|6) =

= w.eiθ(α)
(

r(α) + ww.b1(α) + w2w2.b2(α)
)
+ O(|w|6), (A2)

where bj(α) = e−iθ(α).aj(α), j = 1, 2.
It should be noted that the following smoothly reversible complex coordinate change

was used:

z = w + ∑
2≤i+l≤5

hil(α)wiwl

i!l!
, (A3)

with h21(α) = h32(α) = 0.
If β1(α), β2(α) denote r(α)− 1 and Re(b1(α)), respectively, and polar coordinates are

used, then relation (A2) will be{
ρn+1 =

(
1 + β1(α) + β2(α)ρ

2
n + L2(α)ρ

4
n
)
ρn + ρnO

(
ρ6

n
)

ϕn+1 = ϕn + θ(α) +
(

Im(b1(α))
1+β1(α)

+ O(ρn, α)
)

ρ2
n

, (A4)

It is called Chenciner bifurcation, a state of system (A4) that satisfies the conditions
r(0) = 1, Re(b1(0)) = 0 and L2(0) 6= 0.

Out of β1(0) = 0, it results that

L2(0) =
Im2(b1(0)) + 2.Re(b2(0))

2
.

When the mapping
(α1, α2)→ (β1(α), β2(α)) (A5)

is regular in (0, 0), then the functions β1 and β2 become the new parameters of the system
(A4). This is the non-degenerate Chenciner bifurcation.

It is known from [12], relation (13) page 4, that{
β1(α) = ∑

p
i+l=1 ailα

i
1αl

2 + O(|α|p+1)

β2(α) = ∑
q
i+l=1 bilα

i
1αl

2 + O(|α|q+1)
, (A6)

for p ≥ 1, q ≥ 1 and a10 = ∂β1
∂α1
|α=0, a01 = ∂β1

∂α2
|α=0, b10 = ∂β2

∂α1
|α=0, b01 = ∂β2

∂α2
|α=0 and so on.
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If the transformation (A5) is not regular in (0, 0), the Chenciner bifurcation is degener-
ate, i.e., if and only if a10.b01 − a01.b10 = 0.

Next, the higher-order terms of the ρ-map (of the application) (A4) will be eliminated,
obtaining the truncated form

ρn+1 = (1 + β1(α) + ρ2
nβ2(α) + ρ4

n.L2(α)).ρn. (A7)

The ϕ-map application of system (A4) describes a rotation of an angle depending on α
and ρ, and can be approximated by its truncated form

ϕn+1 = ϕn + θ(α). (A8)

It will be assumed that 0 < θ(0) = θ0 < π, and the system analyzed in this paper is
(A7) and (A8). This system is also called the truncated normal form of the system (A2).

Appendix B. Degenerate Chenciner Bifurcation

Equation (A7) defines a one-dimensional dynamic system, which is independent of
equation (A8)(ϕ-map) and will be studied separately. The system (A7) (ρ-map) has the
fixed point ρ = 0, for any α which corresponds to the fixed point O(0, 0) in the normal
forms (A7) and (A8). Each positive and non-zero fixed point of the ρ-map (8) corresponds
to a closed invariant curve in the system, (A7) and (A8). We specify that we denote by
O(|α|n), n ≥ 1 a series with real coefficients cij having the form, ∑i+j≥n cijα

i
1α

j
2. It can be

easily shown that sign(L2(α)) = sign(L0) for |α| =
√

α2
1 + α2

2 that is chosen to be small
enough, bearing in mind that L2(α) can be chosen as L2(α) = (1 + O(|α|)).L0 and L0 6= 0.

The following theorem describes the stability of the point O for |α| that is small enough,
and it was demonstrated in [4].

Theorem A1. “The fixed point O is(linearly) stable if β1(α) < 0 and unstable if β1(α) > 0,for
any value of α with |α| small enough. On the bifurcation curve β1(α) = 0, O is (nonlinear) stable if
β2(α) < 0 and unstable if β2(α) > 0, when |α| is small enough. When α = 0, O is (non-linearly)
stable if L0 < 0 and unstable if L0 > 0.” [4]

The fixed points of (A7) are the solutions of the equation L2(α).y2 + β2(α).y + β1(α) =
0 where the variable y = ρ2

n. The discriminant of the equation will be denoted by ∆(α) =

β2
2(α) − 4.L2(α).β1(α), and the roots will be y1 =

√
∆(α)−β2(α)

2.L2(α)
and y2 = −

√
∆(α)+β2(α)

2.L2(α)

“when they exist as real number” [4]. The following theorem studies the existence of closed
invariant curves in the truncated normal form (A7) and (A8) and is given in [4].

Theorem A2. 1. ” When ∆(α) < 0 for all |α| sufficiently small, the system (A7) and (A8) has
no invariant circles.

2. When ∆(α) > 0 for all |α| sufficiently small, the system (A7) and (A8) has
(a) One invariant unstable circle ρn =

√
y1 if L0 > 0 and β1(α) < 0;

(b) One invariant stable circle ρn =
√

y2 if L0 < 0 and β1(α) > 0;
(c) Two invariant circles, ρn =

√
y1 unstable and ρn =

√
y2 stable, if L0 > 0, β1(α) >

0, β2(α) < 0 or L0 < 0, β1(α) < 0, β2(α) > 0; in addition, y1 < y2 if L0 < 0 and y2 < y1
if L0 > 0;

(d) No invariant circles if L0 > 0, β1(α) > 0, β2(α) > 0 or L0 < 0, β1(α) < 0,
β2(α) < 0.

3. On the bifurcation curve ∆(α) = 0, the system (A7) and (A8) has one invariant unstable
circle ρn =

√
y1 for all L0 6= 0. Moreover, if L0 < 0, the invariant circle is stable from the

exterior and unstable from the interior, and vice versa if L0 > 0.
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4. When β1(α) = 0, the system (A7) and (A8) has one invariant circle ρn =
√
− β2(α)

L0

whenever L0β2(α) < 0. It is stable if L0 < 0 and β2(α) > 0, respectively, unstable if L0 > 0
and β2(α) < 0 “ [4,15,35].

Table A1. Correspondence between ∆, β1,2, L0 and the generic phase portraits [4].

∆(α) L0 β1(α) β2(α) Region

+ + + + 2
+ − − − 4
+ + − ±, 0 1
+ − + ±, 0 3
+ − − + 7
+ + + − 8
− + + ±, 0 2
− − − ±, 0 4
0 + + + 2
0 − − − 4
0 − − + 5
0 + + − 6
0 + 0 0 2
0 − 0 0 4
+ − 0 + 3
+ − 0 − 4
+ + 0 − 1
+ + 0 + 2

Corresponding to the studies we previously carried out [4,15], the following phase
portraits are highlighted below. In this case, the phase portraits for the curves of bifurcation
when ∆(α) = 0 are shown in Figure A1.
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Figure A1. Generic portraits phase when θ0 > 0. The numbers represent the phase portraits [4].

The red invariant circles are unstable, the green invariant circle are stable, and the blue
curves represent arbitrary orbits in Figure A1.
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