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Abstract: The visual system plays a vital role in the daily life of humans, as more than 90 percent
of the external information received by the human brain throughout the day comes from the visual
system. However, how the human brain processes the received visual information remains a mystery.
The information received from the external through the visual system can be divided into three main
categories, namely, shape features, color features, and motion features. Of these, motion features are
considered the key to deciphering the secrets of the visual system due to their independence and
importance. In this paper, we propose a novel bio-inspired motion direction detection mechanism
using direction-selective ganglion cells to explore the mystery of motion information extraction and
analysis. The mechanism proposed in this paper is divided into two parts: local motion direction
detection neurons and global motion direction detection neurons; the former is used to extract motion
direction information from the local area, while the latter infers global motion direction from the local
motion direction information. This mechanism is more consistent with the biological perception of
the human natural visual system than the previously proposed model and has a higher biological
plausibility and greater versatility. It is worth mentioning that we have overcome the problem in
which the previous motion direction detection model could only be applied in the binary background
by introducing the horizontal cells. Through the association formed by horizontal cells and bipolar
cells, this model can be applied to recognizing problems of motion direction detection on a grayscale
background. To further validate the effectiveness of the proposed model, a series of experiments with
objects of different sizes, shapes, and positions are conducted by computer simulation. According to
the simulation results, this model has been proven to have high accuracy rates regardless of objects’
sizes, shapes, and positions in all experiments. Furthermore, the proposed model is verified to own
more stable accuracy rates and stronger noise immunity by comparing it with the recognized superior
classical convolutional neural network in a background of different percentage noise.

Keywords: artificial visual system; motion direction detection; direction-selective ganglion cells;
horizontal cells; convolutional neural network

MSC: 68T07

1. Introduction

Over the past few decades, the artificial visual system has become one of the most
popular research areas in artificial intelligence [1], and, at the same time, it has been widely
applied in daily life and the cutting-edge technology of human beings such as intelligent
robots, autonomous driving, video surveillance, and human–computer interaction [2].
However, current research on artificial visual systems mainly focuses on the application
of deep learning models such as Convolutional Neural Networks (CNN), which perform
well in terms of detection accuracy [3], but still lack robustness in complex environments
and can not fully explain how the human visual system achieves some of the physiological
functions. Thus, in an attempt to build a more powerful artificial visual system, making it

Mathematics 2022, 10, 3767. https://doi.org/10.3390/math10203767 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10203767
https://doi.org/10.3390/math10203767
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5469-5109
https://orcid.org/0000-0001-7379-1374
https://orcid.org/0000-0001-9858-4208
https://doi.org/10.3390/math10203767
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10203767?type=check_update&version=1


Mathematics 2022, 10, 3767 2 of 16

closer to the features of the visual system of organisms is considered the key [4]. Through
previous research, the visual system of organisms is considered as having three main
abilities, namely, the extraction of color, shape, and movement features from external
objects [5]. Of these, due to the independence and uniqueness of the motion feature,
its analysis and extraction is considered as key to deciphering the secrets of the visual
system [6].

Actually, research into the mechanism of motion detection has been underway for
over half a century. In 1952, H.B. Barlow identified the presence of a neural mechanism
in the retina of the frog by using pulse discharges in the optic nerve as an indicator of
activity [7]. In the same year, Kuffler demonstrated that discharge in the retina was not
only for cold-blooded animals but also mammals by flashing small dots of light on the
light-adapted cat retina [8]. In addition, in 1956, the first bio-inspired visual model was
proposed by Hassenstein and Reichardt based on the analysis of the optomotor behaviour
of Chlorophanus viridis beetles [9]. This Hassenstein–Reichardt detector consisted of two
mirror-symmetrical subunits with neurons responding more vigorously to specific direc-
tions, which could be widely used to explain the mechanism of motion direction detection
in the retina of various organisms [10]. In 1959, D.H. Huble identified the existence of a
"directional selection mechanism" in the retina of cats. Based on this mechanism, neurons in
the retina would give more vigorous response when a stimulus unit moved in a particular
direction (called the preferred direction), whereas motion in the opposite direction would
not provoke an obvious response [11]. In 1965, H.B. Barlow designed experiments on
the organization and its corresponding mechanism of directional selectivity within the
receptive field of a rabbit retina. According to these experiments, Barlow proposed a new
conclusion: ganglion cells respond to motion in a particular direction and belong to a subset
of bipolar cells; these bipolar cells could respond to the corresponding stimuli in their adja-
cent receptive field. In addition, the presence of a laterally connecting inhibitory element
from one of these regions was experimentally confirmed, which could lead to the hypothesis
that horizontal cells also played a role in the process of motion direction detection [12].
Through these experimental results as well as hypotheses, a prototype of bio-inspired model
for object motion direction detection could be derived. However, even so, the research into
the motion direction detection mechanism in organisms was still only at the cellular level.
Although we could speculate on which cells played a role in motion direction detection,
how the neurons in them combined together to achieve their functions remains unknown.
In 1989, three basic requirements for motion direction detection models were proposed
as the first common principles in neural network computations by Alexander Borst and
Martin Egelhaaf, which were ‘two inputs’, ‘nonlinear interaction’, and ‘asymmetry’ [13].
These three requirements constituted the guidelines for future design models and laid the
foundation for the emergence of more reliable models in the future. In 2000, Clifford and
Ibbotson linked the concept of theoretical models to the neural circuits of biological systems
and proposed a basic mechanism of visual motion detection [14]. However, this mechanism
did not take into account the fact that the nonlinear mechanism of the dendrites played an
important role in motion direction detection [15].

In our previous studies, we proposed a novel Dendritic Neural Model (DNM) that
mimicked the nonlinear interaction among inputs to the dendrites [16]. We could modify the
location and type of synapses in the dendritic branches of this model to make it appropriate
for a particular task such as classification problems [17], speed forecasting [18], and
directional selectivity problems. Furthermore, we had proposed a model based on DNM to
simulate the Direction Selective Ganglion Cells (DSGCs) for detecting the object motion
direction [19]. However, this previously proposed model is only applicable to object motion
direction detection on binary images. Thus, we innovated on the previously proposed
model by introducing horizontal cells to make the model capable of discriminating between
objects and background pixels during the motion direction detection of moving objects.
The newly proposed model consists of two main components: Local Direction Detection
Neuron (LDDN) and Global Direction Detection Neuron (GDDN), which can be applied
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to the problem of detecting the direction of object motion on a grayscale background
compared to the previous model. This paper will introduce the proposed mechanism in
two main subsections. The first part will be divided into three parts, where we will first give
a brief introduction to the mechanism and structure of DNM to set the scene for the rest of
the presentation, and then describe in detail how LDDN and GDDN can work together to
achieve object motion direction detection. We assume that the LDDN extracts elementary
local motion direction information by detecting the grayscale difference between the central
pixel and the surrounding pixels at different moments, and GDDN will take a simple
summation and infer the global motion direction. During this process, the horizontal
cells can serve to detect the grayscale difference of the surrounding pixels. In the next
section, the performance of this model will be evaluated by computer simulation on several
datasets. These datasets consist of images of different sizes, shapes, motion directions,
and backgrounds with different proportions of noise. The experimental results show that
these models have extremely high accuracy in detecting the moving direction of the objects
regardless of their size and shape. In order to further demonstrate the superiority of the
model, we compare their performance with the highly recognized method CNN [20] and
find that, compared with CNN, these models have higher accuracy and noise resistance. In
summary, this paper proposes an object motion direction detection model with not only
better bio-interpretation, but also higher accuracy and noise immunity.

2. Model and Method
2.1. Dendritic Neuron Model

Neurons are made up of three main parts, namely the cell body, axon, and dendrites.
Dendrites receive information from other neurons through the parts called synapses, and
transmit the information to the cell body via axons, which are the main physiological
activities of neurons. In recent years, dendrites have been proved to play an important role
in a variety of neuronal computations in humans, including motion direction detection
operations [21]. In 1983, Poggio, Torre, and Koch proposed that there was a nonlinear
logical relationship between different kinds of synapses in the dendrites of retinal nerve
cells. According to the experiments, they find that the excitatory synapse will be intercepted
if an activated inhibitory synapse is located on its way to the cell body; this interaction
can be described as AND logic as shown in Figure 1 [22], and this relationship can be
represented as the following equation:

Output = Outputa ·Outputb (1)

Among this equation, ‘a’ denotes an excitatory input, and ‘b’ denotes an inhibitory
input. Each input is logically 0 or 1, and the inhibitory input has a logical NOT effect. Thus,
the cell body (soma) will only output the result 1 when a = 0 and b = 1.

Figure 1. A basic model used for describing the nonlinear relationship between excitatory dendrites
(a) and inhibitory dendrites (b).
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Furthermore, Figure 2 shows the case of a dendrite with multiple branches. According
to the research by Koch, Poggio, and Torre, when a plurality of synapses is present on a
dendrite, a given excitatory signal will be intercepted by all the inhibitory signals on its
direct path to the soma [23], and this process can be represented by the following equation:

Output = Outputa · Outputb + Outputa · Outputc ·Outputd (2)

Figure 2. An advanced model used for describing the nonlinear relationship in the dendrite with
multiple branches. The a, b, c, d here stand for the different dendrites.

Based on the above research, a novel model called the Dendritic Neuron Model was
proposed in 2014, which aimed to compensate for the nonlinear relationship between
dendrites that was not taken into account in traditional neural models [24]. In this model,
synapses on each branch will receive information from the external world (logical 0 or
logical 1) and process it through a one-input one-output sigmoid function; then, output
results from synapses on the same branch will be processed with a multiplication function,
which is equivalent to logical AND; outputs from the multiple branches will be integrated
by the summation function, which corresponds to the logical OR relationship between the
different branches in the neuron; finally, the soma will receive outputs from all branches,
process it with another sigmoid function, and transmit the obtained result to the other
neurons. During this process, if the output signal exceeds the soma threshold, the neuron
will be activated and provide facilitation effects; otherwise, it will provide inhibitory effects.
The whole process can be represented by the example shown in Figure 3, and the operation
implemented in Figure 3 could be represented as the following equation:

Output = Outputa1 · Outputb1 · Outputc1+

Outputa2 · Outputb2 · Outputc2+

Outputa3 · Outputb3 ·Outputc3

(3)

The experimental examples show that this model can be used to simulate the direction-
ally selective ganglion cells in the retina by unsupervised learning and demonstrates a high
accuracy rate in detecting the motion direction of objects on a binary background. Based
on the dendritic neuron model, we hypothesize that the nonlinear relationship also exists
between the cells in the human retina and proposed new models which can be applied in
the motion direction detection in grayscale backgrounds.
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Figure 3. The structure of the Dendritic Neuron Model with several branches and a soma. The input
signals are a, b, and c, respectively, which are received by the synapses on branches numbered 1, 2,
and 3, and the received signals are labeled as a1, b1, c1, etc.

2.2. Local Motion Direction Detection Neuron

The specific structure and operating principle of the proposed local motion direction
neuron are described in this section. According to the DNM proposed above, we assume
that there are several Local Direction Detection Neurons (LDDN) that are only responsible
for the detection of specific movement directions (upward, upper-rightward, rightward,
lower-rightward, downward, lower-leftward, leftward, and upper-leftward) existing in
the local visual area. For each type of LDDN, the basic construction is the same. The main
components of LDDN, including the Photoreceptor Cells (PCs), ON-OFF Bipolar Cells
(ON-OFF BCs), ON-OFF Horizontal Cells (ON-OFF HCs), and Ganglion Cells (GCs), form
the whole structure as shown in Figure 4. PCs are the only cells that can perform direct
interaction with optical signals in the retina [25], so they are responsible for collecting
the light signals from the corresponding receptive field and transmitting them to other
cells after converting them into an electrical signal through photoelectric conversion. After
receiving the electrical signal transmitted by the PCs, the OF-OFF BCs generate a facilitating
or inhibiting signal depending on whether the state of its corresponding receptive field
has changed. ON-OFF HCs have synaptic connections with two adjacent PCs, receive the
electric signals sent from both parties [26], and modulate their output through incurring
inhibition effect. The output electrical signals from the ON-OFF BCs and ON-OFF HCs
are gathered in their connected GCs, and they will be transmitted to the approximately 50
brain regions through their axons after being managed [27].

We assume that the LDDN acquires local information by scanning each part of the
global receptive field with a local receptive field of 3 × 3 areas. To introduce the operating
principle of LDDN in detail, we define that, at a certain time point, the PCs receive optical
signals from a local two-dimensional receptive field of size M × N. The location of the pixel
in this receptive field at this moment can be defined with the coordinate (i, j, t); thus, the
positions of eight adjacent pixels around the (i, j, t) can be represented as Figure 5.
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Figure 4. The structure of local motion direction detection neurons.

Figure 5. Representation of the central pixel and its neighboring pixels at the time points before and
after the movement.

Thus, eight types of LDDN responsible for eight different directions that can receive
inputs from the local receptive fields are defined as shown in Figure 6.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Eight types of LDNN responsible for eight different directions (a–h). The orange area
represents the center pixel before the movement, and the blue area represents its position after the
movement; only movements in the preferred direction will trigger the corresponding LDDN, and the
triggered LDDN is shown in red in the image.
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When a light spot falls within the receptive field, we can call the pixel where the
light spot is located the central pixel. The PCs receive the optical signal from the central
pixel, convert it into an electrical signal, and transmit it to its connected ON-OFF BCs
and ON-OFF HCs. The value of the output electrical signal is the grayscale value of the
corresponding receptive field, which can be represented by X(i, j, t). When the light spot
moves to any other adjacent pixel after a time interval ∆t, the output of the PCs will also
change to X(i, j, t + ∆t) as shown in Figure 7. At this moment, the ON-OFF BCs connected
to these PCs, which is called BC1, will perform a subtraction operation on the electrical
signals transmitted by the PCs at both time points. BC1 only needs to determine whether
the state of the receptive field has changed, not whether it is a light-dark transition or a
dark-light transition, so the result of the subtraction needs to be taken as an absolute value.
The exact procedure for this operation can be expressed as the following formula:

BC1 =

{
Excitation |X(i, j, t)− X(i, j, t + ∆t)| > L
Inhibition |X(i, j, t)− X(i, j, t + ∆t)| <= L

(4)

The ‘L’ here is the threshold for the minimum grayscale value difference, and only
grayscale value differences greater than L will be recognized as having a change of state.
At the same time, the eight types of ON-OFF BCs corresponding to the directions of
motion needed to be detected, which can be called BC2, will also detect the state of the
corresponding pixels and make an excitation response if the state of the pixel has changed.
The specific process is demonstrated in the following equation:

BC2 =

{
Excitation |X(i + α, j + β, t)− X(i + α, j + β, t + ∆t)| > L
Inhibition |X(i + α, j + β, t)− X(i + α, j + β, t + ∆t)| <= L

α ∈ {−1, 0, 1}, β ∈ {−1, 0, 1}
(5)

After the steps above have been performed, the movement direction of the light
spot can be initially determined, but the results are still subject to significant error, as the
distinction between the object and the background before and after the motion cannot
be specifically discerned by the BCs only. Therefore, ON-OFF HCs are introduced to
regulate the preliminary results by interfering with the output signals of BC1 as well as
BC2 and eliminate some of the background pixels that are mistaken as moving objects. In
general, ON-OFF HCs determine whether generating a suppression signal to modulate the
output results of the BC1 and BC2 based on the grayscale difference of their corresponding
region at time t and t + ∆t. ON-OFF HCs will perform this process according to the
following formula:

HCs =
{

Inhibition |X(i, j, t)− X(i + α, j + β, t + ∆t)| > L
Excitation |X(i, j, t)− X(i + α, j + β, t + ∆t)| <= L

α ∈ {−1, 0, 1}, β ∈ {−1, 0, 1}
(6)

The output of BC1, BC2 and ON-OFF HCs will be transferred together to the GCs
for integrated processing, and the GCs will only be fired when both ON-OFF BCs in the
preferred direction are activated, and the ON-OFF HCs do not produce an inhibitory effect.
The output of the GCs can be expressed as the following formula, the variables in the
formula represent the output signals from BC1, BC2, and HCs, respectively:

GCs = OutBC1 ·OutBC2 ·OutHCs (7)

As an example, in Figure 7, we use all eight kinds of LDDN to scan the receptive filed
of 5× 5 region of 25 pixels at time t as well as t + ∆t. During the scanning process, the
position of the center pixel of the LDDN local receptive field is denoted as (i, j) (i = 1, 2, . . . ,
M; j = 1, 2, . . . , N). For the sake of simplicity, only the first five scanned images have been
represented in the figure.
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(a) (1,1) (b) (1,2) (c) (1,3)

(d) (1,4) (e) (1,5)

Figure 7. Example of scanning a 5× 5 receptive field with eight types of LDDN. The subfigure (a–e)
here represents the scanning process of LDDNs with (1,1) to (1,5) as the center point.The red area
represents the object before the movement, and the blue area represents the object after the movement.
The LDDN will extract the information of the central pixel and the surrounding pixels from the 3× 3
area and infer whether to activate the neurons in the corresponding direction. As shown in (a), none
of the LDDN have been activated when the location of central pixel is (1,1); however, the LDDN
corresponding to the rightward and the downward are activated when the location of central pixel is
(1,2), as shown in (b).

2.3. Global Direction Detection Neuron

After each LDDN has scanned for the M × N sized receptive field, eight scanned
images of the corresponding activation positions of the LDDNs will be obtained, which can
be described as local motion characteristics maps. Then, the GDDN finds the LDDN with
the highest times of excited positions based on the local motion characteristics maps, and
the direction corresponding to this LDDN is then inferred as the global motion direction of
the object.

To illustrate the function of the GDDN more clearly, how the GDDN accomplishes
the motion direction detection of a U-shaped object in the background of 6× 6 grayscale
is shown in Figure 8. In this case, the grayscale values of all pixels in the background are
randomly selected, and the grayscale values of each pixel of the object at time t and t + ∆t
are the same. The activated local locations in the scanned images are indicated in red, and it
is easy to observe that the LDDN responsible for detecting the lower-rightward is activated
most often. It is activated at coordinates (2,2), (2,4), (4,2), (4,3), and (4,4), respectively,
five times in total. After making statistics for the eight scanning results of the LDDN,
the motion direction corresponding to the LDDN with the highest number of activations
(lower-rightward) will be identified as the global motion direction of the object, which is
consistent with reality.
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(a)

(b)

(c)

Figure 8. (a). Demonstrates how GDDN enables motion detection of a U-shaped object moving down-rightward
in a 6 × 6 grayscale background. The two images left represent the position of the object at time t and time t +
∆t respectively, and the red areas in the eight images right represent the location and number of activated LDDN.
(b). The red areas in this diagram represent the locations where LDDN has been activated in this receptive field.
(c). Radar plot of the GDDN detection results, from which it can be seen that the LDDN corresponding to the
down-rightward was activated most frequently.

3. Experiments and Analysis 200

Several experiments are conducted to further validate the accuracy and reliability of this model, 201

the design of the experiments and the analysis of the results will be described in detail in this section. 202
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Firstly, we plan to apply the model to the direction recognition problem performed by the 204

computer simulation. A data set of grayscale images, each containing 32 × 32 pixels, is generated as 205
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of the object inferred by LDDN and GDDN with the actual direction of motion of the object, and 213

analyze the effectiveness of this model. In addition, considering that some variables such as size and 214
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object moving in the direction of leftward is used as an example here, and we can observe the 219

two consecutive frames of the experimental object moving in leftward at time t and t + ∆t through 220

Fig.9(a). The scanned images provided by the eight kinds of LDDN are presented in the Fig.9(b), 221

we can easily find that only the LDDN which is responsible for the leftward is excited, while all the 222

other LDDN is rest. Thus, the GDDN will infer the leftward as the global motion direction, which 223

is consistent with the facts. The data set for the first experiment has a total of 7,200, 900 in each 224

direction, and the specific accuracy rates are shown in Table.1. 225

Figure 8. (a) Demonstrates how GDDN enables motion detection of a U-shaped object moving
down-rightward in a 6× 6 grayscale background. The two images (left) represent the position of the
object at time t and time t + ∆t, respectively, and the red areas in the eight images (right) represent
the location and number of activated LDDN. (b) The red areas in this diagram represent the locations
where LDDN has been activated in this receptive field; (c) radar plot of the GDDN detection results,
from which it can be seen that the LDDN corresponding to the down-rightward was activated
most frequently.

3. Experiments and Analysis

Several experiments are conducted to further validate the accuracy and reliability of
this model; the design of the experiments and the analysis of the results are described in
detail in this section.

3.1. Experiments with Objects of Different Shapes and Sizes on a Noiseless Background

First, we plan to apply the model to the direction recognition problem performed by
the computer simulation. A data set of grayscale images, each containing 32× 32 pixels,
is generated as the background of the experiments. The background is filled with ran-
domly generated grayscale pixels and does not change over time within the same set of
experiments. Then, several experimental objects will be set at random positions in the
background. These objects consist of several contiguous pixel points with the same ran-
domly set grayscale values, and will perform motion in eight random directions (rightward,
lower-rightward, downward, lower-leftward, leftward, upper-leftward, upward and up-
rightward). Two consecutive frames during this motion will be extracted and detected by
the LDDN and GDDN proposed in this paper. Finally, we will compare the direction of
motion of the object inferred by LDDN and GDDN with the actual direction of motion
of the object, and analyze the effectiveness of this model. In addition, considering that
some variables such as size and motion direction of the objects may affect the experiment
performance, the motion of the objects of eight different sizes (pixel scale of 1, 2, 4, 16, 32,
64, 128, 256) in eight directions are implemented as experimental examples.

The first experimental object is a dotted object of 1-pixel size. As shown in Figure 9, a
dotted object moving in the direction of leftward is used as an example here, and we can
observe the two consecutive frames of the experimental object moving in leftward at time t
and t + ∆t through Figure 9a. The scanned images provided by the eight kinds of LDDN
are presented in Figure 9b, and we can easily find that only the LDDN which is responsible
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for the leftward is excited, while all the other LDDN are resting. Thus, the GDDN infers
the leftward as the global motion direction, which is consistent with the facts. The data set
for the first experiment has a total of 7200, 900 in each direction, and the specific accuracy
rates are shown in Table 1.

(a) (b)

Figure 9. (a) In the first accuracy experiment, the position of the object in its initial state and the
position of the object after moving down one pixel. (b) In the first accuracy experiment, the scanned
image obtained by GDDN, which shows that only the LDDN corresponding to the downward
direction is activated.

Then, several experiments are implemented for the parallelogram objects, rectangular
objects, and completely irregular objects of different sizes; parts of the experimental images
are shown in Figure 10. Through these experiments, it is found that the excited LDDN
is generally located at the edge of the objects, which corresponds to the edge-sensitivity
and the local motion direction selectivity in the human visual system, which demonstrates
that the model has high biological plausibility. According to the experiment results shown
in Table 1, we can find that the accuracy rate is slightly lower when the object is one
pixel, as the object is too small to be confused with the background. This situation is
acceptable because even human naked eye vision has difficulty in accurately determining
the direction of motion of very small objects on a greyscale background. In addition, in all
other cases, the model consisting of LDDN and GDDN shows a high accuracy rate in the
detection of motion direction of the object with different sizes and shapes on the greyscale
background. Based on the above experimental results, we can find that the model has
a high accuracy rate in detecting the motion direction of different objects on a greyscale
background. Moreover, as the size of the object becomes larger and the shape becomes
more complex, the accuracy rate will not decrease. Thus, we are able to conclude that this
model can detect the object motion direction regardless of their shapes and sizes, which
demonstrates high reliability and versatility.
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(a) (b)

Figure 10. Experiments of a 32 pixel sized rectangular object on a greyscale background with random
directional motion. (a) here represent the state of the object before motion movement, and the state
of the object after motion movement. (b) here represents the location as well as number of times the
eight kinds of LDDNs were activated.

Table 1. Experimental results of LDDN and GDDN on motion direction detection with different
scales of objects.The table mainly consists of the data on object size, motion direction and accuracy,
which the arrows representing the eight different motion directions.

Object Size Motion Direction ↑ ↗ → ↘ ↓ ↙ ← ↖ Total

1-pixel
No. of samples 900 900 900 900 900 900 900 900 7200

Correct No. 900 888 882 878 863 846 848 838 6943
Accuracy 100% 98.6% 98% 97.5% 95.8% 94% 94.2% 93.1% 96.4%

2-pixel
No. of samples 3000 3000 3000 3000 3000 3000 3000 3000 24,000

Correct No. 3000 3000 3000 2999 2999 2999 2997 2998 23,992
Accuracy 100% 100% 100% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9%

4-pixel
No. of samples 3000 3000 3000 3000 3000 3000 3000 3000 24,000

Correct No. 3000 3000 3000 3000 3000 3000 3000 3000 24,000
Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

16-pixel
No. of samples 3000 3000 3000 3000 3000 3000 3000 3000 24,000

Correct No. 3000 3000 3000 3000 3000 3000 3000 3000 24,000
Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

32-pixel
No. of samples 3000 3000 3000 3000 3000 3000 3000 3000 24,000

Correct No. 3000 3000 3000 3000 3000 3000 3000 3000 24,000
Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

64-pixel
No. of samples 3000 3000 3000 3000 3000 3000 3000 3000 24,000

Correct No. 3000 3000 3000 3000 3000 3000 3000 3000 24,000
Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

128-pixel
No. of samples 3000 3000 3000 3000 3000 3000 3000 3000 24,000

Correct No. 3000 3000 3000 3000 3000 3000 3000 3000 24,000
Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

256-pixel
No. of samples 3000 3000 3000 3000 3000 3000 3000 3000 24,000

Correct No. 3000 3000 3000 3000 3000 3000 3000 3000 24,000
Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

3.2. Comparison Experiments with CNN under Adding Different Types of Noise

Although LDDN and GDDN can achieve high motion direction detection accuracy on
noise-free grayscale backgrounds, interference information may exist in the background
in some non-ideal situations. In order to further validate the reliability of the model,
several experiments are adopted to verify the noise immunity of this model. To make
the results more convincing, we conduct a series of comparison experiments using the
Convolutional Neuron Network (CNN) as a reference. CNN is considered to be a reasonable
and convincing reference because, in recent years, it has shown impressive performance on
many computer vision problems, and it was also verified in 2017 that it can be applied to
motion direction detection of pedestrians, which has a high accuracy rate. A classical and
representative CNN method called LeNet-5 is used as the reference in our experiments,
and its construction is shown in Figure 11. A convolutional layer with 5× 5 kernel and
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zero padding is used as the first layer, and the number of input and output neurons is 2
and 16, respectively; the second layer is a pooling layer with 5× 5 kernel; the third layer is
still a convolutional layer with a 5× 5 kernel, but the input and output become 16 and 32;
the fourth layer is also a pooling layer with a 5× 5 kernel; the fifth layer is a linear layer
with 8× 8× 32 inputs and outputs. We generate a database of images of 10 different sizes
of objects moving in random directions, 1000 of each size, for a total of 10,000 images. In
the learning phase, 800 images of each size are randomly selected from the database as the
learning data set. During the testing phase, the residual 2000 images will be used as the
testing data set.

Figure 11. Structure of the CNN used in the comparison experiment.

For the comparison experiments, we use the same grayscale image data set as in
the accuracy experiments as the background image, and different percentages of static
background noise are added on them. Static background noise is added by randomly
selecting any number of pixels on the grayscale background which are not in contact with
the objects, and resetting their grayscale value at random. During the motion of objects,
this kind of noise will not change over time. Several parts of the experimental procedure in
the comparison experiments are recorded as Figure 12.

The results of the comparison experiments are summarized in Table 2, and the corre-
sponding linear chart of accuracy rate change is also represented in Figure 13a–d. Based
on the experimental results, we can easily find that both the CNN and LDDN and GDDN
perform well at low noise levels. However, as we continue to increase the noise percentage,
the performance of the CNN becomes poorer. When the noise percentage reaches up to
10%, the detection accuracy rate of CNN with small objects (4∼128 pixels) will decrease by
50–60%, while the detection accuracy rate with large objects (256 pixels) will also decrease
by 30%. When the noise percentage reaches 30%, the detection accuracy rate of CNN for
the small objects has dropped to below 30%, and, for large objects, it is also below 40%,
which is not very ideal. However, for the LDDN with GDDN proposed in this paper, it has
a slightly higher detection accuracy than CNN at low noise percentages. When CNN has a
significant drop in detection accuracy due to the increase in noise percentage, its detection
accuracy only has a small drop and remains above 90%, which proves that the proposed
model has good noise immunity.
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(a)

(b)

Figure 12. (a) Experimental example of an object size of four pixels used for comparison experiments;
(b) experimental example of an object size of 16 pixels used for comparison experiments.

Table 2. Data statistics of the comparison experiments of LDDN and GDDN, and CNN, under the
static background noise.

Noise Type 0% 10% 20% 30%

Proportion LDDN & GDDN CNN LDDN & GDDN CNN LDDN & GDDN CNN LDDN & GDDN CNN

1-pixel 99.18% 61.50% 91.51% 16.50% 83.44% 15.50% 77.11% 15.50%
2-pixel 99.45% 60.50% 94.39% 16.00% 88.77% 15.50% 83.63% 17.00%
4-pixel 99.85% 71.50% 98.14% 21.00% 96.37% 18.00% 94.50% 18.00%
16-pixel 100.00% 85.50% 99.96% 20.00% 99.87% 19.00% 99.72% 17.50%
32-pixel 100.00% 89.50% 99.99% 24.00% 99.91% 20.00% 99.86% 21.00%
64-pixel 100.00% 97.50% 100% 31.00% 100% 25.50% 100% 29.00%

128-pixel 100.00% 97.50% 100% 37.00% 100% 35.50% 100% 31.00%
256-pixel 100.00% 98.50% 100% 62.00% 100% 47.00% 100% 39.00%

(a) (b)

Figure 13. Cont.
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(c) (d)

Figure 13. Line graph which compares the accuracy rates of LDDN and GDDN as well as CNN
in comparison experiments with various percentages of noise added to the grayscale background.
Among these four images, (a) depicts an experiment with the object of 4 pixels, (b) depicts an
experiment with the object of 16 pixels, (c) depicts an experiment with the object of 128 pixels, and (d)
depicts an experiment with the object of 256 pixels.

4. Conclusions and Perspectives

An efficient mechanism for detecting the object motion direction in the grayscale
background is proposed in this paper. The inspiration of this mechanism comes from the
research on DSGCs, which assumes that organisms can process information about object
motion direction in the retinal layer. Though the specific biological mechanism for motion
direction detection of human beings still remains a black box, we refer to the physiological
role of individual neurons and propose the LDDN and GDDN as a possibility. Eight kinds
of LDDN preferred in different directions have been used to scan over a two-dimensional
image in this mechanism; then, the GDDN will analyze the statistics of the scanned results
and infer the global motion direction of the object.

A series of experiments are conducted to verify the validity and reliability of this
mechanism. Experimental results demonstrate that the mechanism can accurately detect
the motion direction of an object on grayscale background regardless of its shapes, sizes,
and conditions. In addition, we also conduct comparison experiments with CNN to further
demonstrate the superiority of this mechanism. The experimental results show that the
proposed mechanism performs better in detecting accuracy and noise resistance than CNN
on the motion direction detection of objects on a grayscale background. Furthermore, this
mechanism is designed according to the real retinal configuration of the living creature,
which is more credible and acceptable than CNN. We believe that this mechanism presents
an acceptable and explainable possibility for the black box of motion direction detection
mechanism in humans, and can provide further inspiration for the study of the human
visual and cerebral nervous systems.

In future work, this research will be extended in various ways. In terms of the
application scope, we will extend the mechanism to motion direction detection on colored
backgrounds. Since colored images can be considered as a special superposition of greyscale
images, detection of object motion on a greyscale background can be the basis for future
motion detection on a colored background. In terms of functionality, this mechanism will be
extended to orientation detection and motion velocity detection of the objects. We believe
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that this mechanism of local detection paired with global detection can be applied to other
functions as well. Furthermore, the application of this mechanism in 3D scenes is also in
the future research program, and the practical application value of this mechanism is also
worth studying.
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