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Abstract: Geometric iteration (GI) is one of the most efficient curve- or surface-fitting techniques
in recent years, which is famous for its remarkable geometric significance. In essence, GI can be
thought of as the sum of iterative methods for solving systems of linear equations, such as progressive
iterative approximation (PIA) which relies on the theory of Richardson iteration. Thus, when the
curve- or surface-fitting error is at a desired level, we want to have as few iterations as possible to
improve efficiency when dealing with large data sets. Based on the idea of successive over-relaxation
(SOR) iteration, we formulate a faster PIA curve and surface interpolation scheme using classical
non-uniform cubic B-splines, named SOR-PIA. The genetic algorithm is utilized to estimate the best
approximate relaxation factor of SOR-PIA. Similar to standard PIA, SOR-PIA can also be regarded as
a process in which the control points move in one direction, but it can greatly reduce the number of
iterations in the iterative process with the same fitting accuracy. By comparing with the standard
PIA and WPIA algorithms, the effectiveness of the SOR-PIA iterative interpolation algorithm can
be verified.

Keywords: progressive iterative approximation; successive over-relaxation iteration; B-spline interpolation

MSC: 65D18; 68U05

1. Introduction

Data fitting is the technique of constructing mathematical curves or surfaces that
best fit a series of data points. Indeed, many novel innovations have emerged in the
area of data-fitting techniques, where GI plays a prominent role given the many excellent
attributes. GI is a geometrically intuitive method that takes data points as initial control
points, adaptively moves along a certain direction through successive iterations, and finally
makes the interpolated curve or surface pass through the given data points. GI has a wide
field of application with bright prospects, and it is very meaningful to propose a faster
iteration strategy for its promotion.

GI originated in the 1970s as a geometrically meaningful iterative method. In 2004, over
20 years later, there was a big breakthrough as Lin derived the profit-and-loss properties
in the process of interpolating with non-uniform cubic B-splines [1], and it was proved in
2006 that the properties are also valid for blending the curve and tensor–product blending
surface with a normalized totally positive (NTP) basis [2]. The strategy generalized in [2]
is known as progressive iterative approximation (PIA), which handles both interpolation
and approximation cases, including the extended PIA (EPIA) [3] and the least squares
PIA (LSPIA) [4,5]). Later, Carnicer et al. [6] realized that PIA, which had significant
geometric implications, was, in fact, essentially the same as Richardson’s iteration [7] for a
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system of linear equations. In 2007, Maekawa et al. [8] proposed a geometric interpolation
technique [8–10], which matches the data points at each iteration of the fitting process
with the parameter values at the nearest points to the fitted curve or surface. This differs
from Richardson’s iteration in that the basis matrix seems to be updated at every iteration.
In view of the similarities between PIAs and geometric interpolation methods in the
iterative process, they are collectively referred to as the geometric iterative methods (GIMs).
Through diversified development, PIA with constraints [11,12] and implicit PIA [13,14] are
also widely studied.

To highlight the value of PIA, many researchers have made efforts in accelerating
the convergence of PIA and broadening the application of PIA in different fields. For
the problem of accelerating PIA, Lu [15,16] derived the optimal weight with the best
iteration convergence rate and named it WPIA. In view of the singularity problem caused
by possible nodes and knots selection in PIA, an optimal combination scheme was provided
in [17]. Indisputably, the PIA approach has been widely extended in many areas. Limit
curves can also be generated for position, tangent, and curvature vectors by assigning
appropriate geometric constraints [18,19]. By modifying the iterative surface, the position,
tangent direction and curvature vector can be interpolated on the isoparametic line at
each knot [20]. Aiming at the problem of large-scale data fitting, Lin presented the LSPIA
method expressed by T-splines [4]. In the field of finite element analysis [21], GIMs are also
utilized to generate hexahedral meshes. This technique restrains the iterative motion of
each vertex in the process of generating hexahedral mesh and ensures that the obtained
hexahedral mesh is effective. Objectively, the iterative speed of LSPIA is independent of the
number of control vertexes, which offers a robust and efficient solution to the tetrahedral
mesh equations for generating an ideal NURBS body [22,23]. More broadly, PIAs have
also been applied to image/video processing [24–26], hand-drawn curve generation [27],
pattern recognition [28], trunk shape modeling [29], and rational curve generation [30].
All of this was outlined in more detail by Lin et al. [31] through two types of models,
interpolating and approximating, and they summarized other broad applications of these
models in academia and engineering.

In terms of the change of iterative format, a novel iterative curve and surface interpo-
lation algorithm with NTP bases using the Hermitian and skew-Hermitian splitting (HSS)
iteration was recently proposed in [32,33]. In contrast, in this paper, we propose another
iteration method that also differs from PIA in the iteration form. In Section 2, we show that
the PIA and WPIA are essentially designed to solve systems of linear equations using an
iterative method. Thus, the matrix iterative format of PIA and WPIA can also be written as
a form of PPPk = BPBPBPk−1 + LLL. Since all these iterative methods have the same size of iteration
matrix BBB and constant term matrix LLL when solving the same problem, we can assume that
they consume the same amount of time per iteration. This also means that the method with
smaller spectral radii iterates faster if the preparation before iteration is not considered,
including the calculation of the matrices BBB and LLL. In this paper, taking non-uniform cubic
B-splines as the fitting tool, we propose a new iterative approximation scheme based on
the SOR iteration method commonly used in mathematics.

The remainder of the paper is arranged as follows: using cubic non-uniform B-splines
as the fitting tool, we revisit the standard iterative format of PIA in Section 2 and briefly
analyze the connections between the standard iterative format and the iterative method of
solving the linear equation system. In Section 3, the successive over-relaxation iteration is
introduced for fitting the problems of iteratively interpolating curves and surfaces, includ-
ing the approximate calculation of the best relaxation factor by the genetic algorithm for
accelerating the convergence speed. Section 4 describes the reliable numerical experimental
results. Section 5 concludes with some summaries and remarks.
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2. Standard PIA Format and Its Analysis

In this section, we revisit the standard PIA iteration scheme for curve and surface
interpolation with our writing. In essence, it is revealed that the standard PIA is equivalent
to solving a system of linear equations.

2.1. Iterative Format of Curve

Given some data points {QQQi}m
i=1, without loss of generality, we compute the values of

the parameters {ui}m
i=1 where u1 = 0 and um = 1 on the initial curve using the accumulative

chord length parameterization method. The knot vector {0 0 0 0 u2 u3 · · · um−1 1 1 1 1}
are used to define cubic non-uniform B-spline basis functions, in which the inner knots are
directly set as parameter values.

Set PPP0
i = QQQi, i = 1, · · · , m, PPP0

0 = PPP0
1, PPP0

m+1 = PPP0
m and construct the initial iteration

curve CCC0(u) = ∑m+1
i=0 PPP0

i Ni,3(u). Assuming that the maximum number of iterations is N,
the iteration formula can be written as

PPPk
i =PPPk−1

i +∆∆∆k−1
i , i = 1, · · · , m; k = 1, · · · , N, (1)

where the difference vector can be calculated as

∆∆∆k−1
i =QQQi −CCCk−1(ui), i = 1, · · · , m; k = 1, · · · , N,

and PPPk
0 = PPPk

1, PPPk
m+1 = PPPk

m.
For the cubic non-uniform B-spline with the above-mentioned conditions, there are

only three nonzero basis functions; therefore, we have

PPPk
i =PPPk−1

i +∆∆∆k−1
i

=PPPk−1
i + (QQQi −CCCk−1(ui))

=PPPk−1
i + (QQQi − PPPk−1

i−1 Ni−1,3(ui)− PPPk−1
i Ni,3(ui)− PPPk−1

i+1 Ni+1,3(ui)).

Rewrite the iterative format in Equation (1) to matrix form as follows:

PPPk = (III −NNN)PPPk−1 +QQQ,

where III is an identity matrix,

NNN =


1 0 0 0 ··· 0

N1,3(u2) N2,3(u2) N3,3(u2) 0 ··· 0
...

...
...

...
...

...
0 ··· 0 Nm−2,3(um−1) Nm−1,3(um−1) Nm,3(um−1)
0 ··· 0 0 0 0 1

,

and PPPk = (PPPk
1, PPPk

2, · · · , PPPk
m)

T , QQQ = (QQQ1, QQQ2, · · · , QQQm)
T .

2.2. Iterative FORMAT of Surface

Given some data points {QQQi,j}m,n
i=1,j=1, without loss of generality, we compute the

values of the parameters {ui, vj}m,n
i=1,j=1, where u1 = v1 = 0 and um = vn = 1 {ui, vj}m,n

i=1,j=1
on the initial surface using the accumulative chord length parameterization method. The
knot vectors {0 0 0 0 u2 u3 · · · um−1 1 1 1 1} and {0 0 0 0 v2 v3 · · · vn−1 1 1 1 1} are used to
define bi-cubic non-uniform B-spline basis functions, in which the inner knots are directly
set as parameter values.

Set PPP0
i,j = QQQi,j, PPP0

i,0 = PPP0
i,1, PPP0

i,n+1 = PPP0
i,n, PPP0

0,j = PPP0
1,j, PPP0

m+1,j = PPP0
m,j, i = 1, · · · , m, j =

1, · · · , n; PPP0
0,0 = PPP0

1,1, PPP0
0,n+1 = PPP0

1,n, PPP0
m+1,0 = PPP0

m,1, PPP0
m+1,n+1 = PPP0

m,n and construct the
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initial tensor-product surface CCC0(u, v) = ∑m+1
i=0 ∑n+1

j=0 PPP0
i,jNi,3(u)Nj,3(v). Assuming that the

maximum number of iterations is N, the iteration formula can be written as

PPPk
i,j =PPPk−1

i,j +∆∆∆k−1
i,j , i = 1, · · · , m; j = 1, · · · , n; k = 1, · · · , N, (2)

where the difference vector refers to

∆∆∆k−1
i,j =(QQQi,j −CCCk−1(ui, vj)), i = 1, · · · , m; j = 1, · · · , n; k = 1, · · · , N,

and PPPk
i,0 = PPPk

i,1, PPPk
i,n+1 = PPPk

i,n, PPPk
0,j = PPPk

1,j, PPPk
m+1,j = PPPk

m,j, i = 1, · · · , m, j = 1, · · · , n;

PPPk
0,0 = PPPk

1,1, PPPk
0,n+1 = PPPk

1,n, PPPk
m+1,0 = PPPk

m,1, PPPk
m+1,n+1 = PPPk

m,n.
For a parameter value, there are only three nonzero basis functions, i.e., there are nine

nonzero tensor products at most, and therefore we have

PPPk
i,j =PPPk−1

i,j +∆∆∆k−1
i,j

=PPPk−1
i,j + (QQQi,j −CCCk−1(ui, vj))

=PPPk−1
i,j + (QQQi,j − PPPk−1

i−1,j−1Ni−1,3(ui)Nj−1,3(vj)

− PPPk−1
i−1,j Ni−1,3(ui)Nj,3(vj)− PPPk−1

i−1,j+1Ni−1,3(ui)Nj+1,3(vj)

− PPPk−1
i,j−1Ni,3(ui)Nj−1,3(vj)− PPPk−1

i,j Ni,3(ui)Nj,3(vj)− PPPk−1
i,j+1Ni,3(ui)Nj+1,3(vj)

− PPPk−1
i+1,j−1Ni+1,3(ui)Nj−1,3(vj)− PPPk−1

i+1,j Ni+1,3(ui)Nj,3(vj)− PPPk−1
i+1,j+1Ni+1,3(ui)Nj+1,3(vj)).

where i = 1, · · · , m, j = 1, · · · , n.
Similarly, rewrite the iterative format in Equation (2) to matrix form as follows:

PPPk = (III −NNN)PPPk−1 +QQQ,

where III is an identity matrix, NNN = NNN1 ⊗NNN2 is the Kronecker product between NNN1 and NNN2,

NNN1 =


1 0 0 0 ··· 0

N1,3(u2) N2,3(u2) N3,3(u2) 0 ··· 0
...

...
...

...
...

...
0 ··· 0 Nm−2,3(um−1) Nm−1,3(um−1) Nm,3(um−1)
0 ··· 0 0 0 1

,

NNN2 =


1 0 0 0 ··· 0

N1,3(v2) N2,3(v2) N3,3(v2) 0 ··· 0
...

...
...

...
...

...
0 ··· 0 Nn−2,3(vn−1) Nn−1,3(vn−1) Nn,3(vn−1)
0 ··· 0 0 0 1

,

and

PPPk = (PPPk
1,1, PPPk

1,2, · · · , PPPk
1,n,PPPk

2,1, PPPk
2,2, · · · , PPPk

2,n, · · · , PPPk
m,1, PPPk

m,2, · · · , PPPk
m,n),

QQQk = (QQQk
1,1, QQQk

1,2, · · · , QQQk
1,n,QQQk

2,1, QQQk
2,2, · · · , QQQk

2,n, · · · , QQQk
m,1, QQQk

m,2, · · · , QQQk
m,n).

2.3. Analysis of Standard PIA Format

Remark 1. The standard PIA iteration format scheme using nonuniform cubic B-splines can be
viewed as decomposing the matrix NNN into NNN = III − (III −NNN), then the following holds

NNNPPP = (III−(III −NNN))PPP = QQQ

⇓
PPP = (III −NNN)PPP +QQQ.
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Replacing PPP on the right-hand side with the initial PPP0 will result in a new control point vector
PPP1 = (III −NNN)PPP0 +QQQ. Further, substituting the newly generated PPP1 into the right-hand side again
will generate another new control vector PPP2. As this process is repeated, we will derive a general
iterative form PPPk = (III −NNN)PPPk−1 +QQQ, k = 1, 2, · · · . Obviously, the iteration coefficient matrix of
the above iterative process should be (III −NNN).

Lemma 1. The standard PIA format for non-uniform cubic B-splines converges.

Proof. Details can be referred to in Ref. [1].

Theorem 1. The standard PIA interpolation for non-uniform cubic B-splines can be regarded as
an iterative method of solving linear equations system.

Proof. Firstly, we know the fact from Remark 1 as follows:

PPPk = (III −NNN)PPPk−1 +QQQ, k = 1, 2, · · · .

Then, take the limit of both ends of the above formula and write as

lim
k→∞

PPPk = (III −NNN) lim
k→∞

PPPk−1 +QQQ. (3)

By Lemma 1, it is determined that the control point sequence definitely converges,
and assuming that limk→∞ PPPk = PPP, Equation (3) can be finally written as NNNPPP = QQQ, which is
obviously a system of equations interpolating non-uniform B-spline curve or surface. Thus,
the standard PIA iteration format is actually an iterative method for solving a system of
linear equations.

3. The Derivation of SOR-PIA

In this section, we formulate the iterative interpolation process of curves and surfaces
on the basis of successive over-relaxation iteration by using non-uniform cubic B-splines
as fitting tools. Compared with the standard PIA iteration method [1,2], successive over-
relaxation iteration significantly reduces the iteration steps in the iteration process.

3.1. The Case of Curve

The requirements are consistent with the initial conditions of the standard PIA it-
eration, such as the initial values of three variables, including node vector, knot vec-
tor and control point vector. In the standard PIA iterative interpolation process, the
calculated PPPk

1, PPPk
2, · · · , PPPk

i−1 is utilized to participate in calculating PPPk
i , then the iterative

curve CCCk−1(u) = ∑m+1
p=0 PPPk−1

p Np,3(u) can be replaced by CCCk,k−1(u) = ∑i−1
p=0 PPPk

pNp,3(u) +

∑m+1
p=i PPPk−1

p Np,3(u), and the iterative scheme of the curve case can be written as

PPPk
i =PPPk−1

i +∆∆∆k,k−1
i , i = 1, · · · , m; k = 1, 2, · · · , (4)

where the difference vector is denoted as

∆∆∆k,k−1
i =QQQi −CCCk,k−1(ui), i = 1, · · · , m; k = 1, 2, · · · .

We then improve on Equation (4) by adding a specific weight ω
Ni,3(ui)

to the iterative
difference vector, where ω is a positive real number, as follows:

PPPk
i =PPPk−1

i +
ω

Ni,3(ui)
∆∆∆k,k−1

i , i = 1, · · · , m; k = 1, 2, · · · . (5)
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It differs from traditional PIA by using PPPk
1, PPPk

2, · · · , PPPk
i−1 that has been computed before

by PPPk
i to participate in computing PPPk

i , and adding a weight ω
Ni,3(ui)

to the iterative difference
vector, which includes the relaxation factor ω.

Expand the difference vector in Equation (5) and write it below:

PPPk
i =PPPk−1

i +
ω

Ni,3(ui)
∆∆∆k,k−1

i

=PPPk−1
i +

ω(QQQi −CCCk,k−1(ui))

Ni,3(ui)

=(1−ω)PPPk−1
i + ω

QQQi − PPPk
i−1Ni−1,3(ui)− PPPk

i+1Ni+1,3(ui)

Ni,3(ui)

,

Thus, Equation (5) can be written in matrix form as follows:

PPPk = (1−ω)PPPk−1 + ωDDD−1
(

QQQ− LPLPLPk −UPUPUPk−1
)

, k = 1, 2, · · · ,

where DDD is a diagonal matrix, LLL is a strictly lower triangular matrix, UUU is a strictly upper
triangular matrix, and DDD + LLL +UUU = NNN.

3.2. The Case of Surface

Similarly, taking PPPk
1,1, · · · , PPPk

1,j, PPPk
2,1, · · · , PPPk

2,j, · · · , PPPk
i−1,1, · · · , PPPk

i−1,j, PPPk
i,1 , · · · , PPPk

i,j−1 that

has been obtained before PPPk
i,j to participate in calculating PPPk

i,j in the standard PIA iteration pro-

cess, then we can replace the iterative surface CCCk−1(u, v) = ∑m+1
p=0 ∑n+1

q=0 PPPk−1
p,q Np,3(u)Nq,3(v)

by CCCk,k−1(u, v) = ∑i−1
p=0 ∑n+1

q=0 PPPk
p,qNp,3(u)Nq,3(v)+∑

j−1
q=0 PPPk

i,qNi,3(u)Nq,3(v)+∑n+1
q=j PPPk−1

i,q Ni,3

(u)Nq,3(v) + ∑m+1
p=i+1 ∑n+1

q=0 PPPk−1
p,q Np,3(u)Nq,3(v). The iterative format of the surface can be

summarized as

PPPk
i,j =PPPk−1

i,j +∆∆∆k,k−1
i,j , i = 1, · · · , m; j = 1, · · · , n; k = 1, 2, · · · , (6)

where the difference vector refers to

∆∆∆k,k−1
i,j =QQQi,j −CCCk,k−1(ui, vj), i = 1, · · · , m; j = 1, · · · , n; k = 1, 2, · · · .

We then improve on Equation (6) by adding a specific weight ω
Ni,3(ui)Nj,3(vj)

to the

iterative difference vector, where ω is a positive real number, as follows:

PPPk
i,j =PPPk−1

i,j +
ω

Ni,3(ui)Nj,3(vj)
∆∆∆k,k−1

i,j , i = 1, · · · , m; j = 1, · · · , n; k = 1, 2, · · · , (7)

The iterative process expressed in Equations (5) and (7) has great significance in the
progressive iterative approximation, which is called SOR-PIA.

Similarly, Equation (7) can also be rewritten as in the case of curves as follows:

PPPk
i,j = PPPk−1

i,j +
ω

Ni,3(ui)Nj,3(vj)
∆∆∆k,k−1

i,j

= PPPk−1
i,j +

ω(QQQi −CCCk,k−1(ui, vj))

Ni,3(ui)Nj,3(vj)

= (1−ω)PPPk−1
i,j + ω

(
QQQi,j − PPPk

i,j−1Ni,3(ui)Nj−1,3(vj)− PPPk−1
i,j+1Ni,3(ui)Nj+1,3(vj)−

∑
j+1
q=j−1((PPP

k
i−1,q Ni−1,3(ui) + PPPk−1

i+1,q Ni+1,3(ui))Nq,3(vj))

)
Ni,3(ui)Nj,3(vj)

.



Mathematics 2022, 10, 3766 7 of 17

When i = 1, 2, · · · , m, j = 1, 2, · · · , n, Equation (7) can also be written in matrix form

PPPk = (1−ω)PPPk−1 + ωDDD−1
(

QQQ− LPLPLPk −UPUPUPk−1
)

, k = 1, 2, · · · ,

where NNN = NNN1 ⊗NNN2, DDD is a diagonal matrix, LLL is a strictly lower triangular matrix, UUU is a
strictly upper triangular matrix, and DDD + LLL +UUU = NNN.

3.3. Computing the Relaxation Factor

According to Sections 3.1 and 3.2, the matrix form of SOR-PIA for non-uniform cubic
B-spline interpolation can be uniformly written as

PPPk =(1−ω)PPPk−1 + ωDDD−1
(

QQQ− LLLPk −UUUPk−1
)

=(DDD + ωLLL)−1((1−ω)DDD−ωUUU)PPPk−1 + ω(DDD + ωLLL)−1QQQ, k = 1, 2, · · · .
(8)

Denoting BBBω = (DDD + ωLLL)−1((1−ω)DDD−ωUUU) and lllω = ω(DDD + ωLLL)−1QQQ, we can
express Equation (8) as

PPPk = BBBωPPPk−1 + lllω, k = 1, 2, · · · , (9)

where BBBω is the iteration coefficient matrix and obviously ρ(BBBω) ≥ |ω− 1|. If the sequence
of control points {PPPk} converges, then |ω− 1| ≤ ρ(BBBω) < 1, i.e., 0 < ω < 2.

The speed of SOR-PIA is closely related to the relaxation factor. Generally speaking,

(1) 1 < ω < 2 means over-relaxation;
(2) 0 < ω < 1 means under-relaxation.

At present, there is no explicit method for automatically calculating the exact relaxation
factor. This is usually done by taking multiple different values in [0, 2] and comparing them.
Our approach provides a way to find an optimal relaxation factor by using an adaptive
genetic algorithm. Firstly, we must to determine the evaluation criteria for the effectiveness
of each iteration. Let the error of the k-th iterative interpolation of a curve or surface be

Ek =


m
∑

i=1
‖CCCk,k−1(ui)−QQQi‖2

m
∑

i=1

n
∑

j=1
‖CCCk,k−1(ui, vj)−QQQi,j‖2

, k = 1, 2, · · · . (10)

Although the relaxation factor 0 < ω < 2 is a necessary condition for iterative
convergence, it does not guarantee that all of the relaxation factor in (0, 2) can lead to
convergence of the iteration, thus we introduce the average convergence rate to evaluate
the effect of the relaxation factor on the convergence rate of the SOR-PIA method. Combined
with Equation (10), an objective function for solving the relaxation factor can be constructed
as follows, where the variables are the relaxation factor, and the function value is the
average convergence rate within arbitrary j iterations starting from the i iteration.

g(ω, i, j) =
1

j + 1

i+j

∑
k=i

Ek+1
Ek

(11)

We can then use Equation (11) as an objective function to apply the genetic algorithm to
search for suitable relaxation factor. In this paper, we take i = 0 and j = 9 in Equation (11).
The reason for our choice is that the rate of convergence in the early stage of convergence is
faster than that in the later period and a good solution is easier to stand out. What we need
to pay attention to is that the genetic algorithm is only a heuristic algorithm and cannot
guarantee the absolute optimal solution, but in the absence of other effective methods, it
can be regarded as a feasible scheme.
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4. Experiments

In this section, we aim to illustrate the effectiveness of the proposed SORPIA method
with several examples and compare it with the PIA method in Refs. [1,2] and the WPIA
method in Ref. [6]. These data sets include six synthetic data sets and a real scanned face
point cloud data set.

4.1. Iterative Interpolation on Six Synthetic Data

First of all, we provide a detailed description of these synthetic test examples as
follows:

• Curve example 1: 23 data points sampled from the B-spline curve resembling a
musical symbol;

• Curve example 2: 12 data points constructed by us, which are in the shape of a
two-dimensional spiral;

• Curve example 3: 32 data points sampled on a three-dimensional spiral curve.

• Surface example 1: This is a practical example of a blue and white porcelain. We hope
to reconstruct it by interpolating 47 data points.

• Surface example 2: There are 63 sampling data points of the mountain terrain.
• Surface example 3: 121 data points obtained from the transformation of data points

sampled from the probability density function of the two-element Gauss distribution.

These data sets are rich enough to represent the majority of the cases, enabling us to
have a strong convincing force.

4.1.1. Experimental Results

The final iterative process of PIA, WPIA, and SOR-PIA proposed by us can all be
written in the form of PPPk = BPBPBPk−1 + LLL, k = 1, 2, · · · , which consist of an iterative matrix BBB
and a constant vector LLL with the same size in the three methods for the same iterative inter-
polation problem. It can be seen from the above formula, assuming the same experimental
conditions, that the running time taken for the computer calculations of each iteration of
the three methods is equal. So the iterative speed of the three methods can be estimated by
observing the error value of each iteration. Therefore, in the next numerical experiments,
the error values of various methods in different iteration level are used as a criterion to
judging the speed of convergence.

Before the comparison experiments, we calculated the relaxation factor of SOR-PIA in
advance by performing the genetic algorithm solution strategy mentioned in the previous
section. In the next subsection, we will discuss the relaxation factor in detail. In order to
verify that SOR-PIA is convergent, for each example, we have given the visualizations at
different levels of iteration and the final interpolation, as shown in Figures 1–6, and the
error value after each iteration is given simultaneously. Since the shape after only a few
iterations is very close to that of the complete interpolation, we only show the visualizations
of previous iterations.
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(a) 0 step, E = 3.71× 101 (b) 1 step, E = 9.88× 100 (c) 2 step, E = 2.63× 100

(d) 3 step, E = 2.77× 10−1 (e) 4 step, E = 1.60× 10−1 (f) Final interpolation

Figure 1. Iterative interpolation of curve example 1.

(a) 0 step, E = 1.11× 102 (b) 1 step, E = 2.76× 101 (c) 2 step, E = 7.40× 100

(d) 3 step, E = 2.03× 100 (e) 4 step, E = 5.66× 10−1 (f) Final interpolation

Figure 2. Iterative interpolation of curve example 2.
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(a) 0 step, E = 1.66× 102 (b) 1 step, E = 3.07× 101 (c) 2 step, E = 7.69× 100

(d) 3 step, E = 1.90× 100 (e) 4 step, E = 4.62× 10−1 (f) Final interpolation

Figure 3. Iterative interpolation of curve example 3.

(a) 0 step, E = 1.49× 102 (b) 1 step, E = 6.13× 101 (c) 2 step, E = 2.79× 101 (d) 3 step, E = 1.22× 101

(e) 4 step, E = 5.08× 100 (f) 5 step, E = 2.04× 100 (g) 6 step, E=7.48×10−1 (h) Final interpolation

Figure 4. Iterative interpolation of surface example 1.
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(a) 0 step, E = 3.49× 103 (b) 1 step, E = 1.41× 103 (c) 2 step, E = 5.74× 102 (d) 3 step, E = 2.49× 102

(e) 4 step, E = 1.07× 102 (f) 5 step, E = 4.64× 101 (g) 6 step, E = 1.69× 101 (h) Final interpolation

Figure 5. Iterative interpolation of surface example 2.

(a) 0 step, E = 1.09× 103 (b) 1 step, E = 5.85× 102 (c) 2 step, E = 1.38× 102 (d) 3 step, E = 5.08× 101

(e) 4 step, E = 1.95× 101 (f) 5 step, E = 7.75× 100 (g) 6 step, E = 3.19× 100 (h) Final interpolation

Figure 6. Iterative interpolation of surface example 3.

Figure 7 shows the comparison of errors of various methods in different iteration
levels, where PIA is the standard iteration method, WPIA is the PIA method plus an
accelerated weight, and SOR-PIA is our method plus a relaxation factor calculated by the
genetic algorithm, and three ordinal numbers 1, 2, and 3 correspond to three examples of
curves and surfaces, respectively. In view of the different convergence rates of iterative
interpolation for curves and surfaces, we choose to observe the convergence of iterative
interpolation of curves and surfaces in the 15 and 25 generations, respectively. For an
example in Figure 7a, although PIA or WPIA dropped rapidly in the third iteration, SOR-
PIA was surpassed after the fourth iteration. In Figure 7b, SOR-PIA is excellent from the
beginning to the end. Through the comparison of the convergence process of six examples,
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in general, at the same error level, the number of iterations consumed by SOR-PIA is less
than that of PIA and WPIA. This shows the feasibility and effectiveness of our method.

(a) curve (b) surface

Figure 7. Errors comparison among PIA, WPIA and SOR-PIA at different iterative levels.

4.1.2. Relaxation Factors

In this paper, the binary coded genetic algorithm is used to calculate the relaxation
factor. Owing to the relaxation factor being a single variable and its search range (0, 2)
being relatively small, we choose the size of the population and the maximum numbers of
genetic generations are 20 and 50, respectively. The program implementations of genetic
operators, including selection, crossover, and mutation, can refer to the Matlab GA toolbox,
and are not repeated here.

In Table 1, we give the relaxation factors of six examples calculated by the genetic
algorithm. For each example, the relaxation factor is calculated only before the iteration,
and it is not calculated at every iteration. In addition, to demonstrate that the relaxation
factors calculated by the genetic algorithm is approximately optimal, we choose nine values
uniformly in the feasible region (0, 2), and use them to test every example. As shown in
Figure 7, we choose to observe in 15 and 25 generations, respectively, here. We find that
the relaxation factor calculated by the genetic algorithm is the best in the performance of
the average convergence rate in Figure 8, which also shows that the genetic algorithm is
effective in estimating the relaxation factor. Note: the convergence rate of each generation is
the ratio of the error of the next iteration to the error of the next iteration, which means that the
smaller the convergence rate value is, the faster the convergence rate will be. In Figure 8, each color
represents a relaxation factor, the ordinate represents the convergence rate, and the abscissa refers to
the number of iterations.

Table 1. Relaxation factors of six examples.

Example 1 Example 2 Example 3

curve 1.043 680 1.065 079 1.029 709
surface 1.101 226 1.095 775 1.100 466
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(a) curve 1 (b) curve 2 (c) curve 3

(d) surface 1 (e) surface 2 (f) surface 3

Figure 8. The performance of convergence rate with different relaxation factors; black stars represent
the case of the relaxation factor calculated by genetic algorithm.

4.1.3. Elapsed Time Comparison

To illustrate the comparison of convergence rates more intuitively, the elapsed time
and iteration steps taken by various methods to achieve the same given error precision are
recorded here. To make a more comprehensive evaluation, we set different error precision
for the six examples, namely, 1 × 10−6, 1 × 10−9 and 1 × 10−12 for curve and 1 × 10−3, 1
× 10−6 and 1 × 10−9 for surface. Assuming that the elapsed time and iteration steps are
abbreviated as ET and IS, respectively, we present the experimental results in Tables 2 and 3,
in which time is measured in seconds. As can be seen from Tables 2 and 3, SOR-PIA requires
fewer iterations and less time to achieve the same error precision compared to PIA and
WPIA, and has a significant lead.

Table 2. The elapsed time and iteration steps on curve examples.

Curve Precision
PIA WPIA SOR-PIA

ET IS ET IS ET IS

1
1 × 10−6 2.42 × 10−3 37 1.52 × 10−3 22 6.06 × 10−4 12
1 × 10−9 2.45 × 10−3 54 2.42 × 10−3 32 7.51 × 10−4 16
1 × 10−12 3.09 × 10−3 71 1.89 × 10−3 41 9.54 × 10−4 21

2
1 × 10−6 1.65 × 10−3 38 9.30 × 10−4 22 3.56 × 10−4 10
1 × 10−9 1.34 × 10−3 55 1.72 × 10−3 32 3.42 × 10−4 13
1 × 10−12 1.69 × 10−3 71 1.07 × 10−3 42 3.75 × 10−4 15

3
1 × 10−6 1.47 × 10−2 34 1.55 × 10−2 20 9.89 × 10−4 12
1 × 10−9 5.40 × 10−3 50 4.88 × 10−3 30 2.81 × 10−3 18
1 × 10−12 5.04 × 10−3 67 3.38 × 10−3 39 1.46 × 10−3 23
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Table 3. The elapsed time and iteration steps on surface examples.

Surface Precision
PIA WPIA SOR-PIA

ET IS ET IS ET IS

1
1 × 10−3 3.47 × 10−2 58 1.97 × 10−2 31 1.01 × 10−2 11
1 × 10−6 5.89 × 10−2 107 3.00 × 10−2 56 9.28 × 10−3 16
1 × 10−9 7.82 × 10−2 158 4.31 × 10−2 83 1.11 × 10−2 22

2
1 × 10−3 4.36 × 10−2 100 2.35 × 10−2 53 6.82 × 10−3 14
1 × 10−6 6.40 × 10−2 150 3.53 × 10−2 80 1.04 × 10−2 20
1 × 10−9 8.60 × 10−2 201 4.60 × 10−2 107 1.20 × 10−2 26

3
1 × 10−3 6.64 × 10−2 67 9.36 × 10−2 35 1.53 × 10−2 14
1 × 10−6 1.09 × 10−1 116 6.13 × 10−2 61 2.22 × 10−2 22
1 × 10−9 1.58 × 10−1 166 8.46 × 10−2 87 2.73 × 10−2 28

4.2. Iterative Interpolation on the Scanned Face Data

Except for the six synthetic examples given above, we also performed experiments on
a scanned face dataset. The original point cloud data contained 84,461 data points, which
were simplified and reduced to 4761 data points as shown in Figure 9a for more efficient
iteration. More generally, we just take the relaxation factor of SOR-PIA to be 1. Then, the
interpolation results of 20-th iteration employing three methods are shown in Figure 9.
Unfortunately, due to the density of data points and the free expression of B-splines on
surfaces, it is difficult to distinguish the differences between them with the naked eye, so
we marked the fitting errors at the corresponding positions. The bar charts of each iteration
of three methods within 20 iterations are drawn in Figure 10, from which it can be seen that
the convergence rate of SOR-PIA is much higher than that of PIA and WPIA.

Moreover, the elapsed time and iteration steps of the three methods under various
error precision in the scanned face dataset are counted in Table 4. Here, the elapsed time not
only refers to that of the iterative process, but also includes the elapsed time of calculating
the iteration matrix in advance. We can see that WPIA does not necessarily save more time
than PIA due to the need to calculate the optimal iteration weight.

(a) Data points (b) Initial surface, E = 4.99× 102

(c) PIA, E = 2.75× 100 (d) WPIA, E = 1.27× 100 (e) SOR-PIA, E = 6.56× 10−4

Figure 9. The scanned face data and interpolation results of three methods.
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Figure 10. The iterative error comparison of three methods on the scanned face data.

Table 4. The elapsed time and iteration steps on scanned data.

Precision
PIA WPIA SOR-PIA

ET IS ET IS ET IS

1 × 10−3 4.73 × 100 80 2.56 × 101 50 3.10 × 100 19
1 × 10−6 8.06 × 100 137 2.72 × 101 80 3.63 × 100 32
1 × 10−9 1.13 × 101 194 2.87 × 101 110 4.35 × 100 45

5. Conclusions

There are two types of SOR-PIA iterative methods: one is the one-by-one iteration,
where the iteration of the second control point needs to follow the iteration of the first
control point, the iteration of the third control point need to follow the iteration of the
first and second control points, then continues to progress until the iteration of all control
points is completed; the other is to calculate the iterative matrix before the iteration, where
the iterative process can be written as a matrix form Pk = BPk−1 + L, and it can perform
parallel computing. The disadvantage of the first iterative method is that it cannot perform
parallel computing, but only one set of iterative variables is needed in the case such that the
PIA must have two sets of iterative variables. Although the second method needs much
time to calculate the iterative matrix, the iteration process is very fast owing to the spectral
radius of the SOR-PIA iterative matrix being much less than that of PIA.

The above experimental results show that the proposed SOR-PIA method for the
iterative interpolation of non-uniform cubic B-spline curves and surfaces is feasible and
effective with the same error level, and the number of iterations is much less than that of
PIA and WPIA. In the future, we will try to find an effective and quick method to calculate
the relaxation factor and prove its convergence theoretically.
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Abbreviations
The following abbreviations are used in this manuscript:

GI Geometric Iteration
PIA Progressive Iterative Approximation
WPIA Weighted Progressive Iterative Approximation
SOR Successive Over-Relaxation
SOR-PIA Successive Over-Relaxation Progressive Iterative Approximation
NTP Normalized Totally Positive
HSS Hermitian and Skew-Hermitian Splitting
EPIA Extended Progressive Iterative Approximation
LSPIA Least Squares Progressive Iterative Approximation
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