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Abstract: Tracking of hypersonic glide vehicles (HGVs) by a constellation tracking and observation
system is an important part of the space-based early warning system. The uncertainty in the maneuver
intentions of HGVs has a non-negligible impact on the tracking and observation process. The
cooperative scheduling of multiple satellites in an environment of uncertainty in the maneuver
intentions of HGVs is the main problem researched in this paper. For this problem, a satellite
constellation tracking decision method that considers the HGVs’ maneuver intentions is proposed.
This method is based on building an HGV maneuver intention model, developing a maneuver
intention recognition and prediction algorithm, and designing a sensor-switching strategy to improve
the local consensus-based bundle algorithm (LCBBA). Firstly, a recognizable maneuver intention
model that can describe the maneuver types and directions of the HGVs in both the longitudinal and
lateral directions was designed. Secondly, a maneuver intention recognition and prediction algorithm
based on parallel, stacked long short-term memory neural networks (PSLSTM) was developed to
obtain maneuver directions of the HGV. On the basis of that, a satellite constellation tracking decision
method (referred to as SS-LCBBA in the following) considering the HGVs’ maneuver intentions was
designed. Finally, the maneuver intention prediction capability of the PSLSTM network and two
currently popular network structures: the multilayer LSTM (M-LSTM) and the dual-channel and
bidirectional neural network (DCBNN) were tested for comparison. The simulation results show
that the PSLSTM can recognize and predict the maneuver directions of HGVs with high accuracy. In
the simulation of a satellite constellation tracking HGVs, the SS-LCBBA improved the cumulative
tracking score compared to the LCBBA, the blackboard algorithm (BM), and the variable-center
contract network algorithm (ICNP). Thus, it is concluded that SS-LCBBA has better adaptability to
environments with uncertain intentions in solving multi-satellite collaborative scheduling problems.

Keywords: satellite constellation tracking system; hypersonic glide vehicles; maneuver intention
prediction; sensor-switching strategy; parallel stacking neural network

MSC: 90C39

1. Introduction
1.1. Satellite Constellation Tracking System

Due to the capacity to continuously track and observe moving targets in space across
the entire airspace, satellite constellation tracking systems have gained considerable in-
terest in recent years [1]. The U.S. Space Development Agency’s (SDA) draft solicitation
mentioned a global missile tracking space sensor satellite constellation of 28 satellites.
The satellite constellation tracking system is composed of a group of low-orbiting satel-
lites carrying infrared tracking sensors. Each satellite tracks moving targets in space via
a narrow-view infrared sensor. The flight process of moving targets in space, such as
hypersonic glide vehicles (HGVs), is long, and the tracking of targets by satellites needs
to cover the whole flight process of the targets. The whole tracking process requires the
relay between multiple satellites. The cooperative scheduling of multiple satellites is a key
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issue of current research. The continuous tracking of moving targets in space by multiple
satellites is influenced by the target’s maneuverability. The HGVs have gained considerable
interest in recent years because of their high speed and high maneuverability. The coher-
ence of satellite tracking can be greatly affected by their maneuver uncertainty. Therefore,
this paper addresses the problem of cooperative tracking of HGVs by constellations.

1.2. HGV Maneuver Intention Prediction

HGVs typically use the boost-glide-dive flight mode, in which the vehicle is in the
gliding phase during most of the flight time [2–4]. The gliding of HGVs is non-inertial,
with higher flight speed, lower flight altitude, and stronger maneuverability than inertial
trajectory targets [5].

Numerous scholars and laboratories have researched to solve the flight track prediction
problem of HGVs. The main research directions include adaptive filtering algorithms [6–11]
and interacting multiple model algorithms. For actual trajectories that are comparable to
the model’s trajectory, the single-model adaptive filtering algorithm has a high prediction
accuracy [12]. However, it has a low prediction accuracy for trajectories with high uncer-
tainty and different combinations of maneuver sequences. The interacting multiple model
algorithm (IMM) [13] can infer similar models in the established model set based on the
target observations and their associated computational quantities. Suitable models are
selected for track prediction in different flight phases of the target. At present, the geo-
graphic location model and aerodynamic model of HGVs are well established, which can
constitute the conventional maneuver model of HGVs [1,14,15]. In order to adapt the model
set to all possibilities of the maneuver sequences, the number of models in the model set
becomes increasingly large, and the complexity of the probability transfer matrix required
for model selection increases. As a result, computational speed and dynamic performance
are degraded. The probabilistic transfer matrix cannot accurately describe the uncertainties
of the target maneuver strategy, so the interacting multiple model algorithm gradually
becomes difficult to adapt to the increasingly complex maneuver form of HGVs. Therefore,
in recent years, machine learning approaches have been increasingly adopted to solve the
trajectory prediction problem for HGVs [16,17]. Herein, a convolutional neural network
(CNN) and a long short-term memory network (LSTM) are combined into a classification
network to classify the trajectories of HGVs. Then prediction networks such as LSTM [18],
gated recurrent units (GRU), and bidirectional recurrent neural networks (Bi-RNNs) [19]
are applied to the trajectory prediction problem of HGVs in the absence of a large set
of models.

A satellite constellation tracking system relies on the calculations of the HGVs trajec-
tory prediction algorithm for mission planning. Although the research on the trajectory
prediction of HGVs has become increasingly mature, the uncertainty problem of ma-
neuver sequences still has a large impact on trajectory prediction and tracking mission
planning [20–22]. Therefore, the study of the uncertainty problem of maneuver intention
sequences of HGVs has been gradually developed [23]. Theoretical trajectory generation of
HGVs consists of design, optimization, and control processes, and each of its maneuvers is
purposeful. Maneuver intentions can be divided into two categories according to the direc-
tion: longitudinal maneuver intentions and lateral maneuver intentions. These two types
of maneuver intentions each have certain laws and are strongly coupled with each other.

A recurrent neural network (RNN) is a chain network structure consisting of connected
recurrent units [24]. RNN is capable of handling time sequence information problems,
but there is gradient disappearance and gradient explosion during the training process.
Long short-term memory (LSTM) is a variant of the RNN with a special gate mechanism.
It effectively solves the gradient disappearance problem that occurs during the training
of traditional RNN for long time sequences [25]. The LSTM network provides feature
extraction, memory functionality and high-dimensional information processing [26]. More-
over, the stacking layer mechanism can enhance the power of the LSTM to cope with
more complex recognition and prediction problems of temporal correlation. In addition,
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using multilayer LSTM networks to predict the target maneuver type is also a current
maneuver intention prediction method with strong adaptability and high prediction ac-
curacy [18]. The LSTM network can be used to approximate the dynamic relationships
between aerodynamic parameters and displacements by aerodynamic analysis of HGVs at
variable Mach numbers and mean angles of attack. In summary, the establishment of the
maneuver intention model for HGVs is mainly based on maneuver intent type modeling.
The consideration of longitudinal and lateral maneuver magnitudes mainly relies on the
artificial classification of trajectories into several classes, which are then recognized by
LSTM networks [27]. A multi-channel neural network is a parallel connection of multi-
ple single-channel neural networks. Each channel extracts different patterns in the time
sequences, and then the outputs of multiple channels are fused together to achieve the
recognition and prediction of complex temporal relationships [19]. In this paper, in solv-
ing the recognition and prediction problem of maneuver intention sequences of HGVs,
the number of stacked network layers is adjusted on the basis of multilayer LSTM networks
to improve the recognition and prediction accuracy. Then, multiple LSTM networks are
connected in parallel by using multi-channel neural networks. Each channel extracts the
temporal association information of different time steps, and then the features of multiple
time steps are fused to obtain rich trajectory features, and then the maneuver intention
results are obtained by the fully connected network.

1.3. The Distributed Task Planning Algorithm

The mission planning algorithms of the satellite constellation tracking system primarily
include centralized [28–30] and distributed planning [31,32]. All tasks in centralized
task planning are scheduled by a main controller. The main controller needs to collect
information from all satellites and provide planning solutions for them. The communication
lag and delayed responsiveness in the real time limit centralized mission planning restrict
its ability to adapt to the trajectories of highly maneuverable HGVs.

Distributed task planning algorithms include multi-agent task planning algorithms [33–36],
auction-based planning algorithms [37], and consensus-based planning algorithms [38–40].
Among these, the consensus-based task planning algorithms have superior planning results
and the fastest convergence [38]. The LCBBA is a mature and well-performing consensus
algorithm [41]. The first two of these groups of methods require the selection of the in-
formation hub satellite in the constellation. Each satellite exchanges information with the
information hub satellite to negotiate a planning solution. The consensus-based mission
planning algorithm does not have an information hub and a main controller. In order to
reach the global goal eventually, each satellite in the constellation needs to follow the same
process, including self-evaluation, the satisfaction of local constraints, communication,
and cooperation [42]. Considering the dynamic nature of the satellite’s own state infor-
mation and mission information in the actual mission, there are differences in the state
information of other satellites collected by each satellite. Therefore, the LCBBA considers
a local consensus based on the consensus-based bundle algorithm (CBBA) [41], which is
suitable for the actual situation in satellite constellation tracking systems.

During the relay tracking of a target by two satellites, the reassigned satellite needs to
choose a suitable time to continue tracking the target before the previous satellite ends its
observation. The target’s trajectory varies with time and has a high degree of uncertainty.
A satellite’s visibility of the target is affected by the uncertainty of the target trajectory and
affects the selection of the handover satellite and handover time. Therefore, it is necessary to
consider the uncertainty of the target trajectory in the mission decision method. Previously,
a cooperative task scheduling algorithm to handle multiple autonomous satellite systems
was proposed [35]. The algorithm was designed with a dynamic-distributed structure and
a single-satellite scheduling algorithm that balances the robustness and stability of the
system. The algorithm was also applied to two autonomous coordination mechanisms,
the improved contact network protocol (ICNP) and the blackboard model (BM), and useful
conclusions were obtained. In addition, adding the robustness parameter to the value
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function is a way to improve the ability of the LCBBA to adapt to the target’s uncertainty.
In this paper, we consider the uncertainty of the maneuver intentions of HGVs and add
an uncertainty factor to the value function of the satellite-independent decision. Sensor-
switching strategies are then designed to accommodate the effects of target maneuvers on
satellite visibility.

1.4. Research Content

In this paper, the research aims to solve the tracking problem of a satellite constellation
tracking system for HGVs. This study’s main research components and critical contri-
butions are as follows: (a) A learnable maneuver intention dynamics model for HGVs
was established. (b) A parallel-stacked LSTM neural network (PSLSTM) was designed to
recognize and predict the maneuver sequence of the HGV. (c) An intention uncertainty
factor is added to make the satellite consider the uncertainty of the target’s maneuver
intention when selecting the target. On the basis of that, a sensor-switching strategy is
designed to guide the satellite in choosing the timing of the handover.

In the simulation analysis, the maneuver intention prediction capability of the PSLSTM
network and two currently popular network structures: the multilayer LSTM (M-LSTM)
and the dual-channel and bidirectional neural network (DCBNN) were tested for compari-
son. From the comparison results, it can be seen that PSLSTM recognizes the maneuver
types of HGVs with more than 96% accuracy and has a higher accuracy of the maneuver
intention prediction. Then SS-LCBBA was compared with three advanced distributed
mission planning algorithms, LCBBA, BK and ICNP, in a satellite constellation tracking
scenario. From the value function curve, SS-LCBBA improved the cumulative tracking
score by 5–10% in the task of tracking HGV. It can be seen that SS-LCBBA has better tracking
performance for HGVs in the multi-satellite collaborative scheduling problem.

The subsequent sections of this paper are organized as follows: In Section 2, a ma-
neuver intention model for HGVs is established. In Section 3, a parallel-stacked LSTM
neural network for maneuver intention prediction of HGVs is designed. In Section 4,
the performances of three parallel forms of intention prediction networks are compared.
Then, the SS-CBBA algorithm is compared to three baseline algorithms. In Section 5,
the concluding part of this paper’s research is discussed.

2. Establishing and Recognizing the Maneuver Intention of HGVs

This section first establishes the maneuver intention model. To solve the partial
complexity problem of intention recognition and prediction, the maneuver intentions of
the HGV are decomposed into four intention parameters with weak correlations. These
results for each parameter have simple regularity. Finally, the parallel-stacked LSTM neural
network (PSLSTM) is designed to recognize and predict the intention parameters.

2.1. Establishing the Maneuver Intention Model

The HGV at the i-th maneuver intention can be described as a combination of intent
elements Ai

1, Ai
2, Ai

3, and Ai
4, where the superscript represents the number of maneuver

intention sequences. Its ranges are from 0 to the entire flight of the HGV. The subscript
represents the intention parameter sequence number.

2.1.1. The Longitudinal Intention Model

As shown in Figure 1, T is the flight time and H is the altitude of the HGV. The longitu-
dinal maneuver intention types are divided into two categories, quasi-equilibrium gliding
(QEG) and skip gliding (SG). The first maneuver intention parameter is used to describe
the longitudinal maneuver intention type in the following form.

Ai
1 =

{
0, QEG
1, SG

(1)
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Figure 1. The schematic diagrams of SG and QEG.

Since the difference between QEG and SG trajectories is obvious, the Ai
2 intention

parameter is calculated differently.
When an HGV’s longitudinal maneuver is intended to be QEG (Ai

1 = 0), γ̇ ≤ 0 is
maintained during the flight and the flight-path angle γ is negative and monotonically
non-incremental. Here γ̇ is the rate of change of γ.

In this paper, the rate of change is defined as follows: the rate of change is the first
order derivative of the variable x with respect to time t, denoted as:

ẋ =
∂x
∂t

(2)

The rate of change in altitude of HGV is described as:

ḣ = v ∗ sin(γ) (3)

where v is the velocity. As such, the relationship between ḣ− v is determined by sin(γ).
Therefore, sin(γ) is chosen as the characteristic parameter Ai

2 in the QEG maneuver inten-
tion. Ai

2 is denoted as:
Ai

2 = sin(γ) (4)

When the longitudinal maneuver intention is SG (Ai
1 = 1), the HGV repeatedly makes

slide over movements. The flight-path angle is not monotonic. Therefore, ignoring the
Earth’s rotation, The variation of γ with time is as follows:

γ̇ =
L cos σ

mv
+

v
r

cos γ− g
v

cos γ (5)

where L is the lift force, g = 9.81 m/s2 is the gravitational acceleration, m is the mass of the
vehicle, and σ is the bank angle. γ̇ is a visual representation of the longitudinal maneuver
intention of HGVs. As seen from the above equation, the parameters mainly include the
longitudinal component of the lift force L cos σ, v, and m. As the parameters in the second
and third terms of Equation (5) are all observable measurements, the first term L cos σ

mv is
used in this paper as the characteristic parameter Ai

2 in the SG maneuver intention, which
is written as:

Ai
2 =

L cos(σ)
mv

(6)

2.1.2. The Lateral Intention Model

σ is a visual description of the maneuver direction. The sign of σ is opposite to the
maneuver direction of the trajectory. Thus, the lateral maneuver intention parameter Ai

3 is
written as:
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Ai
3 = sign(−σ)

=


−1, σ > 0
0, σ = 0
1, σ < 0

(7)

The HGVs researched in this paper are unpowered gliding vehicles; hence, the lateral
maneuver is realized by changing the HGV’s attitude. Thus, σ and the lateral component
of the lift force on the vehicle is the visual representation of the lateral maneuver intention
of the vehicle. As such, the lateral maneuver intention parameter Ai

4 is denoted as:

Ai
4 =

L sin(σ)
mv cos(γ)

(8)

where L, σ, and m are unobservable measurements, and v and γ are observable measure-
ments.

2.2. Parallel-Stacked LSTM Neural Network

The LSTM algorithm solves the long-term dependency problem of the traditional
RNN algorithm. Furthermore, the gate setting also effectively solves the gradient disap-
pearance and gradient explosion problems. The LSTM algorithm is suitable for learning
and memorizing the temporal relationships in long sequence data. To enrich the fitting
ability of LSTM, three LSTM network layers are stacked into a multilayer network using
multilayer neural networks. A multilayer LSTM network connected in series is called a
single-channel LSTM network. The maneuver intention sequences of HGVs have a short-
time strong correlation. However, the LSTM learns and remembers all the data input to
the network, including the sequence of maneuver intentions for the full time of HGVs.
To force the network to focus on the short-term interdependence between data without
losing its long-term memory capability, single-channel LSTM networks are connected in
parallel using multi-channel neural networks. The network structure of PSLSTM is shown
in Figure 2.

FC1

t
Seq

LS1

LS2

LS3

FC2

1tSeq
-

LS4

LS5

LS6

FC3

2tSeq
-

LS7

LS8

LS9

FC4

Softmax/Empty

Classification 

layer/Regression layer

Stacked 

LSTM 

Layers

t
Seq

1tSeq
-2tSeq

-

Number of network parallels Pn

BN3 BN2 BN1

Figure 2. The parallel-stacked LSTM networks for intention recognition.
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PSLSTM network structure can be described as follows: Sequence data are input
through the sequence layer and then connected to the stacked LSTM network, where the
number of parallel networks Pn is a variable value. The sequence data are input in different
ways for different Pn. When Pn = 1, the network’s input is Seqt, and the output is Rt. It is
the stacked LSTM network. Additionally, when Pn = 2, the input of the network not only
includes Seqt, but Seqt−1 is inputted as the auxiliary data. Seqt−1 and Seqt are input to the
parallel network in turn. These two sequence data are pooled to FC4 after passing through
different stacking networks, and the network results Rt are output after FC4 processing.
When Pn = 3, the auxiliary data are Seqt−2 and Seqt−1, latter process is similar to Pn = 2.

The fully connected layer (FC) is represented as:

ι = FC(Seq),

= tanh(wSeq + b),
(9)

where w and b are trainable parameters and Seq is the input sequence.
The batch normalization layer is used to avoid the gradient disappearance problem and

to reduce the probability of the overfitting phenomenon. With such a layer, the recognition
network’s generalization ability can also be improved. The mathematical description of the
batch normalization layer is as follows:

ιbn = BN(ι)

= ωbn
ι− ῑ√
σ2

ι + ε
+ bbn,

(10)

where ι is the input of the batch normalization layer; ῑ and σι are the mean and standard
deviation of ι, respectively; ωbn is the output of the batch normalization layer.

Compared with traditional neural networks, in addition to the hidden layer state ιn,
LSTM networks maintain a cell form Cn for storing temporal association relations. The net-
work updates the cytosolic state Ck through the forgetting and input gates. The network
updates the cytosolic state Ck through the forgetting and input gates. The cytosolic state
Cn, the previous hidden layer state ιn−1, and the current input Seqn are integrated into
the output gate to obtain the network output. With such a cell form, the network output
can realize the recent temporal and long-term temporal relationship between memory and
inference. In this paper, the LSTM layer is described as:

[ιn, Cn] = LS(ιn−1, Cn−1, Seqn) (11)

where ιn−1 and Cn are the previous hidden state and the cell state at the last moment,
respectively; Seqn is the current input sequence; and ιn and Cn are the hidden state output
and the cell state output, respectively.

The PSLSTM designed in this section is as follows:

ιn,13,5 = FC1-3(Seqn),
ιn,2,4,6 = BN1-3(ιn,13,5),
[ιn,L1−L9, Mn,L1-L9] = LS1-9(ιn−1,L1−L9, Mn−1,L1−L9, ιn,1,L1,L2,2,L3,L4,3,L5,L6,4,L7,L8),
ιn,7 = FC(ιn,L9),
P(A1:N

k

∣∣∣Seq(1:N) ) = S f (ιn,7), k = 1, 3

A1:N
k = Cl

(
P(L

∣∣∣Seq(1:N) )
)

, k = 1, 3

A1:N
k = Re(ιn,7), k = 2, 4

n = 1, 2, · · · , N

(12)

where S f (x) is a fully connected layer with the softmax function.
After the independent recognition of the above network, the maneuver intention

sequence of the HGV can be obtained. The intention sequence and observations are
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integrated and put into the joint maneuver intention prediction neural network. This
network incorporates the learning of the four intention parameters and the correlation
among the observations to predict the subsequent maneuver intention of the HGV.

The structure of the joint prediction algorithm using the above network is shown in
Figure 3. To obtain the final maneuver intention prediction results, firstly, the observation
information is preprocessed to fit the requirements of the maneuver intention recognition
network. Then, the intention labels and intention parameters of HGVs are recognized
based on the PSLSTM neural network designed above. Finally, the observation information
and the maneuver intention recognition information are integrated and input into the joint
maneuver intention prediction network.

Pre-processing of 

measurement 

information

Measurement 

information

Longitudinal 

maneuver type 

recognition 

network

QEG maneuver 

parameter 

recognition 

network

SG maneuver 

parameter 

recognition 

network

Lateral maneuver type recognition 

network

Lateral maneuver parameter 

recognition network

Maneuver intention recognition

Joint prediction 

network for 

maneuver 

intention

Maneuver intention 

prediction results

Figure 3. The joint prediction algorithm based on PSLSTM.

Among them, the observation information preprocessing process is shown in Figure 4.
The observation information is shown below: h is the altitude of the HGV. θ and φ are the
latitude and longitude of the vehicle. Re is the radius of the Earth. v can be expressed as:

v =
√

ḣ2 + R2
e θ̇2cos2φ + R2

e φ̇2 (13)

γ can be expressed as:

γ = acos

 ḣ√
R2

e θ̇2cos2φ + R2
e φ̇2

 (14)

The rate of the heading angle ψ̇ can be calculated by:

ψ̇=acos
(

v ∗ v̇ ∗ cos γ√
v̇2 + v2

)
(15)

Four tags A1, A2, A3 and A4 need to be recognized to determine the vehicle’s maneuver
intention. The input of the A1 recognition network includes six parameters: h, ḣ, v, v̇, γ and
γ̇. The output is A1. The A2 recognition network is divided into the QEG and SG maneuver
parameter recognition networks. The inputs of the A2 recognition network are h, ḣ, v, v̇, γ
and γ̇. The output is A2. The input of the A3 recognition network includes five parameters:
θ, φ, θ̇, φ̇ and ψ̇. The output is A3. The input of the A4 recognition network is the same as
the A3 recognition network. Then the output is A4.
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Calculate the 

velocity

Calculate the 

flight-path angle

Calculate delta 

heading angle

+

v g

j

e
R
e, , ,h q f fh,h , ,, ,

Figure 4. Pre-processing of measurement information.

The uncertainty of the future intention trend of the vehicle is intense, and the number
of coupling relationships among the existing parameters is large. In the maneuver intention
prediction stage, 15 parameters are put into the joint prediction network. The parameters
include: h, v, γ, θ, φ, ḣ, v̇, γ̇, θ̇, φ̇, ψ̇, and four intention parameters, A1, A2, A3, A4. Two fully
connected layers are added to the network to extract the coupling relationship between the
parameters. Then, a parallel-stacked LSTM neural network is added to learn and predict
the temporal association between the data. Finally, a fully connected layer is added to map
the learned data into the output form of four neurons to make a sequential output.

The intention prediction of HGVs has high complexity. It is nearly impossible to
learn the laws of all maneuver intentions in a limited number of observations. Hence,
the prediction network input data are expanded and enriched by the work carried out
in the first two sections. In the observation data expansion and recognition, this method
creates an independent recognition network for each maneuver intention. This design
can make the fuzzy association relationship between data more precise in the form of
intention parameters.

2.3. Network Training
2.3.1. Loss Function

The mean square error (MSE) was chosen as the loss function of PSLSTM, which is
calculated as follows:

Loss =
1
k

k

∑
i=1

(
ŷi

T+1 − ŷi
T+1

)2
(16)

where k is the dimension of the network input and ŷi
T+1 is the output of PSLSTM. yi

T+1
is the actual value of the data at the next time stamp. The MSE loss function amplifies
the error between the prediction results and the actual data with a squared relationship,
making the PSLSTM network more sensitive to errors.

2.3.2. Optimization Strategy

Adaptive moment estimation (Adam) was chosen as the optimizer for the training
method. Adam is computationally efficient and fast in gradient descent, which is suitable
for large-scale data and parameter training scenarios.

2.3.3. Training Strategy

To improve the recognition and prediction performance while considering the real-
time computational constraints, we divide the model training into two parts: pre-trained
and retraining. During pre-trained, the PSLSTM network is optimized by iteratively
updating with the training data using the loss function and optimizer described above.
The main purpose of pre-trained is to converge the validation error to a smaller value.
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The pre-trained process takes a lot of time and computational resources to obtain the
trained network parameters. The retraining process is executed before the actual prediction.
First, we load the pre-trained PSLSTM network and then input the latest observed HGV
data into the network for training. The number of retraining steps is much smaller than the
number of pre-trained steps due to the computation time limitation, but this process still
greatly enhances the performance of network recognition and prediction.

3. Local Consensus-Based Bundle Algorithm Method Considering Sensor Switching

In this paper, considering the maneuver intention uncertainty of HGVs, the loss
coefficient is added to the value function of SS-LCBBA. Subsequently, a sensor-switching
strategy is designed. SS-LCBBA adapts to the time-varying task sequences in satellite
constellation tracking observation missions and improves the cumulative tracking score of
tracking missions.

3.1. Value Loss Factor

The traditional HGV altitude prediction is the center of the longitudinal uncertainty
region (LUR). Lr is the LUR range, which is described in the following form:

Lr =
{

[h− Rn ∗ A2 ∗ v, h + Rn ∗ A2 ∗ v], A1 = 0
[h− Rn(A2 ∗ v− g), h + Rn(A2 ∗ v− g)], A1 = 1

(17)

where A1 and A2 are output values of joint prediction networks, and h and v are obtained
by the trajectory prediction algorithm. The LUR width coefficient Rn and gravitational
acceleration g are constant values. The LUR of the vehicle is calculated separately according
to longitudinal maneuver intentions A1. Then, the widths of LUR coefficients are set
independently according to different maneuver types.

Tr is the lateral uncertainty region (HUR) range, which is described in the following
form:

Trmax
o = αo + ko|A4| cos

(
P− π

2
∗ A3

)
/(Re + H) (18)

Trmin
o = αo − ko|A4| cos

(
P− π

2
∗ A3

)
/(Re + H) (19)

Trmax
a = αa + ka|A4| sin

(
P− π

2
∗ A3

)
/(Re + H) (20)

Trmin
a = αa − ka|A4| sin

(
P− π

2
∗ A3

)
/(Re + H) (21)

where αo and αa are the predicted values of the vehicle’s latitude and longitude in the
conventional trajectory prediction algorithm; P and H are the predicted values of the bank
angle and the altitude; and ko and ka are the latitude and longitude HUR width coefficients.

As described in the literature, the LCBBA is an iterative two-phase algorithm. These
two phases are a bundle building phase and a task consensus phase. In the bundle building
phase, each vehicle greedily generates an ordered list of assignments. In the task consensus
phase, conflicting duties are identified and resolved through local communication between
neighboring satellites. The uncertainty loss factor and sensor rotation decision are improved
for the bundle building phase, and the task consensus phase still uses the method of the
LCBBA, which is not repeated in this paper.

The line of sight angle αs of the satellite to the vehicle is defined as:

αs = αt − αe (22)

where αt is the line of sight angle of the satellite to the vehicle, αe is the lower limit of the
proximity observation angle and the line of sight angle of the satellite to the tangent of the
Earth. The loss coefficients Ln

l are described as follows:
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Ln
l =

 1− e
− αn

s
Cl αn

e , 0 ≤ αn
s − αn

e ≤ αj
0 , αn

s − αn
e < 0

1 , αn
s − αn

e > αj

(23)

The angular range αj of the Earth’s limbic interference and the scaling factor Cl
are constants.

The infrared sensor has a maximum detection distance constraint. The line of sight
distance Ds between the satellite and the vehicle has a detection accuracy degradation
problem when approaching the sensor detection distance maximum Dl . The distance loss
coefficient Ln

t is described as follows:

Ln
t =


1 , Dn

s < Da

1− e
− Dn

s −Dn
a

Ct(Dl−Dn
a ) , Dn

a ≤ Dn
s ≤ Dl

0 , Dn
s > Dl

(24)

where Da is the distance when tracking accuracy starts to decline. The constant Ct is the
decline scaling factor.

The observation angle loss coefficient Ln
l and the distance loss coefficient Ln

t are
simultaneously used on the value function to obtain the cumulative tracking score in the
following form:

Cn,k = Ln
l ∗ Ln

t ∗ CR
n,k (25)

where CR
n,k is the theoretical value of the value function. The joint action of two-loss

coefficients makes the cumulative tracking score more adaptive to the uncertainty of the
maneuver intention.

3.2. Sensor-Switching Strategy

When a satellite bids on a set of tasks with temporal correlation, the time it takes for
infrared sensors to switch between HGVs must be considered.

The minimum time Tmin required to switch between tasks is calculated first. Then,
the UR width Lw considering the maximum rotation time Tr needed for the UR of the
vehicle’s intention is determined. The best switching window for the satellite is selected.
Sensors can rotate to the tracking position before the UR becomes wider.

As shown in Figure 5, the trajectory of the HGV can be divided into the maneuver
period time (red area) and the maneuver gap period time (yellow area). According to the
sequence of maneuver intentions of the vehicle, the widths of URs are compared and the
interval with a smaller width is considered as the maneuver gap period time. The maneuver
gap period time is a special case when the vehicle continuously maneuvers. The tracking
accuracy of the satellite Satn is constrained by the sensor’s performance, the observation
angle, and the distance. The green segment in the figure, “accuracy down” is a tracking
accuracy degradation problem at the end of the visible time window. The bidding satellites
need to consider the timing arrangement of the new task beam. The minimum time Tf
required for sensor back sweep is then calculated. The optimal switching window [Ts

s , Te
s ]

is calculated as shown in Algorithm 1:

no observed

bidding

tracking

fly back

Satn

Satn+1 last tracking

accuracy down

maneuver interval maneuver intervalTarget

best switch

maneuver

no observed

biddingfly backSatn+2 last tracking best switch

Figure 5. Sensor switching decision process.
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Algorithm 1 Sensor-switching strategy.

1: if Ta ≤ Ts
i

2: if Ts
i ≤ Ts

d
3: Ts

s = Ts
i

4: Te
s = Ts

d
5: else if Te

i > Ts
d

6: Ts
s = Max[Ts

d, Ta]
7: Te

s = Min[Te
d, Te

i ]
8: end
9: else if

10: Ts
s = Ta

11: if Ta < Ts
d

12: Te
s = Ts

d
13: else
14: Te

s = Min[Te
d, Te

i ]
15: end
16: else if Ta > Te

i
17: The optimal switch window is empty;
18: end

where [Ts
i , Te

i ] is the maneuver gap time of the vehicle, [Ts
d, Te

d] is the tracking sensor
accuracy degradation period time, and Ta is the earliest arrival time.

The computational complexity of the task consensus phase in the SS-LCBBA algo-

rithm is O
(
(n2m̂)

2

2

)
, m̂ =

n
max
i=1

n
max
g=1

(
mig
)
, where n is the number of satellites. mig is the

number of communication time windows between two satellites. m̂ indicates the max-
imum number of communication time windows between satellites during the mission.
The computational complexity of the independent decision algorithm for each satellite is
O
(
u2 + (u− 1) · N · d2), where u is the number of HGVs, N is the length of the neural net-

work input sequence, and d is the dimension of each element in the input sequence. Hence,

the computational complexity of the SS-LCBBA is O
(

n · (n2m̂)
2

2 ·
(
u2 + N · d2 · (u− 1)

))
.

4. Simulation and Analysis

In this section, the performances of the intention recognition network and the joint pre-
diction network are analyzed through a series of typical HGVs motion scenarios. The joint
prediction network is compared with multilayer LSTM networks (M-LSTM) and dual-
channel and bidirectional neural network (DCBNN). Compare the performance of several
networks in coping with the HGV maneuver intention uncertainty problem. Subsequently,
three distinct trajectories of HGVs with different maneuver forms for comparative simula-
tions of baseline LCBBA, improved contract network (ICNP), blackboard model (BM) and
SS-LCBBA are used to compare the tracking capabilities of the four algorithms for different
maneuver sequence HGVs.

4.1. Simulation and Analysis of Networks

Seven recognition neural networks were trained on four intention parameters and
the joint prediction network using flight trajectories of HGVs with different maneuver
sequences. After that, the accuracies of three parallel forms of each neural network were
compared. The maneuver intention recognition and prediction neural network is imple-
mented with the PyTorch deep learning framework. The simulation platform is PyCharm.
The simulation language is Python. The training was performed on a computer equipped
with an i7-8700 processor, 16 GB of RAM, and an NVIDIA GTX 1060 graphics card.
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4.1.1. Architecture

The structure of the intention recognition network is shown in Figure 2, where the
number of neurons in each fully connected layer of the stacked network was set to 128;
the three LSTM layers were formed as 512, 256, and 128. The tanh activation function
was chosen for the state activation function of the intent recognition network. The weight
matrix was orthogonally initialized to avoid gradient disappearance or gradient explosion
at the beginning of the training equation. Then, we set the initial value of the bias to zero.
The length of the sequence was set to 200.

4.1.2. Training Data

The detailed training data are shown in Appendix A. According to the aerodynamic
parameters and maneuver forms of HGVs, 12 initial conditions (in Table A1), 14 longitudinal
maneuver sequences (in Table A2), and 40 lateral maneuver sequences (in Table A3) were
set. In total, 6720 flight trajectories are combined, including 3360 QEG maneuvers and
3360 SG maneuvers. Among them, 5600 training data trajectories, 560 validation data
trajectories, and 560 test data trajectories were selected randomly.

Since the units of different dimensions of the training data may be different, the train-
ing data need to be dimensionless. This processing is to be executed before training. In this
study, all training data were normalized using the min-max scaling method as follows:

Xnorm =
X− Xmin

Xmax − Xmin
(26)

where X represents the training data; Xmin and Xmax are the minimum and maximum
values in the training data at that step.

4.1.3. Training Parameters

We used the Adam solver with a batch size of 64 and a training period of 400. The cross-
entropy loss function was used, and training could be ended earlier if the loss values
converged. The learning rate was set to 0.005, the learning rate decline period was 100,
and the learning rate decline factor was 0.2.

4.1.4. Comparison of Training Loss of Different Networks

Figure 6 shows the loss change curve during PSLSTM model training. Equation (16) is
used to calculate the training loss. The number of training epochs is represented by
the lateral coordinate, and the average loss within each epoch is represented by the
vertical coordinate.

As shown in Figure 6a, the A2 recognition network has the fastest decreasing loss
curve. Because after the A1 recognition network divides the longitudinal maneuver types of
HGVs into two types, SG and QEG, the A2 recognition network of each type has a stronger
variation pattern with time and can be visually described by the altitude and the velocity
of HGV. Because the intention sequence of lateral maneuvers of HGVs is more complex
and random, the A3 and A4 recognition networks have a slightly slower decreasing speed
than the other two networks.

In this paper, the multilayer LSTM (M-LSTM) and the dual-channel and bidirectional
neural network (DCBNN) are chosen as the comparison models for the joint prediction
network. M-LSTM architecture consists of a fully connected layer, two LSTM layers, and a
softmax layer. The M-LSTM model employs the hierarchical principle to recognize and
predict multiple parameters. DCBNN is a two-channel structure with a fully connected
layer and a bidirectional gated recurrent unit in each channel (Bi-GRU). To compare the
capabilities of the networks, the number of neurons in each LSTM layer and GRU layer is
set to 128, and the training parameters of the network remain the same as in Section 4.1.3.
For specific details of the M-LSTM and DCBNN algorithms, please refer to [18,19].
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Figure 6. Network Training Loss: (a) is recognize network training loss and (b) is prediction network
training loss.

As shown in Figure 6b, the training loss variation curves of the joint prediction network
with M-LSTM and the DCBNN. The training loss of the PSLSTM network decreases slightly
slower than that of M-LSTM and DCBNN because PSLSTM has more network layers and
neurons. The prediction network of the SG trajectory declines slower than that of the QEG
trajectory and has a relatively higher convergence value. Because the trajectory variation
of SG trajectory is more complex, the network needs more iterations to learn the complex
maneuver sequence. The training loss of the PSLSTM network converges to 0.0479 for
the intention prediction network of SG trajectory, and 0.0395 for the intention prediction
network of QEG trajectory. Hence, the training loss convergence value of the PSLSTM
network is lower than that of M-LSTM and DCBNN.

4.1.5. Results

Networks A1 and A3 are intention label classification networks; thus, the accuracy
rate was used as an evaluation condition to measure the effectiveness of the network in the
following form:

P =

n=Te
∑

n=Ts

σn

Te − Ts
(27)

where σn is the success mark, with 1 representing successful and 0 representing unsuccessful.
Ts and Te are the start time and end time, respectively.

The other two intention networks, A2 and A4, are regressor networks, and the root
mean square error (RMSE) is used to measure the accuracy of parameter regression. For spe-
cific details of the RMSE, please refer to [9,43]. The specific form is as follows:

R =

√√√√ 1
Te − Ts

n=Te

∑
n=Ts

(
yn

p − yn
r

)2
(28)

where yn
p and yn

r are the parameter regression values and the parameter real values, respec-
tively.

The test comparison results of the intention network are explained below. Based on the
same training and test data, the accuracy of the stacked networks with the numbers of paral-
lel networks Pn = 1, 2, 3 are compared, and the average, minimum, middle, and maximum
values of the accuracy calculation results act as the basis for comparison.
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Case 1: A1 recognition network

A1 marks the longitudinal maneuver form of the HGV in the process of determining
the maneuver intention of the HGV. The input of the A1 recognition network includes six
parameters: h, ḣ, v, v̇, γ, and γ̇. The output of the A1 recognition network is divided into
two labels, QEG and SG.

As shown in Figure 7, since the longitudinal maneuver intention of the HGV has ap-
parent patterns in the parameter representation, the recognition accuracy is approximately
100% for the parallel network numbers Pn = 1 and 2. Therefore, it ensures high learning
efficiency and prevents the overfitting phenomenon at the same time.
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Figure 7. A1 recognition rate.

Case 2: A2 Recognition Network

Section 2.1 shows that there are two different laws for A2 when A1 is 0 (SG ) or 1 (QEG).
The A2 recognition network is divided into A2(SG) and A2(QEG) recognition networks.
Since A2 is also a parameter characterizing the longitudinal maneuver intention of the
HGV, the input of the A2 recognition network is the same as that for A1. The parameter
complexity and temporal correlation of A2 are higher than those of A1. The longitudinal
dynamics of the HGV of SG trajectory changes into an oscillating trend. The root means
the square error of the network recognition result is the smallest, as shown in Figure 8a.
As shown in Figure 8b, the network with Pn = 2 has the best recognition accuracy for
the vehicle of QEG gliding, as the longitudinal dynamics of the vehicle change gently
and regularly.
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Figure 8. Recognition error of A2: (a) is the A2 (SG) recognition error curve and (b) is the A2 (QEG)
recognition error curve.

Case 3: A3 Recognition Network

The lateral maneuver intention label A3 is a classification recognition label to recognize
the lateral maneuver direction of the HGV. The input of the A3 recognition network includes
five parameters: θ, φ, θ̇, φ̇ and ψ̇. The output of the recognition network with A3 is classified
into three categories: left maneuver, right maneuver, and no lateral maneuver.

Since the laws of the observed parameters differ greatly when the longitudinal inten-
tion types are different, the prediction network for the lateral maneuver intention A3 still
needs to be divided into SG and QEG. As shown in Figure 9a,b, although the recognition
results of the three network forms are close, it can still be seen that the minimum value of
the network with Pn = 3 evaluation results is greater.
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Figure 9. Recognition error of A3: (a) is the A3 (SG) recognition error curve and (b) is the A3 (QEG)
recognition error curve.

Case 4: A4 Recognition Network

The lateral maneuver intention parameter A4 characterizes the HGV lateral force.
Since the lateral maneuver of the HGVs relies on the adjustment of bank angle, the onboard
infrared sensor cannot precisely recognize the change of the bank angle. Hence, the network
input still uses five parameters related to the lateral maneuver intention (θ, φ, θ̇, φ̇, ψ̇).
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Moreover, the lateral maneuver label A3 is added as the reference value for the lateral
maneuver direction. From Figure 10a, it can be seen that, compared with Pn = 1 or 2,
the Pn = 3 network got the highest recognition accuracy for SG trajectories. The mean,
median, and minimum values of the root-mean square error of the recognition results
are relatively smooth. However, the maximum value is larger because the correlation
law between the input parameters and the magnitude of the lateral force is not obvious
enough. From Figure 10b, it can be seen that for QEG trajectories, the maximum, median,
and minimum values of the network with Pn = 2 are slightly smaller than those of the
network with Pn = 1, but the average values are similar.
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Figure 10. Recognition error of A4: (a) is the A4 (SG) recognition error curve and (b) is the A4 (QEG)
recognition error curve.

The experiment results of the above intention parameter recognition network show
that the stacked LSTM network can recognize the maneuver intention of the HGVs by
observations, and the network with Pn = 2, 3 improves the success rate of maneuver inten-
tion recognition and accuracy compared to the network with Pn = 1. For the recognition
of longitudinal maneuver type A1, all three parallel forms can achieve a relatively high
success rate. For the longitudinal maneuver intentions, the short-time correlation of the
SG trajectory is stronger, whereas the short-time variation of the QEG trajectory is more
flat. The network with Pn = 3 is more focused on the correlation between short time data,
so it is more suitable to be used to recognize the longitudinal maneuver intention of SG
trajectory. In contrast, the altitude change of the QEG trajectory is gentler. The observed
data change less with time in instances of lateral maneuvers; hence, the network with
Pn = 2 can achieve better recognition results.

Case 5: The Joint Prediction Network for Maneuver Intentions of SG Trajectories

The intention recognition network was used as a data-providing network for the joint
prediction network. First, 10% of each trajectory data was used as the observation data.
As described in Section 2.3.3, the pre-trained network was loaded and the observed data
were used as retraining data to retrain the model in several steps. The intention parameters
of the retraining data were recognized by the intention prediction network. The prediction
simulation was performed for the HGVs’ subsequent intention sequence to compare the
prediction accuracy of the intention parameters of the PSLSTM with Pn = 1, 2, 3, M-LSTM,
and DCBNN. Where M-LSTM and DCBNN have been described in Section 4.1.4. Each
prediction required an input sequence length of 50. Since the output length of the intention
recognition network was 200, it was divided into four segments, each with a length of 50.
The prediction network divided the sequence output into four segments, each with a length



Mathematics 2022, 10, 3754 18 of 28

of 50. Then, these segments and the processed observations were arranged and input into
the joint prediction network. The comparison results are as follows:

As shown in Figure 11, the simulation results of the maneuver intention prediction
network for SG trajectory show that the prediction accuracy of the parallel-stacked neural
network for the intention parameters is generally higher than that of the series stacked
network. Additionally, the parallel network with Pn = 3 has higher prediction accuracy for
the SG trajectory intention parameters A1, A2, and A3. The three PSLSTM networks have
similar prediction accuracy for the intention A4, although the average value of the error at
Pn = 2 is slightly smaller than those of the other two. M-LSTM and DDCNN also have the
ability to maneuver intention prediction, but the prediction accuracy is lower than that of
PSLSTM. DCBNN has the advantage of dual-channel and bidirectional recurrent network
units, and the prediction accuracy is slightly higher than that of M-LSTM.
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Figure 11. Prediction error of the maneuver intention prediction networks (SG): (a) is the error of A1
prediction, (b) is the error of A2 prediction, (c) is the error of A3 prediction, and (d) is the error of
A4 prediction.
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Case 6: The Joint Prediction Network for Maneuver Intentions of QEG Trajectories

The following is a comparison of the networks with Pn = 1, 2, 3 in parallel form:
The longitudinal flight path of the QEG trajectory is smoother than the SG trajectory.

In contrast, the maneuver intention prediction network is more focused on learning the
patterns of the lateral maneuver sequences. As such, the accuracy of the joint prediction
results of the QEG trajectory is generally higher than that of the SG trajectory. As shown
in Figure 12, it can be found that the prediction accuracies of the intention parameters
A1 − A3 are better when the network parallel number Pn = 2 of PSLSTM. However,
there was no significant difference in the prediction accuracies of the three PSLSTM for
A4. The difference in prediction accuracy between M-LSTM and DCBNN is smaller,
and DCBNN has an advantage in the prediction of A2 and A4, but the accuracy is still
lower than that of PSLSTM.
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Figure 12. Prediction error of the maneuver intention prediction network (QEG): (a) is the error of A1
prediction, (b) is the error of A2 prediction, (c) is the error of A3 prediction, and (d) is the error of
A4 prediction.

In summary, the test results show that compared with the series stacked network,
the parallel-stacked neural network has improved the prediction accuracy, especially in
the maneuver intention-related prediction of the HGVs. The PSLSTM with Pn = 3 can
input three consecutive state vectors at the same time, so the network is more focused on
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the correlation between short-term data. The PSLSTM with Pn = 3 shows advantages in
the intention recognition and prediction of SG trajectories. In the PSLSTM with Pn = 2,
considering two consecutive state vectors, the long-term association in memory also plays
a positive role in the results. The PSLSTM with Pn = 2 shows more advantages in QEG
trajectories intention recognition and prediction.

4.2. Comparison between SS-LCBBA and Baseline Algorithms

The SS-LCBBA was used to track three planned typical trajectories. The improved
contract network protocol (ICNP) and blackboard model (BM) were chosen as the baseline
algorithms. The ICNP is an autonomous coordination mechanism under the dynamic-
distributed structure. According to the characteristics of the satellite constellation tracking
system, the ICNP inherits the primary process of the traditional contract network protocol
(TCNP) and improves it with an alternate tenderer mechanism, self-check procedure,
and regret mechanism. The BM is a global consensus algorithm for distributed structures,
and the blackboard is a global database used by knowledge sources to communicate results
as blackboard entries. For specific details of the ICNP and BM algorithms, please refer
to [35]. The observation distance Da between the satellite, the vehicle in the mission
planning process, the impact of the communication delay El between satellites, and the
computational delay Ec of satellites on the mission planning calculation are considered in
the value function.

Dl is calculated as follows:

El =

i
∑

i=0
Dt + Dn · n

C
(29)

where Dn is the distance of neighboring satellites in the same orbit, and n is the number of
single hops in the same orbit of the link. Dt represents the distances of single hops in the
different orbits of the link. C is the speed of light. Ec is calculated as follows:

Ec =
is

∑
is=0

(Te
c − Ts

c ) (30)

where is is the satellite serial number, Ts
c is the start time of the planning calculation, and Te

c
is the end time of the planning calculation. The tracking distance evaluation value is
as follows:

CL =
ui f ∗ cH√

2πσ
· exp

−
(

Da −
sin
(

π−θ−ar sin
(
(Hs+Re)·sin θ

Hn+Re

))
·(Re+Hn)

sin θ

)
2σ2

2 (31)

where ui f shows whether the target is tracked. cH is the target value. Hs is the satellite
orbit altitude. θ is the pitch angle of the sensor. Hn is the height of the near space. σ is the
standard deviation. The value of the inter-satellite link is evaluated as follows:

Ci =
ui f ∗ cH√

2πσ
· exp

(
El

2σ2

)
(32)

The value of planning calculation time is evaluated as follows:

Co =
ui f ∗ cH√

2πσ
· exp

(
Ec

2σ2

)
(33)

σ is set to σ =
√

2
π .
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The value function is shown below:

S = Ll · Lt · (ωl · CL + ωi · Ci + ωo · Co) (34)

where Ll is the pitch loss factor and Lt is the distance loss factor, which are defined in
Section 3.1. < ωl , ωi, ωo > are the weighting factors. As the tracking distance is more
important, the weighting factor is set to < 0.4, 0.3, 0.3 >.

4.2.1. Selection of Typical Trajectories

In this paper, the initial conditions of trajectories are reflected in Table 1. Three typical
trajectories of HGVs are reflected in Table 2.

Table 1. Initial conditions.

θ (deg) φ (deg) h (km) v (m/s) γ (deg) p (deg)

0 0 59 3060 −1 15
10 30 56 3060 −5 −20
−10 −30 46 2040 −4 30

Table 2. Maneuver type settings.

Trajectory 1 HGV does SG glide in the longitudinal direction. The normalized lift coeffi-
cient for SG maneuver is cl = 0.7. It does no lateral evasive maneuver.

Trajectory 2

HGV does QEG glide in the longitudinal direction. The normalized lift coef-
ficient for QEG maneuver is cl = 1.6. It does lateral evasive maneuvers with
the bank angle of ±10◦ degrees at 200∼400 s, no maneuvers laterally with
the bank angle of ±20◦ degrees at 401∼750 s, and lateral evasive maneuvers
after 750 s.

Trajectory 3

HGV does QEG glide in the longitudinal direction. The normalized lift coef-
ficient for QEG maneuver is cl = 1.6. It does lateral turning maneuvers with
the bank angle of −70◦ degrees at 200∼600 s, and lateral turning maneu-
vers with the bank angle of +70◦ degrees at 600∼1200 s, and lateral evasive
maneuvers after 1200 s.

4.2.2. Satellite Cluster Architecture Settings

In this paper, the satellite constellation configuration of Walker is defined as i :
t/p/ f = 90◦ : 28/4/2, where i is the inclination, t is the total number of satellites, p
is the number of equally spaced planes, and f is the relative spacing between satellites
in adjacent planes. The notation means that the satellite constellation consists of 28 satel-
lites with an orbital inclination of 90 degrees, evenly distributed over four orbital planes,
with relative spacing being set to two. The orbital altitude of the satellite constellation is set
to 1200 km.

Each satellite carries an infrared sensor. The visual field of the sensor is a cone with an
angle of 3◦, and the detection distance of the sensor is r = 6500 km. The sensor has two
states: standby and tracking. The sensor in the standby state is capable of flying back to the
target position at a maximum rotation speed up to 60◦/s. In the tracking state, the sensor is
constrained by the imaging stability, so the rotation speed is set to 5◦/s. The range of the
sensor pitch angle [θmin, θmax] is [arcsin

(
Re

Hs+Re

)
, arcsin

(
Hn+Re
Hs+Re

)
], where Hs is the satellite

orbit altitude, and Hn is the height of near space.
The interstellar link uses laser communication. In order to reduce link loss, it is

necessary to avoid crossing the near space, so a minimum link height needs to be considered
link height Hc. The maximum inter-satellite communication distance can be expressed as:

Lmax
r = 2

√
(Hs + Re)

2 − (Hn + Re)
2 (35)
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4.2.3. The Maneuver Intention Prediction Network Parameter Settings

The intention recognition network uses the network structure shown in Section 2.2,
where each stacked layer has the same network structure, with 128 neurons in the fully
connected layer (FC) and 512, 256, and 128 neurons in the three LSTM layers. The number
of parallel networks Pn is selected according to the recognition accuracy test results and
the complexity of the intention parameters, A1. The number of parallel networks for the
intention recognition network of the QEG trajectory was set to Pn = 2. The number of
parallel networks for the SG trajectory recognition network was set to Pn = 3. The joint
prediction network used the network structure, and each stacked network had the same
structure, with the numbers of neurons in two FC of 256 and 128, in order; and the number
of neurons in three LSTM layers of 512, 256, and 128, in order. The number of parallel
networks Pn was chosen according to the type of longitudinal maneuver. The length of the
input sequence was set to 50.

4.2.4. Results

In this paper, simulating and analyzing the coherent tracking process of the satellites
is focused on maneuver trajectories. The single-overlay mission planning results of the
baseline algorithm and SS-LCBBA algorithm were recorded in the form of Gantt charts.
Then, the cumulative tracking score of the value function was used to reflect the improve-
ment of the optimal switching windows on the observation score of the coherent tracking
mission, for which the value function was used in Equation (34).

Case 1: Trajectory 1

The task planning results of the SS-LCBBA and the baseline algorithm are shown
in Figure 13a. The optimal switching window decision algorithm in the SS-LCBBA pro-
vides a more suitable switching period time for the satellite. As a result, the SS-LCBBA
obtained a higher score. As shown in Figure 13b, the baseline algorithm chose differ-
ent satellite sequences, but the scores are relatively close. Hence, the SS-LCBBA could
choose a more suitable switching time and effectively suppressed the score decay during
satellite switching.
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Figure 13. The planning results of tracking trajectory 1: (a) is a Gantt chart comparing the planning
results and (b) is the cumulative tracking score of the value function.

Case 2: Trajectory 2

As shown in Figure 14a, the vehicle’s longitudinal maneuver was tiny, the flight-
path angle of the QEG trajectory changed less, and the altitude of the vehicle became a
steadily decreasing trend. Even though the vehicle performed evasive maneuvers laterally,
the constellation tracking satellites monitored at a higher frequency to achieve full tracking
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of the vehicle. The ICNP algorithm has a message center. The planning algorithm prefers
satellites with longer tracking times to reduce the computational and communication
delays caused by switching satellites. The remaining three mission planning methods are
all distributed planning methods. The LCBBA is locally consistent, and its faster response
time allows for more satellite switching. Therefore, as shown in Figure 14b, LCBBA and
SS-LCBBA selected the satellite sequence with a closer observation distance and obtained
higher scores. The SS-LCBBA achieved a higher score when tracking lateral coherent
maneuver vehicles.
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Figure 14. The planning results of tracking trajectory 2: (a) is a Gantt chart comparing the planning
results and (b) is the cumulative tracking score of the value function.

Case 3: Trajectory 3

As shown in Figure 15a, the optimal switching window overlaps with the tracking
window of the tracking satellite. The reassigned satellite could start tracking the vehicle
when the tracking satellite had not reached the tracking limit, given that the observation
conditions were better, and the cumulative tracking score was higher. The initial altitude
of the vehicle was relatively high, and the constellation had excellent visibility. Therefore,
the mission planning algorithm can detect planning results with higher scores faster.
As shown in Figure 15b, the four algorithms can obtain relatively close scores in the early
stage. Due to the significant lateral maneuver and lower flight altitude in the mid-flight of
the vehicle, the mission planning algorithm needs to switch tracking satellites frequently to
satisfy the full segment tracking of the vehicle by the constellation.
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Figure 15. The planning results of tracking trajectory 3: (a) is a Gantt chart comparing the planning
results and (b) is the cumulative tracking score of the value function.
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5. Summary

To address the uncertainty of maneuver intention in tracking HGVs, a quantitative
maneuver intention model was established first. Then, a PSLSTM neural network architec-
ture was designed to recognize and predict the maneuver intention based on the stacked
LSTM neural network. Finally, the SS-LCBBA was proposed. The loss coefficients were
added to the value function of the LCBBA distributed mission planning algorithm, and a
switching window selecting algorithm was designed to improve the adaptability of the
LCBBA to the uncertainty of the HGV maneuver intention.

The PSLSTM network can still preserve the long-term memory of the data while
considering the short-term correlation. The PSLSTM network has better performance for
the problem of predicting and recognizing the maneuver intentions of HGVs, as shown in
the simulation results. Obtaining the maneuver intentions of HGVs can assist satellites in
calculating tracking values and selecting switching times. The value loss factor can prompt
the satellite to consider the uncertainty of HGVs’ maneuver intentions when selecting
targets to track. The sensor-switching strategy can give the satellite a reasonable time
period to take over the mission.

The SS-LCBBA algorithm has a higher cumulative tracking score than the baseline
algorithms for HGVs. Local consensus algorithms have higher response efficiency for
new tasks, but the number of satellite switches increases. Therefore, the sensor-switching
strategy is an effective method to improve the tracking coherence during satellite switching.
Additionally, considering the uncertainty of the HGV maneuver intention, adding loss
coefficients to the value function can effectively enhance the adaptability of the planning
algorithm and make the algorithm score higher.

However, the method proposed in this paper also possesses the following limitations:
(a) Maneuver intention prediction is limited to the short term and does not allow for long-
term prediction. (b) It is assumed that the position data of the HGVs are accurate. However,
in practical application scenarios, observation errors usually occur due to the uncertainty
of the sensors. (c) The mission planning algorithm was simulated and tested on a civilian
computer without considering the onboard hardware-in-the-loop latency.

For future research topics, there are several extension directions worth exploring.
(a) Design a method for dynamic selection of prediction results considering the frequency
of HGVs’ maneuvers. If HGVs have multiple different maneuver intentions within a
prediction sequence length, the accuracy of the prediction will be degraded. Therefore,
a method needs to be designed to select the effective sequence lengths in the prediction
results and dynamically adjust the frequencies of maneuver intention prediction. (b) Design
a new multi-satellite cooperative trajectory prediction method. In practical application
scenarios, the measurement angle of sensors usually has errors. The state sequences with
errors will mislead the deep neural network to output biased results. Therefore, a new
multi-satellite collaborative prediction algorithm is needed to improve the accuracy of
trajectory prediction through reasonable sensor scheduling and data pre-processing. (c)
Design a trajectory correlation algorithm for HGVs, which have high maneuverability and
multiple HGVs can change their relative positions frequently during the flight. Therefore,
it is necessary to design a trajectory correlation method that can be applied to HGVs to
avoid the interference of the tracking algorithm and other algorithms such as the prediction
algorithm by observation data of different targets.
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Abbreviations

HGVs Hypersonic glide vehicles
LSTM Long and short-term memory
PSLSTM Parallel-stacked long and short-term memory
LCBBA Local consensus-based bundle algorithm
SDA Space development agency
SS-LCBBA The local consensus-based bundle algorithm with the sensor-switching strategy
QEG Quasi-equilibrium gliding
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Appendix A. Training Data

Appendix A.1. Initial Conditions

In Table A1, θ and φ are longitude and latitude, respectively. h is the initial altitude, v
is the initial velocity, γ is the initial flight-path angle, and p is the initial heading angle.

Table A1. Initial conditions.

θ (deg) φ (deg) h (km) v (m/s) γ (deg) p (deg)

0 0 60 3060 −2 0
30 10 58 3060 −1 60
60 20 56 3060 −3 120

120 30 54 3060 −5 180
150 40 52 3060 −1 −60
180 50 50 3060 −3 −120
210 60 55 2040 −4 0
240 −10 53 2040 −5 60
270 −20 51 2040 −1 120
300 −30 49 2040 −2 180
330 −40 47 2040 −4 −60
360 −50 45 2040 −3 −120

Appendix A.2. Longitudinal Maneuver Parameters

In Table A2, cl is the normalized lift coefficient, described as cl =
CL
C∗L

, where C∗L is the

lift coefficient at the maximum lift-to-resistance ratio. It is described as C∗L =
√

CD0
K , where

CD0 and K are the HGV’s aerodynamic parameters independent of Mach. We combined
two longitudinal maneuver types, QEG and SG, with seven cl for a total of 14 longitudinal
maneuver types.

Table A2. Longitudinal maneuver parameters.

QEG/SG

cl 0.4 0.7 1.0 1.3 1.6 1.8 2.0

Appendix A.3. Lateral Maneuver Parameters

In Table A3, HGVs maintain a fixed bank angle during flight. σ is the bank angle of
the HGV.
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Table A3. Lateral maneuver parameters.

Velocity Inclination Angle

σ 0◦ 15◦ −15◦ 30◦ −30◦ 45◦ −45◦ 60◦ −60◦ 75◦ −75◦

In Table A4, HGVs adjust σ at a fixed time period. t is the flight time of HGVs.

Table A4. Lateral maneuver parameters.

σ = 0◦, 0 ≤ t < 550; σ = 15◦, 550 ≤ t < 1200; σ = 0◦, 1200 ≤ t;
σ = 0◦, 0 ≤ t < 550; σ = −15◦, 550 ≤ t < 200; σ = 0◦, 1200 ≤ t;
σ = 0◦, 0 ≤ t < 500; σ = 30◦, 500 ≤ t < 1100; σ = 0◦, 1100 ≤ t;
σ = 0◦, 0 ≤ t < 500; σ = −30◦, 500 ≤ t < 1100; σ = 0◦, 1100 ≤ t;
σ = 0◦, 0 ≤ t < 450; σ = 45◦, 450 ≤ t < 1000; σ = 0◦, 1000 ≤ t;
σ = 0◦, 0 ≤ t < 450; σ = −45◦, 450 ≤ t < 1000; σ = 0◦, 1000 ≤ t;
σ = 0◦, 0 ≤ t < 400; σ = 60◦, 400 ≤ t < 900; σ = 0◦, 900 ≤ t;
σ = 0◦, 0 ≤ t < 400; σ = −60◦, 400 ≤ t < 900; σ = 0◦, 900 ≤ t;
σ = 0◦, 0 ≤ t < 350; σ = 75◦, 350 ≤ t < 800; σ = 0◦, 800 ≤ t;
σ = 0◦, 0 ≤ t < 350; σ = −75◦, 350 ≤ t < 800; σ = 0◦, 800 ≤ t;
σ = 0◦, 0 ≤ t < 100; σ = −15◦, 100 ≤ t < 550; σ = 15◦, 550 ≤ t < 1100;
σ = 0◦, 0 ≤ t < 100; σ = 15◦, 100 ≤ t < 550; σ = −15◦, 550 ≤ t < 1100;
σ = 0◦, 0 ≤ t < 150; σ = −30◦, 150 ≤ t < 550; σ = 30◦, 550 ≤ t < 1050;
σ = 0◦, 0 ≤ t < 150; σ = 30◦, 150 ≤ t < 550; σ = −30◦, 550 ≤ t < 1050;
σ = 0◦, 0 ≤ t < 200; σ = −45◦, 200 ≤ t < 550; σ = 45◦, 550 ≤ t < 1000;
σ = 0◦, 0 ≤ t < 200; σ = 45◦, 200 ≤ t < 550; σ = −45◦, 550 ≤ t < 1000;
σ = 0◦, 0 ≤ t < 250; σ = −60◦, 250 ≤ t < 550; σ = 60◦, 550 ≤ t < 950;
σ = 0◦, 0 ≤ t < 250; σ = 60◦, 250 ≤ t < 550; σ = −60◦, 550 ≤ t < 950;
σ = 0◦, 0 ≤ t < 300; σ = −75◦, 300 ≤ t < 550; σ = 75◦, 550 ≤ t < 900;
σ = 0◦, 0 ≤ t < 300; σ = 75◦, 300 ≤ t < 550; σ = −75◦, 550 ≤ t < 900;

In Table A5, HGVs continuously switch σ at fixed intervals. T is the switching interval
of σ.

Table A5. Lateral maneuver parameters.

σ ±10◦ ±10◦ ±15◦ ±15◦ ±30◦ ±30◦ ±30◦ ±45◦ ±45◦

T 100 s 150 s 100 s 150 s 100 s 80 s 50 s 50 s 30 s
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