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Abstract: Color image segmentation divides the image into areas that represent different objects and
focus points. One of the biggest problems in color image segmentation is the lack of homogeneity in
the color of real urban images, which generates areas of over-segmentation when traditional color
segmentation techniques are used. This article describes an approach to detecting and classifying
objects in urban environments based on a new chromatic segmentation to locate focus points. Based
on components a and b on the CIELab space, we define a chromatic map on the complex space to
determine the highest threshold values by comparing neighboring blocks and thus divide various
areas of the image automatically. Even though thresholds can result in broad segmentation areas, they
suffice to locate centroids of patches on the color image that are then classified using a convolutional
neural network (CNN). Thus, this broadly segmented image helps to crop only outlying areas instead
of classifying the entire image. The CNN is trained to use six classes based on the patches drawn
from the database of reference images from urban environments. Experimental results show a high
score for classification accuracy that confirms the contribution of this segmentation approach.

Keywords: image segmentation; complex numbers; CNN classifier; outdoor environments

MSC: 68T45

1. Introduction

Autonomous systems need to recognize objects and their position in the real world to
interact. Ideally, autonomous systems label objects and regions on an image to understand
the environment [1]. Commonly used strategies in smart systems are based on image
segmentation and automatic-learning techniques. Image segmentation is a key task in com-
puter vision involving the analysis of standard features, such as texture and color, among
others, on the image. However, most models and techniques used in image segmentation
are unique, that is to say, only used for a specific purpose, and their performance only
differs depending on the color space involved [2]. Therefore, choosing a suitable space to
represent color is essential during the segmentation process.

CIELab, HSI [3] or HSV [4] are the most common color spaces used to segment images.
Others, such as Munsel or YIQ spaces [5], are used for several purposes and need specific
methodologies to work. The CIELab color space mimics how humans perceive color; it
is useful to modify brightness and color values on an image independently [6]. Most
processing techniques based on the CIELab color space analyze each plane individually.
According to the CIELab theory, chromatic components a and b are orthogonal axes on a
2D plane. Thus, the representation of 2D space on CIELab can be transformed into complex
space directly, enabling the possibility of using complex numbers to facilitate algebraic
calculations of image data.
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A complex number is a pair of real numbers a and b ordered as (a, b), and expressed
as a + bi whereby i is the imaginary unit defined as i2 = −1. The symbol z can represent
any complex number and is a complex variable subject to operational definitions, such as
an addition and a multiplication [7]. Each complex number corresponds to a single point
on the complex plane.

On the other hand, automatic learning only extracts data from the most representative
objects and regions to classify as segmented images. A good selection of segmentation
techniques considers the relevant context, hardware resources, the number of classes, and
the size of the dataset [8]. For instance, in classifying the object in the self-driving, hardware
resources and the number of classes play a key role because the size of the training data
and validation labels could restrict decision-making. A self-driving car that uses deep
learning needs to consider hardware resources to process the dataset [9]. A convolutional
neural network (CNN) is related to the number of convolutional layers, the kind of layer
grouping, the activation function used, the number of fully connected layers, and the size
of the image to be processed as well as the techniques used to prevent over adjustment.
Even though the training phase of a CNN is computationally costly, these models can reach
high classification accuracy levels, making them popular.

This study proposes using a color image segmentation algorithm based on a chromatic
map defined on a space using complex numbers to analyze the best color distribution.
Complex algebra is used spatially to obtain final representative thresholds to segment the
image. The segmented images represent similar chromatic values on components a and
b of the CIELab space and the image’s most relevant areas. Patches from representative
areas are extracted based on both aspects. A convolutional neural network (CNN) classifies
the extracted patches to label them on the color image. This study’s contribution is to
propose a new representation of chromatic components based on complex numbers defined
as a chromatic map. The map can facilitate localizing the most representative areas across
the image using fundamental algebra for complex numbers. This segmentation method
renders broadly segmented images; however, instead of refining the segmented areas and
labeling them, several patches from the color images are extracted using the location of
the segmented area as the input for a CNN classifier. Thus, this segmentation strategy is
a phase prior to the classifier that looks for similar chromatic patterns that represent the
essential content of the image. This approach to segmentation and classification has been
tested using urban-context images, and the results include data about the reliability of each
predicted image class.

2. Related Works

Labeling segmented areas require high computational resources to recognize objects
during the human−machine interaction. Image segmentation is often based on the graphs
theory and grouping algorithms. In [10], the authors propose a general scheme of seg-
mentation of scenes based on the spectral grouping algorithm for normalized cuts, fusing
geometric and color information on a working frame with no parameters. The study in [11]
presents a segmentation scheme to combine color and depth information. Under this
scheme, segmentation happens in 3 steps. The study by Karimpoulit [12] identifies the
types of rocks using images of rocky settings. Segmentation has been extended to video;
for instance, the authors of [13] have developed a method to combine the appearance of an
object with the temporal consistency between frames. Using the features of a normalized-
color histogram and CNN features, the GrabCut algorithm is applied to different frame
boundaries to segment the object in the background. When detecting objects in motion,
the background is obtained using videos taken from a static camera. The study presented
in [14] suggests the option of a detection and segmentation method based on consecutive
stereo images that process dynamic objects found in an urban environment. This is a
pixel-by-pixel approach applied to the KITTI dataset [15], and the frame boundaries are
generated bearing in mind color and difference data for each moving object.
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Unlike object-detection strategies, object recognition focuses on the objectives of the
image and provides a specific class for each one [16]. As the objective is better adjusted to
the frame boundary, the classification results become more reliable without a background.
The fast development of smart vehicles makes object detection and recognition essential
in self-driving [1]. In addition, road sign detection provides key information for safe
navigation. Often, road detection is based on standard low-profile features used to process
the image and isolate the borders. In [17], a real-time two-stage YOLOv2-based road-sign
detection system is used. In the first stage, the YOLOv2 detection frame is modified to
adapt it to the road-sign detection task and predicts boundary frames, class, and reliability
of road signage. In the second stage, an invariant light road-sign transformation network
(RM-Net) reclassifies the samples with low accuracy to increase accuracy.

The CNN architectures used for segmentation purposes are usually of three kinds, fully
convolutional networks (FCN) [18], coder-decoder networks [19] and “atrous-convolutional”
networks [20]. The authors in [21] introduce the Mask R-CNN method, an extension of the
Faster R-CNN method [22] to segment images instead of just detecting boundary frames.
There are also some approaches whereby Deep Neural Networks are modified, for instance,
semantic-aware segmentation [23] to use semantic segmentation and instance segmenta-
tion. Recent strategies propose general DWT and IDWT layers to various wavelets and
design wavelet integrated CNNs (WaveCNets) for image classification using ImageNet
and ImageNet-C, achieving an accuracy of 78.51% [24]. Moreover, a new architecture
(VOLO) implements a novel outlook attention operation that dynamically conducts the
local feature aggregation mechanism in a sliding window across the input image. This
approach uses transformers and CNNs to complement their model and achieves 87.1%
using ImageNet-1k [25]. Another natural color image approach is described in [26]. In this
approach, the image is split into patches that feed the embedding module to expand the
feature dimensions used for image classification [26]. This method achieves 83.9% in the
Top-1 accuracy rate.

The main aims of this study are: (1) to develop an automatic strategy to obtain
areas on a natural, outdoor image transforming components a and b of the CIELab image
as a complex space to represent image tonality, saturation, and contrast; (2) to build a
chromatic map that concentrates the distribution of the tone density of pixels from the
image using algebra for complex numbers; (3) to provide a strategy that includes sky
and road categories, which are usually considered in semantic-based methods but not in
object-classifier methods.

3. Image Segmentation Approach

Figure 1 shows an overview of the proposed method to segment images and identify
objects. First, input color images are transformed to the CIELab space. Next, chromatic
planes a and b on the CIELab space are used as real and imaginary elements to form
complex image I. The representative chromatic values of image I are calculated using the
complex image to build a chromatic map. The number of thresholds per image depends on
the colors of the image. The segmented areas represent those from images with similar
chromatic values without a classification label. The next step consists of extracting several
patches from the color image from each segmented area to build a database of images in
six categories. A CNN uses the database to train, validate and test the identification of
the object on the image. Note that color image patches are the input to the CNN model
instead of the segmented areas. The implementation details of the method are shown in
the following subsection.
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Figure 1. Proposed segmentation method to identify objects.

3.1. Image in the Complex Space

As said earlier, planes a and b on the CIELab space known as imA and imB, are
combined to generate complex image I. Figure 2 shows chromatic planes imA and imB to
form complex image I for a specific color image. Each pixel on image I is a complex number
z = a + ib, processed using algebra for complex numbers. In this case, basic operations
such as division, modulus, and argument have been used [27], but the division is the main
operation used. Each pixel I is divided by a reference point P(r,c); the resulting image is
known as the division image and is referred to as D. Image D shows values such as the
threshold ones indicated by reference point P(r,c) within boundary ε. Thus, the same values
as the unit or those close to it point to similar areas as those of the threshold value P(r,c).
Equation (1) defines division image D, which is the resulting complex image I size u× v
divided by reference point P(r,c). Values close to the unity in D represent similar pixels as
those of P(r,c). Therefore, image D shows the relevance of point P(r,c) on the color image.
However, as D is in the complex space, searching for values close to 1 cannot be direct.
Using module D, the image of module |D| can generate positive real values.

D[u×v] =
I[u×v]

P(r,c)
(1)

Figure 2. Generating complex image I using the chromatic images imA and imB.

In Equation (2), unitary values in |D| (around an ε value) are chosen to obtain the
thresholded image F and to highlight areas with a color such as P(r,c). Figure 3 represents
the Division image D and the corresponding module |D|. |D| shows in white color the
areas whose values are similar to P(r,c).
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F[u×v] =

{
1 if 1− ε ≤

∣∣∣D[u×v]

∣∣∣ ≤ 1 + ε

0 otherwise
(2)

Figure 3. Complex division using a representative chromatic point.

To obtain a final segmented image F, first, representative P(r,c) thresholds must be
found. Each threshold requires the division process. A chromatic map AB makes it possible
to obtain several thresholds for the image automatically.

3.2. Chromatic Map

Chromatic map AB can be defined in the context of a bidimensional histogram. Chro-
matic components a and b on the CIELab space make up the horizontal Xa and vertical
Yb axis on the map AB. This can be illustrated as shown in Figure 4a,c for a real and an
artificial image, respectively.

Figure 4d shows five representative points on the chromatic map AB, one for each area
of the artificial image shown in Figure 4c. These points separate the chromatic components
of the image. In the case of images such as those in Figure 4a, chromatic values are
calculated by seeking the most representative values, that is to say, the highest density of
points. Therefore, chromatic map AB is divided into k-areas, resulting from division m and n
on the Yb and Xa axes, respectively. Thus, the map is divided into k = m× n areas based on
the combinations of m and n within the set of values {4, 8, 16, 32}. These values reduce the
complexity of the power and make the methodology suitable for hardware implementation.
For instance, blocks k = 128 when dividing the map by m = 8 and n = 16.
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(a) (b)

(c) (d)

Figure 4. Chromatic map AB for two color images. (a) Color image 1. (b) Chromatic map AB of image 1.
(c) Color image 2. (d) Chromatic map AB of image 2.

In Equation (3), npx is a percentage based on the total number of pixels on the image,
which is used to label blocks as representative. Each block has a chromatic range ∆a and
∆b defined by Equations (4) and (5). Figure 5 shows the division in k−blocks on a chromatic
map, whose axes take the chromatic values from planes a and b on the CIELab space used
to build complex image I.

npx = (u× v) · 1
max(m, n)

(3)

∆a =
max(Xa)−min(Xa)

m
(4)

∆b =
max(Yb)−min(Yb)

n
(5)

Figure 5. Chromatic map AB divided into m× n blocks on the chromatic range given by ∆a and ∆b.
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3.3. Segmentation Approach

This study uses complex numbers to segment the complex image I. As shown in the
previous subsection, the chromatic map AB represents the pixel density distribution along
k-blocks on the complex image. In each block (i, j) on the chromatic map AB, density Mµ is
calculated by counting the number of pixels Mp and averaging the intensity of each pixel
on I, as shown in Equation (6).

Mµ(i, j) =


Mp

∑
p=1

Ii,j(p)

Mp
if Mp > 0

0 in another case

(6)

Equation (7) calculates indexes indMp, showing blocks with a number of pixels greater
than npx. In Equation (8), a second criterion is applied to obtain the final vector index
indMµ, which stores the indexes for blocks on Mµ, which also agrees with indMp. The
number of thresholds nth is used in the segmentation process and is obtained from the
cardinality of vector indMµ (see Equation (9)).

indMp = Mp ≥ npx (7)

indMµ = Mµ

(
indMp

)
(8)

nth = card
(
indMµ

)
(9)

Vector Vµ is calculated using Mµ and indMµ, as shown in Equation (10). Vµ is the
vector for average values used as thresholds in the segmentation process, which are still
represented using complex numbers. The correlation matrix Mcorr is obtained by dividing
each threshold value by all the other values, as shown in Equation (11). Equation (12)
represents the areas for average values bound by a circle |z − z0| = R. In this case,
areas are defined as being within a unitary circle centered on each threshold value on the
matrix Mcorr.

Vµ = Mµ

(
indMµ

)
(10)

Mcorr(i, j) =
Vµ(i)
Vµ(j)

i, j = {1, . . . , nth} (11)

Mrµ = |1− |Mcorr||

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



1−
∣∣∣∣Vµ(1)
Vµ(1)

∣∣∣∣ 1−
∣∣∣∣Vµ(1)
Vµ(2)

∣∣∣∣ · · · 1−
∣∣∣∣Vµ(1)
Zµ(k)

∣∣∣∣
1−

∣∣∣∣Vµ(2)
Vµ(1)

∣∣∣∣ 1−
∣∣∣∣Vµ(2)
Vµ(2)

∣∣∣∣ · · · 1−
∣∣∣∣Vµ(2)
Vµ(k)

∣∣∣∣
...

...
. . .

...

1−
∣∣∣∣Vµ(k)
Vµ(1)

∣∣∣∣ 1−
∣∣∣∣Vµ(k)
Vµ(2)

∣∣∣∣ · · · 1−
∣∣∣∣Vµ(k)
Vµ(k)

∣∣∣∣



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(12)

The matrix values Mrµ are used to analyze the middle values. Beyond diagonal values,
minimization was conducted on matrix Mrµ . Minimum values obtained are then divided
by two to ensure there is no overlap between areas centered around average values; this
is expressed by Vrµ in Equation (13). nth values are stored in Vrµ, which contains the
thresholds to conduct color segmentation. Algorithm 1 explains the implementation of the
multi-threshold segmentation process on a color image.
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Vrµ =
min

(
Mrµ(i, j)

)
2

∀i 6= j (13)

Algorithm 1 Segmentation method

Input: Input image im, number of blocks m, n in the chromatic map
Output: Segmented image imSeg

1: npx ← (size(im))
max(m,n)

2: [imL, imA, imB]← to_cielab(im)
3: I ← imA + i imB %complex image
4: for i = 1 to m do
5: for j = 1 to n do
6: Mp ← card(blocki,j)
7: if Mp > 0 then
8: Mµ ← mean(blocki,j)
9: end if

10: end for
11: end for
12: indMp ← (Mp ≥ npx)

13: indMµ ← Mµ(indMp);

14: [Vµ, nth]← [Mµ

(
indMµ

)
, card(indMµ)]

15: for i, j = 1 to nth do

16: Mcorr(i, j)← Vµ(i)
Vµ(j)

17: end for
18: Mrµ ← absabsabs(1− absabsabs(Mcorr))

19: Vrµ ←
minminmin(Mrµ (i,j))

2 for i 6= j
20: for k = 1 to nth do
21: if Vrµ(k) 6= 0 then
22: D ← I

Vrµ (k)

23: else
24: D ← absabsabs(I)
25: end if
26: F ← absabsabs(1− absabsabs(D))

27: S(:, :, k)← k ·
(

F < Vrµ(k)
)

28: imgSeg(S(:, :, k) ≡ k)← k
29: end for

4. Results
4.1. Experimental Results

Segmentation and classification results are obtained using Cityscape [28] and
CamVid [29] datasets. Similar datasets, i.e., Kitti, Waymo [30], and nuScenes [31], are
used for 2D and 3D object detection for self-driving. The Cityscape dataset is divided
into 20 folders obtained from several European cities; in this case, the Munster subfolder
with 174 images of 1024× 2048 pixels was chosen. In contrast, the CamVid dataset has
701 images of 720× 960 pixels. Both datasets showed urban contexts but under different
seasonal and lighting conditions.

The color image and the number of blocks on the chromatic map are the inputs for
the segmentation algorithm. Each input image is processed using 16 different blocks,
generating 16 segmented images. Each segmented image is colored by area according
to the values of a 256−color map. Figures 6 and 7 show the segmentation results for an
image taken from the CamVid dataset, using different block sizes on the chromatic map. The
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validation method used shows that the chromatic map for the CamVid dataset produces
better results in a (8× 16) combination, unlike the Cityscape database, which produced
better results for (16× 8) values, as shown in the following subsection.

(a) (b)

(c) (d)

Figure 6. CamVid segmented images for different block sizes. (a) Block size 4× 8. (b) Block size
4× 16. (c) Block size 8× 8. (d) Block size 8× 16.

(a) (b)

(c) (d)

Figure 7. CamVid segmented images for different block sizes. (a) Block size 16× 8. (b) Block size
16× 16. (c) Block size 32× 8. (d) Block size 32× 16.
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4.2. Segmentation Performance

The number of representative areas segmented is validated through a quantitative
analysis of ground-truth images provided by Cityscape and CamVid datasets. Table 1
shows the number of representative areas nth found by Algorithm 1 for various block sizes
on the chromatic map. Bear in mind that as the number of blocks on the axes increases, the
number of representative areas increases too. Segmented images can be empty in both
cases, meaning no representative area was found.

Table 1. Number of representative areas generated by each dataset.

YbYbYb-Axis Blocks

Cityscape Image CamVid Image

XaXaXa-Axis Blocks XaXaXa-Axis Blocks

4 8 16 32 4 8 16 32

4 3 4 7 11 2 4 6 9

8 4 4 7 11 4 4 5 9

16 6 6 7 13 6 6 6 10

32 12 11 12 12 11 11 10 13

A second validation of segmented images consists of selecting the most common
categories and their semantics to compare with the segmented areas. The most common
categories from the urban context are enough for a general description of the scene. The
selected categories are building, car, pedestrian, road, sky, and tree. Each segmented image
is analyzed by area. The results for categories building, pedestrian, and road using the
CamVid dataset are shown in Table 2, and those using the Cityscape dataset are shown in
Table 3. Both tables show the segmented pixel-by-pixel relationship between the results
and the ground-truth images, which makes it possible to consider some criteria to establish
block sizes (m, n):

• The percentage of pixel relationship by a class must be at least 50% similar to ground-truth.
• Reject block sizes on m, n where the number of void images is higher than 10%.

Therefore, m, n block sizes where m 6= n are used to comply with the last criterion,
and the number of areas are enough to represent the categories.

Table 2. Analysis of segmented image categories for CamVid.

Class YbYbYb-Axis
Blocks

XaXaXa-Axis Blocks

444 888 161616 323232

Pixel Ratio Void
Images Pixel Ratio Void

Images Pixel Ratio Void
Images Pixel Ratio Void

Images

B
ui

ld
in

g

4 0.2049 464 0.4277 227 0.622 28 0.6215 14

8 0.4415 212 0.4982 162 0.6190 20 0.6050 14

16 0.5459 15 0.5488 16 0.5397 14 0.5369 14

32 0.5337 14 0.5358 14 0.5149 14 0.4843 14

Pe
de

st
ri

an

4 0.1984 486 0.3865 267 0.5604 75 0.5437 61

8 0.4253 249 0.4705 202 0.5572 68 0.5377 61

16 0.5714 62 0.5736 63 0.5497 61 0.5321 61

32 0.5551 62 0.5482 61 0.5167 61 0.4812 61

R
oa

d

4 0.3461 457 0.6155 214 0.7846 14 0.7546 0

8 0.6260 202 0.6697 150 0.7521 7 0.7155 0

16 0.7147 1 0.6807 2 0.6488 0 0.6048 0

32 0.6058 0 0.6056 0 0.5788 0 0.5591 0
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Table 3. Analysis of segmented image categories for CityScape.

Class YbYbYb-Axis
Blocks

XaXaXa-Axis Blocks

444 888 161616 323232

Pixel Ratio Void
Images Pixel Ratio Void

Images Pixel Ratio Void
Images Pixel Ratio Void

Images

B
ui

ld
in

g

4 0.1427 130 0.3275 73 0.4355 4 0.4390 4

8 0.5105 45 0.4697 47 0.4903 4 0.4620 4

16 0.6817 4 0.6406 4 0.5418 4 0.4652 4

32 0.7239 4 0.6817 4 0.5853 4 0.4850 4

Pe
de

st
ri

an

4 0.0885 139 0.2179 94 0.2982 38 0.3068 38

8 0.4251 71 0.3635 73 0.3843 38 0.4253 38

16 0.5761 38 0.5494 38 0.4741 38 0.4704 38

32 0.6114 38 0.5885 38 0.5278 38 0.4439 38

R
oa

d

4 0.2277 128 0.4983 71 0.7376 2 0.6822 2

8 0.6493 43 0.6222 45 0.7327 2 0.6284 2

16 0.8533 2 0.8310 2 0.7321 2 0.5709 2

32 0.8346 2 0.8063 2 0.7089 2 0.6295 2

4.3. Cnn Architecture

Figure 8 shows network architecture based on VGG-16 [32] used in this study. This
architecture has 16 layers to train about 138 million of parameters. The network consists
of five blocks of convolutional layers. Each block consists of two or three convolutional
layers followed by a groping layer. The number of filters increases by 2, from 64 to 512. The
Dropout layers are added between one block and the next to avoid over-adjustment [33].
Each Dropout layer reduces the connection between one block and the next. The flat layer
connects convolutional blocks with the fully connected layer. The fully connected layers
have 4096 neurons, including “bias” and the activation function, a ReLU in this case. The
last fully connected layer is the output from the network. The number of neurons on this
layer is the same as the number of categories. The activation function associated with
the last fully connected layer is the Softmax or normalized exponential function for a
multi-class problem.

Figure 8. Modified convolutional neural network VGG-16.

Algorithm 1 calculates the segmentation of input images used to process the training
and validation dataset. This process is illustrated in Figure 9. A binary mask per category,
known as class mask, is generated for each image on the dataset. The class mask is then used to
crop p patches randomly sized [lu× lv] = [60× 80] for each category. About 30,000 patches
were generated for all the classes using the Cityscape database, with approximately 3000
images.
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Figure 9. Class mask obtained from a segmented image to generate patches for the category building.
A similar process is followed for all the categories to process the training dataset.

All patches were resized to [96× 96], [128× 128] and [224× 224] for use on the CNN.
Figure 10a,b show the accuracy and loss chart, respectively, for training of 100 epochs using
an image size of (224× 224).

(a) (b)

Figure 10. Results from training the CNN using 224× 224 images. (a) Accuracy graph. (b) Loss graph.

The SmallVGG network model was also used to optimize its resources and keep per-
formance results optimal. This network model reduces the original architecture presented
in this study [32]. Even though the VGG-16 model for a resized 96× 96 path shows greater
accuracy than the results shown in Table 4, 224 × 224 images have had a more stable
performance during the training and validation phase.

Table 4. CNN accuracy results for different image sizes.

Architecture
Image Size (in Pixels)

96 × 96 128 × 128 224 × 224

SmallVGG 0.73 0.82 0.87

VGG16-Modified 0.92 0.90 0.91

ResNet150 0.26 0.81 0.94

Additional experimental tests were performed using the ResNet CNN model, and
the results are included in Table 4. In [34], the authors describe the residual blocks used
for training deeper layers in the network. Using skip connections, it is possible to activate
one layer and relocate its output to feed deeper layers in the network. ResNet CNN
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architectures are built by grouping a set of residual blocks. It is important to point out
that the adder in the residual block can only be performed if both layers have the same
dimension. For six categories and three different sizes of patches, we obtained an accuracy
of 94% for 224× 224 image patches.

The network model is validated using a training dataset from segmented images.
Ground-truth information is not used with the validation dataset, and therefore, patches
generated depend only on the areas obtained from the segmented image and the equivalent
input color image. Unlike the training dataset, these patches are chosen randomly by area
and do not have a predetermined category. This is represented visually in Figure 11. The
patches are cropped from the color image using a fixed size [lu× lv] = [224× 224], which
is the classifier input size. A different number of patches is cropped for each segmented
area depending on the size and the number of regions obtained. The fixed size of bounding
boxes allows the classification of undefined categories, such as sky and road, which most
object-detect methodologies cannot detect and classify. This is one of our contributions to
classifiers in urban environments.

Figure 11. Image patches generated to validate the classifier.

Experimental tests to validate this approach use patches generated using the CamVid
dataset. The classifier assigns a label and a reliability label to each patch. The output image
shows different boundary frames with the brand and the reliability value corresponding
to each image patch. Some results are shown in Figure 12. The CNN architecture was
trained using the CityScape dataset, which has bigger images, and therefore, the process of
generating patches was more straightforward.
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Classification of objects using CamVid. (a) Test image #1. (b) Test image #2. (c) Test image
#3. (d) Test image #4. (e) Test image #5. (f) Test image #6.

Experimental tests were conducted using a PC with Intel Core i5 9th generation, 32 GB
of RAM, and an NVIDIA GeForce GTX 1650 graphics card. Table 5 shows the time for the
segmentation algorithm.

Table 5. Execution time for the segmentation algorithm.

Dataset
Execution Time (in Seconds)

Per Image Total No. of Images Per Dataset

CamVid 0.83187 394.0215

Cityscape 3.07230 4662.554
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Bear in mind that the time presented in Table 5 depends on the number of areas on
the segmented image and their sizes. When a patch for an area cannot be obtained, this
increases processing time significantly. To limit the execution time, a maximal number
of tries to generate the patches has been established. In addition, the number of patches
per image depends on the number of representative areas obtained by the segmentation
algorithm for each image divided into four partitions (see Figure 11). Thus, the number of
patches changes from image to image, and so does the total processing time. Processing
times were analyzed, including those recorded in the classification phase. Table 6 shows
the number of patches generated and the time. A general processing time per image can be
produced by adding the segmentation and classification times. For instance, the time for
the CamVid dataset is 4 seconds; for the CityScape image, it is twice as long.

Table 6. Classification execution time.

Dataset Number of Patches Generated
Execution Time (in Seconds)

Per Image Total No. of Images on Dataset

CamVid 11,660 2.9092 889.5841

Cityscape 2883 5.2499 245.0659

5. Discussion

Table 7 shows a comparison between our proposal and other methodologies in the
literature. Using ResNet, we achieve 94% accuracy, whereas YOLOv3 [35] and YOLOv4 [36]
architecture achieve over 95% accuracy for the ImageNet dataset. Different approaches
compared were VOLO [25] and SPPNet [37], which also achieved good accuracy in the top
rate. Even if our classification accuracy is lower, in this work, we provide an alternative
method to classify image content without performing a whole refined segmentation of the
image and without using semantic image information. Therefore, sky and road classes have
been included as categories. In contrast, YOLO or other object classification architectures
do not consider it because a bounding box cannot be defined for both categories.

Our accuracy results also depend on the bounding-boxes size extracted from the image;
note in Table 4 that our accuracy increases as this selected size does. Our methodology is
an alternative region-based approach that has been trained with one dataset and validated
with another. Both datasets only have the urban context in common, but resolution and
illumination are different, becoming more difficult for the validation task.

Table 7. Comparison with related works.

Work Methodology Dataset Accuracy

YOLOv3 [35]
YOLOv4 [36]

An integrated CNN’s used for feature extraction and
object classification in real-time.

ImageNet

93.8%
94.8%
Top-5

accuracy rate

VOLO [25]
A new architecture that implements a novel outlook
attention operation that dynamically conducts the
local feature aggregation mechanism in a sliding win-
dow manner across the input image.

ImageNet
87.1%
Top-1

accuracy rate

SPPNet [37] Strategy of spatial pyramid pooling to construct a net-
work structure called SPP-net for image classification.

Caltech101 93.42%

Our
approach

Selection of region chromatic based on complex num-
bers with CNN to object detection.

Cityscapes
and

Camvid

94%
for

6 classes

A final experimental test was performed by training boosted trees and several machine
learning classifiers using the patches extracted from our method; the obtained results are
illustrated in Table 8. For six categories and three different sizes, the highest accuracy was
79.80%, achieved by the Bagged Trees classifier. Considering that CNN architectures extract
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the main and representative features through the layers, machine learning-based classifiers
require a more careful feature extractor strategy to improve their classification accuracy.

Table 8. Classification result using machine learning approaches.

Classification Learner
Patches Sizes (in Pixels)

96 × 96 128 × 128 224 × 224

Quadratic SVM 78.10% 78.30% 78.90%

Cubic SVM 78.50% 79.10% 80.10%

Fine Gaussian SVM 67.30% 70.20% 74.10%

Medium Gaussian SVM 77.80% 77.80% 77.40%

Bagged Trees 79.20% 79.40% 79.80%

Narrow Neural Network 72.90% 74.20% 76.20%

Medium Neural Network 74.60% 76.60% 78.70%

Bilayered Neural Network 72.90% 74.20% 77.00%

Trilayered Neural Network 73.70% 74.60% 76.10%

6. Conclusions

This study shows a new approach to image segmentation to identify objects in struc-
tured outdoor spaces. The approach extracts representative features based on combining
algebra for complex numbers on planes a and b on the CIELab color space. The complex im-
age makes it possible to develop and implement a multi-threshold segmentation algorithm.
The methodology follows a typical automatic learning technique. The required features to
input the classifier are chosen from specific areas on the segmented image. Despite light
and overcrowding issues in outdoor environments, the number of classes and images used
in the training and validation phases of the model are enough to execute the identification
of objects.

The multi-threshold segmentation algorithm produces different execution time lapses
depending on the image features to be processed. This is also dependent on the computing
power available. In addition, the different sets of images used for CNN training and
validation are created using random conditions. The execution time results for the multi-
threshold segmentation algorithm depend on the size and features of the image. Thus
far, this approach cannot be used in real-time conditions that require execution speeds of
milliseconds. However, a dispersal strategy to select different areas on the scene could
provide lighter techniques for classification purposes. Given the modular nature of the
methodology, modifications to increase hardware performance are possible.

The VGG-16 network responds well to conditions such as those in this study, showing
a uniform and flexible architecture; however, better accuracy results were achieved using
the ResNet-150 network. Execution times for classification purposes are affected by the
various phases in the methodology and the different features of the images from the
databases. Hence, the decision to train the CNN architecture using the Cityscape dataset
and validate it using the CamVid dataset shows similar outdoor and urban environments.

Finally, this study has focused on a less computationally intensive alternative to
conducting color segmentation and object detection tasks, with the flexibility of adapting
to different hardware architectures and scenarios.
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