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1. Introduction

A Riemannian or a semi-Riemannian manifold (Mn, g) of dimension n(> 2) is termed
as an Einstein manifold if its (0, 2)-type Ricci tensor Ric( 6= 0) satisfies Ric = r

n , where r
stands for the scalar curvature [1]. In addition to Riemannian geometry, Einstein manifolds
also have a vital contribution to the general theory of relativity (GTR).

Approximately two decades ago, Chaki and Maity introduced and studied quasi-
Einstein manifolds [2]. An (Mn, g), (n > 2) is said to be a quasi-Einstein manifold (QE)n if
its Ric ( 6= 0) realizes the following condition:

Ric(U1, U2) = ag(U1, U2) + bA(U1)A(U2), (1)

where a, b ∈ R such that b 6= 0 and A( 6= 0) is the 1-form such that

g(U1, ρ) = A(U1), g(ρ, ρ) = A(ρ) = 1, ′′ (2)

for any vector field U1, and a unit vector field ρ called the generator of (Mn, g). In addition,
A is named the associated 1-form. Einstein manifolds form a natural subclass of the class
of (QE)n.

Under the study of exact solutions of the Einstein field equations, as well as under the
consideration of quasi-umbilical hypersurfaces of semi-Euclidean spaces, (QE)n came into
existence. For instance, the Robertson–Walker spacetimes are (QE)n. Thus, (QE)n have
great importance in GTR.

An (Mn, g), (n ≥ 2) is said to be a generalized quasi-Einstein manifold G(QE)n [3] if
its Ric( 6= 0) realizes the following condition:

Ric(U1, U2) = ag(U1, U2) + bA(U1)A(U2) + cB(U1)B(U2), (3)
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where a, b, c are non-zero scalars and A, B are two non-zero 1-forms such that

g(U1, ρ) = A(U1), g(U1, σ) = B(U1), (4)

where ρ and σ are mutually orthogonal unit vector fields, i. e., g(ρ, σ) = 0. The vector fields
ρ and σ are called the generators of the manifold. If c = 0, then the manifold reduces to a
quasi-Einstein manifold.

In 2007, Bhattacharya, De and Debnath [4] introduced the notion of a mixed gener-
alized quasi-Einstein manifold. A non-flat Riemannian manifold is said to be a mixed
generalized quasi-Einstein manifold and is denoted by MG(QE)n, if its Ric( 6= 0) satisfies
the following condition:

Ric(U1, U2) = ag(U1, U2) + bA(U1)A(U2) + cB(U1)B(U2)

+ d[A(U1)B(U2) + B(U1)A(U2)],
(5)

where a, b, c, d are non-zero scalars and A, B are two non-zero 1-forms such that

g(U1, ρ) = A(U1), g(U1, σ) = B(U1), (6)

where ρ and σ are mutually orthogonal unit vector fields and are called the generators of
the manifold. Recently, MG(QE)n have been studied by various geometers in several ways
to a different extent, such as [5–8] and many others.

Putting U1 = U2 = ei in (5), where {ei} is an orthonormal basis of the tangent space at
each point of the manifold, and taking summation over i( 1 ≤ i ≤ n), we obtain

r = na + b + c. (7)

A Lorentzian four-dimensional manifold is said to be a mixed generalized quasi-
Einstein spacetime with the generator ρ as the unit timelike vector field if its Ric( 6= 0)
satisfies (5). Here, A and B are non-zero 1-forms such that σ is the heat flux vector field
perpendicular to the velocity vector field ρ. Therefore, for any vector field U1, we have

g(U1, ρ) = A(U1), g(U1, σ) = B(U1),

g(ρ, ρ) = A(ρ) = −1, g(σ, σ) = B(σ) = 1.′′
(8)

Further, we know that if the Riemannian curvature tensor K of type (0, 4) has the form

K(U1, U2, U3, U4) = k[g(U2, U3)g(U1, U4)− g(U1, U3)g(U2, U4)], (9)

then the manifold is said to be of constant curvature k. The generalization of this manifold
is the manifold of quasi-constant curvature and, in this case, the curvature tensor has the
following form:

K(U1, U2, U3, U4) = f1[g(U2, U3)g(U1, U4)− g(U1, U3)g(U2, U4)]

+ f2[g(U2, U3)A(U1)A(U4)− g(U2, U4)A(U1)A(U3)

+ g(U1, U4)A(U2)A(U3)− g(U1, U3)A(U2)A(U4)],

(10)

where g(K(U1, U2)U3, U4) = K(U1, U2, U3, U4), K is the curvature tensor of type (1, 3) and
f1, f2 are scalars, and ρ is a unit vector field defined by

g(U1, ρ) = A(U1),

It can be easily seen that, if the curvature tensor K is of the form (10), then the manifold
is conformally flat [3]. Thus, a Riemannian or semi-Riemannian manifold is said to be of
quasi-constant curvature if the curvature tensor K satisfies the relation (10); we denote such
a manifold of dimension n by (QC)n.
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A non-flat Riemannian or semi-Riemannian manifold (Mn, g) (n ≥ 3) is said to be a
manifold of generalized quasi-constant curvature if the curvature tensor K of type (0, 4)
satisfies the condition [3]

K(U1, U2, U3, U4) = f1[g(U2, U3)g(U1, U4)− g(U1, U3)g(U2, U4)]

+ f2[g(U1, U4)A(U2)A(U3)− g(U2, U4)A(U1)A(U3)

+ g(U2, U3)A(U1)A(U4)− g(U1, U3)A(U2)A(U4)]

+ f3[g(U1, U4)B(U2)B(U3)− g(U2, U4)B(U1)B(U3)

+ g(U2, U3)B(U1)B(U4)− g(U1, U3)B(U2)B(U4)],

(11)

where f1, f2, f3 are scalars and A, B are two non-zero 1-forms. ρ and σ are orthonormal
unit vectors corresponding to A and B such that g(U1, ρ) = A(X), g(U1, σ) = B(X) and
g(ρ, σ) = 0. Such a manifold is denoted by G(QC)n.

In [9], Bhattacharya and De introduced the notion of mixed generalized quasi-constant
curvature. A non-flat Riemannian or semi-Riemannian manifold (Mn, g) (n ≥ 3) is said to
be a manifold of mixed generalized quasi-constant curvature if the curvature tensor K of
type (0, 4) satisfies the condition

K(U1, U2, U3, U4) = f1[g(U2, U3)g(U1, U4)− g(U1, U3)g(U2, U4)]

+ f2[g(U1, U4)A(U2)A(U3)− g(U2, U4)A(U1)A(U3)

+ g(U2, U3)A(U1)A(U4)− g(U1, U3)A(U2)A(U4)]

+ f3[g(U1, U4)B(U2)B(U3)− g(U2, U4)B(U1)B(U3)

+ g(U2, U3)B(U1)B(U4)− g(U1, U3)B(U2)B(U4)]

+ f4[{A(U2)B(U3) + B(U2)A(U3)}g(U1, U4)

− {A(U1)B(U3) + B(U1)A(U3)}g(U2, U4)

+ {A(U1)B(U4) + B(U1)A(U4)}g(U2, U3)

− {A(U2)B(U4) + B(U2)A(U4)}g(U1, U3)],

(12)

where f1, f2, f3, f4 are scalars. A, B are two non-zero 1-forms. ρ and σ are orthonormal
unit vectors corresponding to A and B such that g(U1, ρ) = A(X), g(U1, σ) = B(X) and
g(ρ, σ) = 0. Such a manifold is denoted by MG(QC)n.

The spacetime of general relativity and cosmology is regarded as a connected
four-dimensional semi-Riemannian manifold (M4, g) with Lorentzian metric g with signa-
ture (−,+,+,+). The geometry of the Lorentz manifold begins with the study of a causal
character of vectors of the manifold. Due to this causality, the Lorentz manifold becomes
a convenient choice for the study of general relativity. Spacetimes have been studied by
various authors in several ways, such as [10–14] and many others.

2. MG(QE)n Admitting the Generators ρ and σ as Recurrent Vector Fields

Let us consider the generators ρ and σ corresponding to the associated recurrent
1-forms A and B. Then, we have

(DU1 A)(U2) = η(U1)A(U2),

(DU1 B)(U2) = ϕ(U1)B(U2),

where η and ϕ are non-zero 1-forms.
A non-flat Riemannian or semi-Riemannian manifold (Mn, g), (n > 2) is said to be

Ricci-recurrent [15,16] if its Ric( 6= 0) satisfies the following condition:

(DU1 Ric)(U2, U3) = α(U1)Ric(U2, U3), (13)
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where α is in non-zero 1-form. Since we know that

(DU1 Ric)(U2, U3) = U1Ric(U2, U3)− Ric(DU1U2, U3) (14)

−Ric(U2, DU1U3),

using (14) in (13), it follows that

α(U1)Ric(U2, U3) = U1Ric(U2, U3)− Ric(DU1U2, U3) (15)

−Ric(U2, DU1U3).

Using (5) in (15), we obtain

α(U1)[ag(U2, U3) + bA(U2)A(U3) + cB(U2)B(U3)

+ d{A(U2)B(U3) + A(U3)B(U2)}] = U1[ag(U2, U3) + bA(U2)A(U3)

+ cB(U2)B(U3) + d{A(U3)B(U2) + A(U2)B(U3)}]
− [ag(DU1U2, U3) + bA(DU1U2)A(U3) + cB(DU1U2)B(U3)

+ d{A(DU1U2)B(U3) + A(U3)B(DU1U2)}]
− [ag(U2, DU1U3) + bA(U2)A(DU1U3) + cB(U2)B(DU1U3)

+ d{A(U2)B(DU1U3) + A(DU1U3)B(U2)}].

(16)

Putting U2 = U3 = ρ in (16), we obtain

U1(a + b)− α(U1)(a + b) = 2(a + b)A(DU1 ρ) + 2dB(DU1 ρ). (17)

By using the fact that A(DU1 ρ) = 0 and (6) in (17), we have

U1(a + b)− α(U1)(a + b) = 2dg(DU1 ρ, σ), (18)

which can be written as

U1(a + b)− α(U1)(a + b) = −2dA(DU1 σ).

Thus, we have A(DU1 σ) = 0 if and only if U1(a + b)− α(U1)(a + b) = 0. This implies
that either DU1 σ ⊥ ρ or σ is a parallel vector field.

Again, putting U2 = U3 = σ in (16), we have

U1(a + b)− α(U1)(a + b) = 2(a + c)B(DU1 σ) + 2dA(DU1 σ). (19)

Again, using the fact that B(DU1 σ) = 0 and (6) in (19), we have

U1(a + b)− α(U1)(a + b) = 2dg(Dvσ, ρ), (20)

or, U1(a + b)− α(U1)(a + b) = −2dB(Dvρ).

Thus, we have B(DU1 ρ) = 0 if and only if U1(a + b) − α(U1)(a + b) = 0. This
implies that either DU1 ρ ⊥ σ or ρ is a parallel vector field. Hence, we can state the
following theorem:

Theorem 1. Let a mixed generalized quasi-Einstein manifold MG(QE)n be Ricci-recurrent; then,
the following statements are equivalent:
(i) ρ and σ are parallel vector fields;
(ii) U1(a + b)− α(U1)(a + b) = 0 if and only if DU1 σ ⊥ ρ;
(iii) U1(a + b)− α(U1)(a + b) = 0 if and only if DU1 ρ ⊥ σ.
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3. MG(QE)n Admitting the Generators ρ and σ as Concurrent Vector Fields

A vector field π is said to be concurrent if it satisfies the following condition [17,18]:

DU1 π = ξU1, (21)

where ξ is constant.
Let us consider the generators ρ and σ corresponding to the associated concurrent

1-forms A and B. Then, we have

(DU1 A)(U2) = λg(U1, U2), (22)

and (DU1 B)(U2) = µg(U1, U2), (23)

where λ and µ are non-zero constants.
Taking the covariant derivative of (5) with respect to U3, we obtain

(DU3 Ric)U2 = b[(DU3 A)(U1)A(U2) + A(U1)(DU3 A)(U2)]

+ c[(DU3 B)(U1)B(U2) + B(U1)(DU3 B)(U2)]

+ d[(DU3 A)(U1)B(U2) + A(U1)(DU3 B)(U2)

+ (DU3 B)(U1)A(U2) + B(U1)(DU3 A)(U2)].

(24)

Using (22) and (23) in (24), it follows that

(DU3 Ric)(U1, U2) = b[λg(U1, U3)A(U2) + λg(U2, U3)A(U1)]

+ c[µg(U1, U3)B(U2) + µg(U2, U3)B(U1)]

+ d[λg(U1, U3)B(U2) + µg(U1, U3)A(U2)

+ λg(U2, U3)B(U1) + µg(U2, U3)A(U1)].

(25)

Contracting (25) over U1 and U2 leads to

∂r(U3) = A(U3)[2bλ + 2dµ] + B(U3)[2cµ + 2dλ]. (26)

From (7), it follows that
∂r(U1) = 0. (27)

In view of (27), (26) turns to

A(U3)[2bλ + 2dµ] + B(U3)[2cµ + 2dλ] = 0. (28)

Thus, by virtue of (28), (5) takes the form

Ric(U1, U2) = ag(U1, U2) +
[
b + c

( (bλ + dµ)

(cµ + dλ)

)2
− 2d

(bλ + dµ)

(cµ + dλ)

]
A(U1)A(U2) (29)

which is a quasi-Einstein manifold. Thus, we can state the following theorem:

Theorem 2. Let MG(QE)n be a mixed generalized quasi-Einstein manifold. If the associated
vector fields of MG(QE)n are concurrent and the associated scalars are constants, then the manifold
reduces to a quasi-Einstein manifold.

4. MG(QE)n Admitting Einstein’s Field Equations

The Einstein’s field equations with and without cosmological constants are given by

Ric(U1, U2)−
r
2

g(U1, U2) + λg(U1, U2) = κT(U1, U2), (30)
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and
Ric(U1, U2)−

r
2

g(U1, U2) = κT(U1, U2), (31)

respectively; κ is a gravitational constant, λ is a cosmological constant, and T is the energy–
momentum tensor.

Using (6) in (31), it follows that(
a− r

2

)
g(U1, U2) + bA(U1)A(U2) + cB(U1)B(U2)

+ d[A(U1)B(U2) + A(U2)B(U1)] = κT(U1, U2).
(32)

Now, taking the covariant derivative of (32) with respect to U3, we arrive at

b[(DU3 A)(U1)A(U2) + A(U1)(DU3 A)(U2)]

+ c[(DU3 B)(U1)B(U2) + B(U1)(DU3 B)(U2)]

+ d[(DU3 A)(U1)B(U2) + A(U1)(DU3 B)(U2)

+ (DU3 B)(U1)A(U2) + B(U1)(DU3 A)(U2)] = κ(DU3 T)(U1, U2).

(33)

Thus, we have a result.

Theorem 3. Let MG(QE)n admit Einstein’s field equation without a cosmological constant. If the
associated 1-forms A and B are covariantly constant, then the energy–momentum tensor is also
covariantly constant."

5. MG(QE)4 Spacetime Admitting Space-Matter Tensor

In 1969, Petrov [19] introduced and studied the space–matter tensor P of type (0, 4)
and defined by

P = K +
κ

2
g ∧ T − νG, (34)

where K is the curvature tensor of type (0, 4), T is the energy–momentum tensor of type
(0, 2), κ is the gravitational constant, and ν is the energy density. Furthermore, G and g ∧ T
are, respectively, defined by

G(U1, U2, U3, U4) = g(U2, U3)g(U1, U4)− g(U1, U3)g(U2, U4), (35)

and

(g ∧ T)(U1, U2, U3, U4) = g(U2, U3)T(U1, U4) + g(U1, U4)T(U2, U3)

− g(U1, U3)T(U2, U4)− g(U2, U4)T(U1, U3),
(36)

for all U1, U2, U3, U4 on M.
Using (35) and (36) in (34), it follows that

P(U1, U2, U3, U4) = K(U1, U2, U3, U4) +
κ

2
[g(U2, U3)T(U1, U4)

+ g(U1, U4)T(U2, U3)− g(U1, U3)T(U2, U4)

− g(U2, U4)T(U1, U3)]− ν[g(U2, U3)g(U1, U4)

− g(U1, U3)g(U2, U4)].

(37)

If P = 0, then (37) gives

K(U1, U2, U3, U4) = −
κ

2
[g(U2, U3)T(U1, U4) + g(U1, U4)T(U2, U3)

− g(U1, U3)T(U2, U4)− g(U2, U4)T(U1, U3)]

+ ν[g(U2, U3)g(U1, U4)− g(U1, U3)g(U2, U4)].

(38)
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In view of (5), from (31), it follows that

κT(U1, U2) =
(

a− r
2

)
g(U1, U2) + bA(U1)A(U2) + cB(U1)B(U2)

+ d[A(U1)B(U2) + A(U2)B(U1)].
(39)

Thus, from (38) and (39), we obtain

K(U1, U2, U3, U4) = f1[g(U2, U3)g(U1, U4)− g(U1, U3)g(U2, U4)]

+ f2[g(U1, U4)A(U2)A(U3)− g(U2, U4)A(U1)A(U3)

+ g(U2, U3)A(U1)A(U4)− g(U1, U3)A(U2)A(U4)]

+ f3[g(U1, U4)B(U2)B(U3)− g(U2, U4)B(U1)B(U3)

+ g(U2, U3)B(U1)B(U4)− g(U1, U3)B(U2)B(U4)]

+ f4[g(U1, U4){A(U2)B(U3) + B(U2)A(U3)}
− g(U2, U4){A(U1)B(U3) + B(U1)A(U3)}
+ g(U2, U3){A(U1)B(U4) + B(U1)A(U4)}
− g(U1, U3){A(U2)B(U4) + B(U2)A(U4)}],

(40)

where f1 = (ν− a + r
2 ), f2 = − b

2 , f3 = − c
2 , f4 = − d

2 . Thus, we can state the follow-
ing theorem:

Theorem 4. For a vanishing space–matter tensor, MG(QE)4 spacetime satisfying Einstein’s field
equation without a cosmological constant is a MG(QC)4 spacetime.

Next, we investigate the existence of a sufficient condition under which MG(QE)4 can
be a divergence-free space–matter tensor.

From (31) and (37), we obtain

(divP)(U1, U2, U3) = (divK)(U1, U2, U3) +
1
2
[(DU1 Ric)(U2, U3)

− (DU2 Ric)(U1, U3)]− g(U2, U3)[
1
4

∂r(U1) + ∂ν(U1)]

+ g(U1, U3)[
1
4

∂r(U2) + ∂ν(U2)].

(41)

By using (divK)(U1, U2, U3) = (DU1 Ric)(U2, U3)− (DU2 Ric)(U1, U3) in (41), we obtain

(divP)(U1, U2, U3) =
3
2
[(DU1 Ric)(U2, U3)− (DU2 Ric)(U1, U3)]

− g(U2, U3)[
1
4

∂r(U1) + ∂ν(U1)]

+ g(U1, U3)[
1
4

∂r(U2) + ∂ν(U2)].

(42)

Let (divP)(U1, U2, U3) = 0; then, contracting (42) over U2 and U3, we obtain ∂ν(U1) =
0, where (27) is used. Hence, we can state the following theorem:

Theorem 5. For a divergence-free space–matter tensor, the energy density in MG(QE)4 spacetime
satisfying Einstein’s field equation without a cosmological constant is constant.

Now, by using (5) in (42), we obtain
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(divP)(U1, U2, U3) =
3
2
[∂a(U1)g(U2, U3)− ∂a(U2)g(U1, U3)]

+
3
2
[∂b(U1)A(U2)A(U3)− ∂b(U2)A(U1)A(U3)]

+
3b
2
[(DU1 A)(U2)A(U3) + A(U2)(DU1 A)(U3)

− (DU2 A)(U1)A(U3)− (DU2 A)(U3)A(U1)]

+
3
2
[∂c(U1)B(U2)B(U3)− ∂c(U2)B(U1)B(U3)]

+
3c
2
[(DU1 B)(U2)B(U3) + B(U2)(DU1 B)(U3)

− (DU2 B)(U1)B(U3)− (DU2 B)(U3)B(U1)]

+
3
2
[∂d(U1){A(U2)B(U3) + B(U2)A(U3)}

− ∂d(U2){A(U1)B(U3) + B(U1)A(U3)}]

+
3d
2
[(DU1 A)(U2)B(U3) + A(U2)(DU1 B)(U3)

+ (DU1 A)(U3)B(U2) + A(U3)(DU1 B)(U2)

− (DU2 A)(U1)B(U3)− A(U1)(DU2 B)(U3)

− (DU2 A)(U3)B(U1)− A(U3)(DU2 B)(U1)]

− g(U2, U3)[
1
4

∂r(U1) + ∂ν(U1)]

+ g(U1, U3)[
1
4

∂r(U2) + ∂ν(U2)].

(43)

By assuming that ν, a, b, c, and d are constants and the generator ρ is a parallel vector
field, i.e., DU1 ρ = 0, we obtain

∂r(U1) = 0, ∂ν(U1) = 0, (DU1 A)(U2) = 0. (44)

In view of (44), we derive

a + b = 0, c = 0, d = 0. (45)

Using (44) and (45), (43) reduces to

(divP)(U1, U2, U3) = 0.

Thus, we can state the following theorem:

Theorem 6. In MG(QE)4 spacetimes admitting parallel vector field ρ satisfying Einstein’s field
equation without a cosmological constant, if the energy density and associated scalars constant are
constants, then the divergence of the space–matter tensor vanishes.

6. MG(QE)4 Spacetime Admitting General Relativistic Viscous Fluid

Ellis [20] defined the energy–momentum tensor for a perfect fluid distribution with
heat conduction as

T(U1, U2) = ωg(U1, U2) + (ν + ω)A(U1)A(U2) + B(U1)B(U2)

+ A(U1)B(U2) + A(U2)B(U1),
(46)

where g(U1, ρ) = A(U1), g(U1, σ) = B(U1), A(ρ) = −1, B(σ) > 0, g(ρ, σ) = 0, and ν, ω
are called the isotropic pressure and the energy density, respectively. σ is the heat conduc-
tion vector field perpendicular to the velocity vector field ρ. Assuming a mixed generalized
quasi-Einstein spacetime satisfying Einstein’s field equation without a cosmological con-
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stant whose matter content is viscous fluid, then, from (31) and (46), the Ricci tensor takes
the form

Ric(U1, U2) = (κω +
r
2
)g(U1, U2) + κ(ν + ω)A(U1)A(U2)

+ κB(U1)B(U2) + κ[A(U1)B(U2) + A(U2)B(U1)].
(47)

By comparing (5) and (47), we obtain

a = κω +
r
2

, b = κ(ν + ω), c = κ, d = κ. (48)

Taking a frame field to contract (48) over U1 and U2, we obtai

r = κ(ν− 3ω). (49)

In view of (49), (47) turns to

Ric(U1, U2) =
κ(ν−ω)

2
g(U1, U2) + κ(ν + ω)A(U1)A(U2)

+ κB(U1)B(U2) + κ[A(U1)B(U2) + A(U2)B(U1)].
(50)

Now, let R be the Ricci operator given by g(R(U1), U2) = Ric(U1, U2) and
Ric(R(U1), U2) = Ric2(U1, U2). Then, we have A(R(U1)) = g(R(U1), ρ) = Ric(U1, ρ)
and B(R(U1)) = g(R(U1), σ) = Ric(U1, σ). Thus, we obtain

Ric(R(U1), U2) =
κ(ν−ω)

2
Ric(U1, U2) + κ(ν + ω)Ric(U1, ρ)A(U2)

+ κRic(U1, σ)B(U2) + κ[Ric(U1, ρ)B(U2)

+ A(U2)Ric(U1, σ)].

(51)

Now, contracting (51) over U1 and U2, we obtain

Ric(U1, U1) = ||R||2 =
κ(ν−ω)r

2
+ κ(ν + ω)Ric(ρ, ρ)

+ κRic(σ, σ) + κ[Ric(ρ, σ) + Ric(σ, ρ)].
(52)

For a mixed generalized quasi-Einstein spacetime, from (5), it follows that

Ric(U1, ρ) = (a− b)A(U1)− dB(U1), Ric(U1, σ) = (a + c)B(U1) + dA(U1). (53)

In view of (48), (49), and (53), we find that

Ric(ρ, ρ) =
κ(ν + 3ω)

2
, Ric(σ, ρ) = Ric(ρ, σ) = −κ, Ric(σ, σ) =

κ(ν−ω + 2)
2

. (54)

By making use of (54), from (52), it follows that

||R||2 = κ2(ν3ω2 + ν + ω− 3). (55)

Thus, we can state the following theorem:

Theorem 7. If MG(QE)4 spacetime admitting viscous fluid satisfies Einstein’s field equation
without a cosmological constant, then the square of the length of Ricci operator is κ2(ν3ω2 + ν +
ω− 3).

7. Example of MG(QE)4 Spacetime

In this section, we constructed a non-trivial concrete example to prove the existence of
a MG(QE)4 spacetime.
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We assume a Lorentzian manifold (M4, g) endowed with the Lorentzian metric g
given by

ds2 = gijduiduj = (1 + 2p)[(du1)2 + (du2)2 + (du3)2 − (du4)2], (56)

where u1, u2, u3, u4 are standard coordinates of M4, i, j = 1, 2, 3, 4, and p = eu1
k−2, and k is

a non-zero constant. Here, the signature of g is (+,+,+,−), which is Lorentzian. Then, the
only non-vanishing components of the Christoffel symbols and the curvature tensors are{

1
11

}
=

{
1

44

}
=

{
2

12

}
=

{
3

13

}
=

{
4

14

}
=

p
1 + 2p

,
{

1
22

}
=

{
1
33

}
=
−p

1 + 2p
. (57)

K1212 = K1313 =
−p

1 + 2p
, K1414 =

p
1 + 2p

,

K3232 =
−p2

1 + 2p
, K4242 = K4343 =

p2

1 + 2p

and the components are obtained by the symmetry properties.
The non-vanishing components of the Ricci tensors are

R11 =
3p

(1 + 2p)2 , R22 = R33 =
p

(1 + 2p)2 , R44 =
−p

(1 + 2p)2 ,

Thus, the scalar curvature r is 6q(1+q)
(1+2q)3 .

Let us consider the associated scalars a, b, c, and d defined by

a =
p

(1 + 2p)3 , b =
1

(1 + 2p)
, c =

−1
(1 + 2p)3 , d =

−p
(1 + 2p)2

and the 1-forms are defined by

A1 = B1 =
√

1 + 2p, Ai = Bi = 0 ∀ i = 2, 3, 4,

where the generators are unit vector fields; then, from (5), we have

R11 = ag11 + bA1 A1 + cB1B1 + d(A1B1 + A1B1), (58)

R22 = ag22 + bA2 A2 + cB2B2 + d(A2B2 + A2B2), (59)

R33 = ag33 + bA3 A3 + cB3B3 + d(A3B3 + A3B3), (60)

R44 = ag44 + bA4 A4 + cB4B4 + d(A4B4 + A4B4). (61)

Now, R.H.S. o f (58) = ag11 + bA1 A1 + cB1B1 + d(A1B1 + A1B1)

=
3p

(1 + 2p)2

= R11

= L.H.S. o f (58).

Similarly, it can easily be show that (59), (60), and (61) are also true. Hence, (IR4, g) is a
MG(QE)4.
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