# Interference of Non-Hermiticity with Hermiticity at Exceptional Points

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Non-Hermitian and Hermitian Operators in Interaction

#### 2.1. Motivation: The Access to EPs in Quantum Physics

#### 2.2. Paradox of Non-Locality of Complex Delta-Function Interactions

## 3. Finite-Dimensional Toy-Model Hamiltonians

#### 3.1. Partitioned Structure of the Relevant Hamiltonians

#### 3.2. $\phantom{\rule{3.33333pt}{0ex}}\mathcal{PT}$-Symmetry Requirement and Reparametrization

- [A] T elements of H lying on the main diagonal will form a real and equidistant sequence simulating the spectrum of the most common harmonic oscillator;
- [B] As long as a broad class of general matrices can be routinely tridiagonalized, we assume that all of our Hs are tridiagonal. Moreover, for the methodical reasons formulated in [49], their off-diagonal part was chosen to be antisymmetric;
- [C] After a finite-dimensional truncation, our benchmark N by N matrices $H={H}^{\left(N\right)}$ is required to be $\mathcal{PT}$-symmetric, $H\mathcal{PT}=\mathcal{PT}H$ [50,51]. Here, $\mathcal{P}$ is defined as the antidiagonal unit matrix (“parity” [49]), and the symbol $\mathcal{T}$ represents the antilinear Hermitian conjugation mimicking the time reversal [38].

## 4. Exceptional Points

#### 4.1. Illustrative $N=8$ Example

**Lemma**

**1**

#### 4.2. Hamiltonians in the EP Limit

**Lemma**

**2**

## 5. Hamiltonians in the Vicinity of EPs

#### 5.1. The Perturbed Schrödinger Equation

#### 5.2. Leading-Order Solution

**Lemma**

**3.**

**Corollary**

**1.**

#### 5.3. Fine-Tuned anomaly ${W}_{N,1}=0$ in an Illustrative $N=4$ Example

## 6. Step-by-Step Hermitizations in the Generic Case

#### 6.1. Elementary Generic $N=4$ Model

#### 6.2. Linear Unfoldings at Arbitrary $N=2J$

**Lemma**

**4.**

#### 6.3. Illustrative Model with $N=8$

## 7. Summary

## Funding

## Data Availability Statement

## Conflicts of Interest

## Appendix A. Quantum Mechanics Using Non-Hermitian Operators

## References

- Messiah, A. Quantum Mechanics; North Holland: Amsterdam, The Netherlands, 1961. [Google Scholar]
- Stone, M.H. On one-parameter unitary groups in Hilbert Space. Ann. Math.
**1932**, 33, 643–648. [Google Scholar] [CrossRef] - Dieudonne, J. Quasi-Hermitian Operators. In Proceedings of International Symposium on Linear Spaces; Pergamon: Oxford, UK, 1961; pp. 115–122. [Google Scholar]
- Scholtz, F.G.; Geyer, H.B.; Hahne, F.J.W. Quasi-Hermitian Operators in Quantum Mechanics and the Variational Principle. Ann. Phys. (NY)
**1992**, 213, 74–101. [Google Scholar] [CrossRef] - Bender, C.M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys.
**2007**, 70, 947–1118. [Google Scholar] [CrossRef][Green Version] - Mostafazadeh, A. Pseudo-Hermitian Representation of Quantum Mechanics. Int. J. Geom. Meth. Mod. Phys.
**2010**, 7, 1191–1306. [Google Scholar] [CrossRef][Green Version] - Bender, C.M. PT Symmetry in Quantum and Classical Physics; World Scientific: Singapore, 2018. [Google Scholar]
- Trefethen, L.N.; Embree, M. Spectra and Pseudospectra; Princeton University Press: Princeton, NJ, USA, 2005. [Google Scholar]
- Bagarello, F.; Gazeau, J.-P.; Szafraniec, F.; Znojil, M. (Eds.) Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Krejčiřík, D.; Siegl, P.; Tater, M.; Viola, J. Pseudospectra in non-Hermitian quantum mechanics. J. Math. Phys.
**2015**, 56, 103513. [Google Scholar] [CrossRef][Green Version] - Jones, H.F. Coupling the Hermitian and Pseudo-Hermitian Worlds. (Transparencies of the Conference Talk on July 16, 2007, Available via the PHHQP Webpage). Available online: http://www.staff.city.ac.uk/~fring/PT (accessed on 20 July 2022).
- Jones, H.F. Scattering from localized non-Hermitian potentials. Phys. Rev. D
**2007**, 76, 125003. [Google Scholar] [CrossRef][Green Version] - Bender, C.M.; Jones, H.F. Interactions of Hermitian and non-Hermitian Hamiltonians. J. Phys. A Math. Theor.
**2008**, 41, 244006. [Google Scholar] [CrossRef][Green Version] - Znojil, M. Discrete PT-symmetric models of scattering. J. Phys. A Math. Theor.
**2008**, 41, 292002. [Google Scholar] [CrossRef][Green Version] - Moiseyev, N. Non-Hermitian Quantum Mechanics; CUP: Cambridge, UK, 2011. [Google Scholar]
- Feshbach, H. Unified theory of nuclear reactions. J. Ann. Phys. (NY)
**1958**, 5, 357–390. [Google Scholar] [CrossRef] - Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin/Heidelberg, Germany, 1966. [Google Scholar]
- Berry, M.V. Physics of Nonhermitian Degeneracies. Czechosl. J. Phys.
**2004**, 54, 1039–1047. [Google Scholar] [CrossRef] - Heiss, W.D. Exceptional points—Their universal occurrence and their physical significance. Czechosl. J. Phys.
**2004**, 54, 1091–1100. [Google Scholar] [CrossRef] - Klaiman, S.; Günther, U.; Moiseyev, N. Visualization of Branch Points in P T -Symmetric Waveguides. Phys. Rev. Lett.
**2008**, 101, 080402. [Google Scholar] [CrossRef] [PubMed][Green Version] - Borisov, D.I. Eigenvalues collision for PT-symmetric waveguide. Acta Polytech.
**2014**, 54, 93. [Google Scholar] [CrossRef] - Teimourpour, M.H.; Zhong, Q.; Khajavikhan, M.; El-Ganainy, R. Higher Order EPs in Discrete Photonic Platforms. In Parity-Time Symmetry and Its Applications; Christodoulides, D., Yang, J.-K., Eds.; Springer: Singapore, 2018; pp. 261–276. [Google Scholar]
- Goldberg, A.Z.; Al-Qasimi, A.; Mumford, J.; O’Dell, D.H.J. Emergence of singularities from decoherence: Quantum catastrophes. Phys. Rev. A
**2019**, 100, 063628. [Google Scholar] [CrossRef][Green Version] - Ramirez, R.; Reboiro, M.; Tielas, D. Exceptional Points from the Hamiltonian of a hybrid physical system: Squeezing and anti-Squeezing. Eur. Phys. J. D
**2020**, 74, 193. [Google Scholar] [CrossRef] - Znojil, M. Passage through exceptional point: Case study. Proc. Roy. Soc. A Math. Phys. Eng. Sci.
**2020**, 476, 20190831. [Google Scholar] [CrossRef][Green Version] - Guenther, U.; Stefani. F. IR-truncated PT -symmetric ix
^{3}model and its asymptotic spectral scaling graph. arXiv**2019**, arXiv:1901.08526. [Google Scholar] - Semorádová, I.; Siegl, P. Diverging eigenvalues in domain truncations of Schroedinger operators with complex potentials. SIAM J. Math. Anal.
**2022**, in print. arXiv:2107.10557. [Google Scholar] - Znojil, M. Quantum catastrophes: A case study. J. Phys. A Math. Theor.
**2012**, 45, 444036. [Google Scholar] [CrossRef][Green Version] - Zeeman, E.C. Cxatastrophe Theory-Selected Papers 1972–1977; Addison-Wesley: Reading, UK, 1977. [Google Scholar]
- Arnold, V.I. Catastrophe Theory; Springer: Berlin, Germany, 1992. [Google Scholar]
- Mostafazadeh, A. Hilbert space structures on the solution space of Klein-Gordon type evolution equations. Class. Quant. Grav.
**2003**, 20, 155–171. [Google Scholar] [CrossRef][Green Version] - Znojil, M. Relativistic supersymmetric quantum mechanics based on Klein-Gordon equation. J. Phys. A Math. Gen.
**2004**, 37, 9557–9571. [Google Scholar] [CrossRef][Green Version] - Mostafazadeh, A. Quantum mechanics of Klein-Gordon-type fields and quantum cosmology. Ann. Phys. (N.Y.)
**2004**, 309, 1–48. [Google Scholar] [CrossRef] - Znojil, M. Wheeler–DeWitt equation and the applicability of crypto-Hermitian interaction representation in quantum cosmology. Universe
**2022**, 8, 385. [Google Scholar] [CrossRef] - Znojil, M.; Borisov, D.I. Arnold’s potentials and quantum catastrophes II. Ann. Phys.
**2022**, 442, 168896. [Google Scholar] [CrossRef] - Eremenko, A.; Gabrielov, A. Analytic continuation of eigenvalues of a quartic oscillator. Comm. Math. Phys.
**2009**, 287, 431. [Google Scholar] [CrossRef][Green Version] - Bender, C.M.; Wu, T.T. Anharmonic oscillator. Phys. Rev.
**1969**, 184, 1231. [Google Scholar] [CrossRef] - Bender, C.M.; Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry. Phys. Rev. Lett.
**1998**, 80, 5243. [Google Scholar] [CrossRef][Green Version] - Siegl, P.; Krejčiřík, D. On the metric operator for the imaginary cubic oscillator. Phys. Rev. D
**2012**, 86, 121702(R). [Google Scholar] [CrossRef][Green Version] - Caliceti, E.; Graffi, S.; Maioli, M. Perturbation theory of odd anharmonic oscillators. Commun. Math. Phys.
**1980**, 75, 51. [Google Scholar] [CrossRef] - Bessis, D. (IPN, Saclay, France). Private communication. 1992. [Google Scholar]
- Alvarez, G. Bender-Wu branch points in the cubic oscillator. J. Phys. A Math. Gen.
**1995**, 28, 4589–4598. [Google Scholar] [CrossRef] - Znojil, M. Three-Hilbert-space formulation of Quantum Mechanics. Symmetry Integ. Geom. Meth. Appl. SIGMA
**2009**, 5, 1. [Google Scholar] [CrossRef] - Alase, A.; Karuvade, S.; Scandolo, C.M. The operational foundations of PT-symmetric and quasi-Hermitian quantum theory. J. Phys. A Math. Theor.
**2022**, 55, 244003. [Google Scholar] [CrossRef] - Jones, H.F. Interface between Hermitian and non-Hermitian Hamiltonians in a model calculation. Phys. Rev. D
**2008**, 78, 065032. [Google Scholar] [CrossRef][Green Version] - Znojil, M. Scattering theory using smeared non-Hermitian potentials. Phys. Rev. D
**2009**, 80, 045009. [Google Scholar] [CrossRef] - Znojil, M. Exceptional points and domains of unitarity for a class of strongly non-Hermitian real-matrix Hamiltonians. J. Math. Phys.
**2021**, 62, 052103. [Google Scholar] [CrossRef] - Znojil, M. Maximal couplings in PT-symmetric chain-models with the real spectrum of energies. J. Phys. A Math. Theor.
**2007**, 40, 4863–4875. [Google Scholar] [CrossRef][Green Version] - Znojil, M. Tridiagonal PT-symmetric N N Hamiltonians Afine-Tuning Their Obs. Domains Stronglynon-Hermitian Regime. J. Phys. A Math. Theor.
**2007**, 40, 13131–13148. [Google Scholar] [CrossRef][Green Version] - Buslaev, V.; Grecchi, V. Equivalence of unstable anharmonic oscillators and double wells. J. Phys. A Math. Gen.
**1993**, 26, 5541–5549. [Google Scholar] [CrossRef] - Albeverio, S.; Kuzhel, S. PT-symmetric operators in quantum mechanics: Krein spaces methods. In Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; Bagarello, F., Gazeau, J.-P., Szafraniec, F., Znojil, M., Eds.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Char, B.W.; Geddes, K.O.; Gonnet, G.H.; Leong, B.L.; Monagan, M.B.; Watt, S.M. Maple V; Springer: New York, NY, USA, 1991. [Google Scholar]
- Znojil, M. Unitary unfoldings of Bose-Hubbard exceptional point with and without particle number conservation. Proc. Roy. Soc. A Math. Phys. Eng. Sci. A
**2020**, 476, 20200292. [Google Scholar] [CrossRef] [PubMed] - Znojil, M. Admissible perturbations and false instabilities in PT-symmetric quantum systems. Phys. Rev. A
**2018**, 97, 032114. [Google Scholar] [CrossRef][Green Version] - Znojil, M. Unitarity corridors to exceptional points. Phys. Rev. A
**2019**, 100, 032124. [Google Scholar] [CrossRef] - Christodoulides, D.; Yang, J.-K. (Eds.) Parity-Time Symmetry and Its Applications; Springer: Singapore, 2018. [Google Scholar]
- Krejčiřík, D.; Siegl, P. Elements of spectral theory without the spectral theorem. In Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; Bagarello, F., Gazeau, J.-P., Szafraniec, F., Znojil, M., Eds.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Siegl, P. (Tech. Univ., Graz, Austria). Private communication. 2016. [Google Scholar]

**Figure 1.**The numerically calculated unfoldings and smoothness of the real eigenvalues of our toy model ${H}^{\left(8\right)}\left(t\right)$.

${\mathit{z}}_{1}>0$ | ${\mathit{z}}_{1}\le 0$ | ${\mathit{z}}_{2}\le 0$ | … | ${\mathit{z}}_{\mathit{J}-1}\le 0$ | − | |
---|---|---|---|---|---|---|

− | ${\mathbf{z}}_{\mathbf{2}}>\mathbf{0}$ | ${\mathbf{z}}_{\mathbf{3}}>\mathbf{0}$ | … | ${\mathbf{z}}_{\mathbf{J}}>\mathbf{0}$ | ${\mathbf{z}}_{\mathbf{J}}=\mathbf{0}$ | |

M | − | 1 | 2 | … | $J-1$ | J |

K | J | $J-1$ | $J-2$ | … | 1 | − |

t | 0 | 7 | 12 | 15 | 16 |
---|---|---|---|---|---|

$M=M\left(t\right)$ | − | 1 | 2 | 3 | 4 |

EP(2K) | EP(8) | EP(6) | EP(4) | EP(2) | − |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Znojil, M.
Interference of Non-Hermiticity with Hermiticity at Exceptional Points. *Mathematics* **2022**, *10*, 3721.
https://doi.org/10.3390/math10203721

**AMA Style**

Znojil M.
Interference of Non-Hermiticity with Hermiticity at Exceptional Points. *Mathematics*. 2022; 10(20):3721.
https://doi.org/10.3390/math10203721

**Chicago/Turabian Style**

Znojil, Miloslav.
2022. "Interference of Non-Hermiticity with Hermiticity at Exceptional Points" *Mathematics* 10, no. 20: 3721.
https://doi.org/10.3390/math10203721