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Abstract: In this paper, we derive an optimal model for calculating the instantaneous reproduction
number, which is an important metric to help in controlling the evolution of epidemics. Our approach,
within a frequentist framework, gave us the opportunity to calculate a more realistic confidence interval,
a fundamental tool for a safe interpretation of the instantaneous reproduction number value, so that
health and governmental people pay more attention to it. Our reasoning begins by decoupling the
incidence data in mean and Gaussian noise by using practical series analysis techniques; then, we con-
tinue with a likely relationship between the present and past incidence data. Monte Carlo simulations
and numerical integrations were conducted to complement the analytical proofs, and illustrations
are provided for each stage of analysis to validate the analytical results. Finally, a real case study is
discussed with the incidence data of the Republic of Panama regarding the COVID-19 pandemic.
We have shown that, for the calculation of the confidence interval of the instantaneous reproduction
number, it is essential to include all sources of variability, not only the Poissonian processes of the
incidences. This proposal is delivered with analysis tools developed with Microsoft Excel.

Keywords: Bayesian framework; COVID-19; generation time; Monte Carlo simulation; Poissonian
variation; serial interval; time-since-infection models

1. Introduction

Throughout history, epidemics have been a threat to humanity due to their rapid ability
to spread locally, regionally, and globally. Today, humanity is living one of these epidemics,
COVID-19, which was classified as a pandemic by the World Health Organization on 11
March 2020, becoming one of the most devastating pandemic phenomena for human health
in the last century. COVID-19 challenged health systems all over the world. To study the
reproduction of this virus, health experts designed a series of strategies [1]. Consequently,
recent investigations have been developed to model the COVID-19 pandemic [2–4].

The number of infections that occur in an epidemic is associated with the number
of cases in the past [5]. This observation has led to mathematical models to explain the
evolution of epidemics [6]. Usually, these models propose methods to calculate a frequently
used epidemiological indicator, the instantaneous reproduction number Rt, which is the
average number of secondary cases caused by an infected individual [1,7]. As this indicator
comes from incidence (cases per day) data with a lot of variability, we should not take
decisions based on the Rt value alone, because it will be affected by this instability. The
statisticians dealt with this problem by conceiving the confidence interval, which is a range
of values where it is probable to find the true mean (the Rt in our case). Therefore, to take
an informed decision we should take care of both the Rt (a sample mean) and its confidence
interval. To date, the current methods to calculate the Rt had consistent results between
them [8]. Thus, our main concern is the confidence interval because, when it is calculated

Mathematics 2022, 10, 287. https://doi.org/10.3390/math10020287 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10020287
https://doi.org/10.3390/math10020287
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1192-2927
https://orcid.org/0000-0002-8708-0351
https://orcid.org/0000-0002-2431-3947
https://doi.org/10.3390/math10020287
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10020287?type=check_update&version=3


Mathematics 2022, 10, 287 2 of 30

by current methods, there is an accepted practice of considering only the Poisson process of
the incidences, discarding other kinds of variability (registry errors, delayed tasks, counting
errors, etc.). Unfortunately, this practice produces too narrow confidence intervals for the
Rt. A narrow confidence interval could be interpreted as positive at first glance; however,
in this case, the people responsible for making the decisions are not going to have the
complete information available. This is the problem that we are proposing to solve.

In summary, the main objective of this paper is to propose a new model to calculate
the Rt confidence interval, addressing not only the Poissonian random process but also
considering all sources of variability. We provide a valid link to the repository (Available
at https://github.com/publiodariocortes/seguiepi, accessed on 30 October 2021) that
implements the estimation method described and allows reproduction of the results.

The paper is organized into the following sections. Section 2 comprises the theoretical
foundations and the literature review. In Section 3, a model is proposed to simplify the
interpretation of the series of incidence, decoupling it into a mean and a Gaussian compo-
nent of pure noise. The contagion model is described, and a special noisy reproduction
number is deduced, obtaining an explicit expression for the estimation of the instantaneous
reproduction number and the confidence intervals. Section 4 provides graphical demonstra-
tions that support the assumptions made throughout this paper. At the end of this section,
we present a real case with incidence data of the COVID-19 pandemic of the Republic of
Panama. Finally, in Section 5, we present our conclusions.

2. Literature Review

Although the modeling of epidemics had its beginning in 1760 with a study about
the spread of smallpox [9], it was not until the beginning of the 20th century that modern
modeling began with Kermack and MacKendrick [10], who formulated the first compart-
mentalized deterministic model (SIR). These models captured important features of disease
transmission, but their discrete stage structuring was in contradiction with the complex
medical realities of disease progression [11]. For this reason, as an alternative more ad-
justed to reality, different models have been proposed that recognize the importance of
the time-since-infection, the so-called TSI models. Within this category of models, different
methods have been devised to calculate the effective reproduction number. This is an indicator
that has become very relevant to monitor the chain of infections during epidemics, which
precisely uses the time-since-infection to calculate it. The distribution of this time is the
base to calculate a series of ws factors, whose values are used to adjust the importance of
past incidence to cause current incidence, considering the elapsed time from the instant of
infection to the instant when the symptoms appear. According to Fraser [12], the effective
reproduction number has two modalities. The first, called the case (or cohort) reproduction
number, was proposed by Wallinga and Teunis [13]. In this modality, this indicator was
calculated dividing the incidence that will occur in the future caused by infected individuals
(incidence) at the present instant t, by the incidence at instant t. The second modality, called
the instantaneous reproduction number, was proposed by Fraser himself. In this modality, this
indicator was calculated dividing the incidence at time t by an estimate of the incidence
before t (past), which could have contributed to the contagion of individuals counted as
incidence at time t. In both modalities, it is necessary to relate the infected individuals with
those who infected them. Since this relationship is very difficult to establish, it has been
necessary to make estimates based on the TSI model.

Many have contributed to calculating the effective reproduction number in the modalities
identified by Fraser [12], and we briefly review them here. First, as a departure study,
we have the work of Fine [14]. He completed a detailed study of the time and place of
the infection events, including the time elapsed between infection events of successive
individuals, in a chain of transmission, the transmission interval. Wallinga and Teunis [13]
developed a method to calculate the case reproduction number. Svensson [15] proposed a
mathematical model that characterized the serial interval and generation times, clarifying
the differences between these two concepts. The generation times were measured from the
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time individual A was infected, until the moment that an individual B was infected by
individual A. On the other hand, the serial interval is measured from the time individual A
presented symptoms, until the time that an individual B, infected by individual A, exhibited
symptoms. Fraser [12] deduced a method to calculate the instantaneous reproduction number,
mentioned above. Cori et al. [16] proposed another method to calculate the instantaneous
reproduction number (Rt), by assuming that the distribution of infectivity (or serial interval)
was independent of the calendar time [16], considering that the incidence in the observation
time t follows a Poissonian distribution, with a mean given by Rt ∑t

s=1 It−sws. With this,
following a Bayesian analysis framework, the Rt and the corresponding confidence interval were
calculated. Thomson et al. [17] developed a proposal that moved away from the assumption
of an invariant serial interval with the time, and from the assumption of local transmission of
the infections, maintaining the assumption of the Poissonian distribution of the incidences.
In this context, the Bayesian model has been adopted by several researchers [18,19].

Finally, below is shown a comparison of the investigations regarding epidemic mod-
els (Table 1). It should be noted that only two investigations considered all variability
(Fraser [12] and ours). The analytical method for calculating the confidence interval we are
using includes all variability, a basic requirement for Statistical Process Control.



Mathematics 2022, 10, 287 4 of 30

Table 1. Comparative table of investigations regarding to epidemics process models. The blank cells mean the criterion was not applied.

Year Author Subject Deterministic
(O)/Stochastic (X)

Stochastic
Framework

Variability
Considered

Method for
Confidence Interval

Calculation

Potential to Control the
Sanitary and Governmental
Processes of the Epidemics

from the Perspective of
Statistical Control Process

1927 Kermack & MacKendrick SIR O

2003 Fine Transmission interval X

2004 Wallinga & Teunis Effective
reproduction (case) X Bayesian Poisson Not declared No

2007 Svensson Generation time and
serial interval X

2007 Fraser

Instantaneous
reproduction number

and case (cohort)
reproduction number

X Frequentist All Experimental
(Bootstrapping)

Could be difficult with
bootstrapping techniques

2013 Cori et al. Instantaneous
reproduction number X Bayesian Poisson Analytically (Gamma

distribution) No

2019 Thompson et al. Instantaneous
reproduction number X Bayesian Poisson Bayesian method

(Credible interval) No

2020 Peterson & Adhikari Time since infection
models O

2020 Zhao et al. Serial interval X

2021
Cortés-Carvajal, P.D.;
Cubilla Montilla, M.;

González-Cortés, D.R.

Instantaneous
reproduction number X Frequentist All

Analytically
(Normal distribution,

using the central
limit theorem)

Yes
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3. Materials and Methods

This section provides details about the data simulation, the model used to simplify
the interpretation of the series of incidence, the contagion model, the estimation of the
instantaneous reproduction number and the confidence intervals.

3.1. Data

As the Rt calculation is based on the It incidence serial data and considering we aspire
to include all sources of variability, we must have a practical statistical model that describes
It incidence serial data. This model should facilitate the statistical calculations of statistical
concepts such as means, standard deviations, distribution models, and confidence intervals.
Taking care of our objective by observing the graphs of some pandemic data (Figure 1) it is
common to find an aleatory pattern around the mean, with a bandwidth growing following
the mean growing.
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It is unrealistic to think that It will have the same type of distribution in all observing
instants. However, for simplicity, we need to select only one type, which should be
something in the middle (symmetric and mesokurtic). The best candidate for this purpose
is normal distribution, which has mathematical properties that simplify the analysis and
the results interpretations. For example, the normal distribution is the core of the Central
Limit Theorem. The normal distribution is useful modeling the distribution of large integer
values, as it is the case of the incidences we can expect in an epidemic. Consequently, it
should be tolerable that a few incidences of low integer values have a somewhat distorted
statistical representation.

Therefore, we are proposing a model that assumes the existence of a “smooth” curve
Iµ
t to which a random sequence of noise et has been added. This noise will be a composition

of two independent types of noise: counting error and Poissonian variation. Counting error
is assumed to follow a normal distribution, and Poissonian variation is considered to be
approximated with a normal distribution also. Therefore, the mix of these noises produce a
single noise, et, which follows a unified normal distribution, N

(
0, σ2

t
)
, at each measurement

time t. Furthermore, to achieve a more realistic model, the noise, et, is assigned a standard
deviation, σt, that varies according to a function f

{
Iµ
t

}
, which is all time positive and

increasing with Iµ
t .

It = Iµ
t + et , et ∼ N(0, σ2

t ), σt = f
{

Iµ
t

}
(1)
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To simplify the presentation and demonstration of the theory that we will be develop-
ing in this paper, we will use simulated data constructed as follows:

Iµ
t = 120e(

t−20
16 )

2
+ 480e(

t−60
20 )

2
+ 246e(

t−80
10 )

2
+ 120e(

t−100
12 )

2
, 10 < t < 120 (2)

The variability of the noise, et, is arbitrarily modeled:

σt = f
{

Iµ
t

}
=
√

10Iµ
t ⇒ et ∼ N

(
0, 10Iµ

t

)
(3)

With the previous definitions, it is possible to construct a simulated time series. The
simulation strategy will allow us to determine the effectiveness of the applied analysis in
extracting the statistical parameters of a time series, which hypothetically behaves like the
proposed model (1).

The values of Iµ
t can be easily generated in a spreadsheet. The values of et, which

arises from a random process, require the application of a simulation process, which can
also be implemented in a spreadsheet (Figure 2):
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In this way, it is possible to construct an infinity of graphs of It. Figure 3 shows some
examples of them:
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Appendix A develops the theory we propose for the estimation of the model parame-
ters (1) from real incidence data series. The estimation of the population mean, Iµ

t , will be
Imt, and the estimation of the standard deviation, σt, will be σ̂t. Hence, from now on we
will assume that Imt and σ̂t are known values for all incidences.

3.2. Bayesian Framework

Today the most popular method to calculate the instantaneous reproduction number Rt is
based on Cori et al. [16], which assumes that It follows a Poissonian distribution, with a
mean Imt given by:

Imt = Rt

t

∑
s=1

ws It−s (4)

The mean depends on the known values of incidences It−s, on the infectivity profiles
given by the factors ws calculated based on the serial interval distribution (explained below),
and on an Rt value to be discovered. Using a Bayesian framework, Cori et al. [16] deduced
a method to calculate Rt, which follows a Gamma distribution. Now we propose a new
method following an alternative approach within the Frequentist framework, without the
restriction of a Poissonian distribution for the It values.

3.3. Serial Interval

As we will be using the serial interval in our proposal, we will briefly review this
concept. The ws values based on the serial interval are obtained in epidemiological studies
for the current epidemic and are independent of the calendar time [12]. The values of ws
are usually modeled with a distribution chosen by the analyst based on the most accepted
information. Typically, it is modeled with Gamma (Figure 4), Lognormal, or Weibull
distributions [20], facilitating its parametric generation by defining the parameters of the
mean µs and the standard deviation σs.
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The mean µs can be interpreted as the average time elapsed measured from the time a
symptomatic individual A infects a susceptible individual B, until the time that individual
B manifests symptoms. Therefore, σs is the standard deviation of this time.

In the analysis we will be developing, it may be known that a symptomatic individual
A infected a susceptible individual B, but usually it will not be known exactly when
individual B became infected after individual A became symptomatic. Thus, to simplify
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this lack of information, we will assume that individual B was infected just after individual
A became symptomatic.

Taking care of the above assumption, the ws factors are calculated based on the
distribution of the serial interval f (s). In this example, the ws values are calculated by
the rectangular rule of integration ( f (s)× b). The main parameter values (k and λ) of the
distribution can be defined by calculus based on a provided mean (µs) and a standard
deviation (σs), which should be obtained by experimentation.

The ws factors have a special meaning regarding one susceptible individual infected in
s = 0. An infected individual in s = 0 will manifest symptoms on any instant after s = 0, and
the probability that the symptoms appear in a specific instant s = e in the future is we. In
Figure 4, for example, we can see that the probability that an infected individual manifests
symptoms in s = 10, is w10 = 0.08. Now, suppose that at s = 0 we have 100 susceptible
individuals just infected, then the expected number of new individuals (infected at s = 0)
with symptoms at s = 10 will be 0.08× 100 = 8.

Not all the susceptible individuals will be infected at s = 0. The actual number of
susceptible individuals infected at s = 0 will depend on the number of infectious individuals
at s = 0, the number of susceptible individuals just before s = 0, and many other factors
(population size, health conditions, environment, use of face masks, social distancing,
population immunity, and so forth).

3.4. The Contagion Model

Let us consider a likely relation based on the fact that contagion in an epidemic comes
from an infected individual:

It =
t

∑
s=1

rt,s It−s (5)

The incidence It of an instant t results from the individual contributions (rt,s It−s) to
the infections of all the It−s incidences of the past, where the factors rt,s are the specific rates
of these contributions.

Equation (5) is too simple, we present it here just as didactical tool to emphasize the
exclusive relationship of It (present) with the past values of It−s (t− s = 1, 2, . . . , t− 1), but
in fact, the situation is more complex. So, to have a more realistic analysis, we will redefine
the rt,s factors as follow:

rt,s = R∗t,sws (6)

In this way, we still have a factor that contains “the specific rate” of the contribution of
all the It−s values to the value of It, but now we have split rt,s into two factors, R∗t,s and ws,
to which we will be assigning important meanings.

The ws factors are known from the serial interval, representing the effects that have
occurred since the elapsed time from the infection in the instant (t − s) to the instant t of
symptoms manifestation, considering we are constructing a TSI model. It can be said, these
factors represent the natural law that governs the relationship between the infectious agent and
its host. Thus, by definition, these factors must be statistically constants (Figure 4) and
independent of t.

The R∗t,s mathematical interpretation will be deduced below. In the meantime, assume
it is a convenient factor necessary to make (5) valid.

Replacing rt,s from (6) in (5):

It

t

∑
s=1

R∗t,sws It−s =
t

∑
s=1

ws
(

R∗t,s It−s
)

(7)

We can still say the relation presented in (5) is accomplished, but now, with the specific
meaning of ws, it is possible to deepen the mathematical interpretation of (7). Considering
the example presented at the end of Section 3.3 and Equation (7), the product

(
R∗t,s It−s

)
could be interpreted as the total number of susceptible individuals just infected in the instant
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(t− s). Therefore, the product ws
(

R∗t,s It−s
)

is the number of individuals infected in (t− s)
who will become symptomatic in t. The sum of all ws

(
R∗t,s It−s

)
products from s = 1 to s = t

will result precisely in the incidence It (all the symptomatic individuals counted in t).
The above is consistent with the example of Section 3.3; our model still works, but

we do not have a specific mathematical interpretation of R∗t,s yet. Now, we take one step
forward rewriting (7) in two possible forms:

(a) Keeping R∗t,s with the original dependency on t and s:

It =
t

∑
s=1

R∗t,s(ws It−s) (8)

(b) Declaring R∗t,s as independent of s, and keeping the dependency on t:

It = R∗t
t

∑
s=1

(ws It−s) (9)

Both Equations (8) and (9) are valid and maintain the relation proposed in (5). There is
no mathematical reason to prefer one or the other. Both Equations (8) and (9) let us know
that not all the incidence It−s will have an effective responsibility in the resulting incidence
It, because of the elapsed time effect. This condition is observed in the product (ws It−s).
Thus, we are free to select one of the Equations (8) or (9) by appealing any other reason
instead of a mathematical one. Therefore, we will think of practical and useful reasons that
help us to control the evolution of the epidemics. Equation (8) has one R∗t,s per combination
of t and s indexes. Equation (8) is useless because there are infinite R∗t,s factors for each t
that can be solutions for Equation (8). So, we will discard Equation (8) as impractical. In
Equation (9), in each instant t we can find a specific R∗t . Solving from Equation (9):

R∗t =
It

∑t
s=1 ws It−s

(10)

There is only one solution for R∗t , which has an expression (10) that provides an easy
and practical interpretation of R∗t . As the summation ∑t

s=1 ws It−s in (9) can be interpreted
as the summation of the effective incidences It−s (s = 1, 2, . . . , t), now the practical (and
mathematical) interpretation for R∗t is:

R∗t is the ratio of It with respect to the effective number of infectious individuals in
the past. In simple words, it means R∗t is the number of secondary cases caused by an
infected individual. This is a very important concept. As the summation ∑t

s=1 ws It−s in
(9) is something we cannot handle, because all the incidences It−s are in the past, and the
ws factors represent a natural law, we should act on the R∗t factor, which represents some
elements that can be controlled by us (for example, population education, sanitary and
governmental process, quarantines, and so forth), even if there are some other elements
that cannot be handled directly (such as weather conditions). Thus, through our actions,
we should try to reduce R∗t as much as possible; to reduce the number of incidences, R∗t
must be less than 1.

3.5. Frequentist Framework

Since the denominator ∑t
s=1 ws It−s (10) behaves as a weighted average (low variabil-

ity), the variability of R∗t is mainly caused by the variability of It. Therefore, as R∗t is a
kind of reproduction number, we will name it the noisy reproduction number (just a name to
distinguish it from other reproduction numbers). To stabilize R∗t for useful purposes, we
propose to obtain the mean by the standard Frequentist method:

E[R∗t ] =
∫ ∞

−∞
R∗t f (R∗t )dR∗t (11)
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where f (R∗t ) is the probability density function of R∗t . The deduction of the f (R∗t ) equation
is a little complex and extensive, so it is explained in Appendix B. Next, assuming we know
f (R∗t ), it is possible to solve Equation (11) numerically, but it is not possible to obtain an
explicit expression for R∗t mean. Therefore, we will try using expected values operators and
Taylor approximations. Replacing It and It−s with their model components (1) in (10):

R∗t =
Iµ
t + et

∑t
s=1 ws

(
Iµ
t−s + et−s

) =
Iµ
t + et

∑t
s=1 ws Iµ

t−s + ∑t
s=1 wset−s

(12)

Defining auxiliary variables:

ct =
t

∑
s=1

ws Iµ
t−s, εt =

t

∑
s=1

wset−s, gt(εt) =
1

ct + εt
(13)

To convert gt(εt) in a more manageable form, we will replace it with its Taylor approx-
imation, if εt has small values around zero (which is true in general):

gt(εt) =
1

ct + εt
≈ 1

ct
−
(

1
c2

t

)
εt (14)

Applying (14) in (12):

R∗t ≈
(

Iµ
t + et

)[ 1
ct
−
(

1
c2

t

)
εt

]
=

Iµ
t

ct
−
(

Iµ
t

c2
t

)
εt +

et

ct
−
(

et

c2
t

)
εt =

Iµ
t

ct
+

et

ct
−
(

Iµ
t

c2
t

)
εt −

(
1
c2

t

)
etεt (15)

Applying expected value operators:

E[R∗t ] ≈
Iµ
t

ct
+

E[et]

ct
−
(

Iµ
t

c2
t

)
E[εt]−

(
1
c2

t

)
E[etεt] (16)

In (13) it is implicit that εt and et are independent normal distributed variables, because
et is not included in the weighted average of errors; therefore, there is no correlation
between them, and consequently E[etεt] = E[et]E[εt]. Moreover, it is noted that E[et] = 0,
and E[εt] = 0. Thus:

E[R∗t ] ≈
Iµ
t

ct
+

E[et]

ct
−
(

Iµ
t

c2
t

)
E[εt]−

(
1
c2

t

)
E[et]E[εt] =

Iµ
t

ct
(17)

Replacing ct from (13) in (17):

E[R∗t ] = Rµ
t ≈

Iµ
t

∑t
s=1 ws Iµ

t−s
(18)

Thus, considering that the estimated value for Iµ
t is Imt, the estimated value of Rµ

t is:

Rm
t =

Imt

∑t
s=1 ws Imt−s

(19)

This result we will be tested later in Section 4.2.
This equation is similar to the equation that Fraser [12] proposed, but he used a

different approach by starting from a continuous model.
As he called this ratio the instantaneous reproduction number, we named it the same.

Thus, this paper mainly proposes some steps forward to find its probability density function
and the confidence interval.
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3.6. The Probability Density Function of Rm
t

Now we will proceed to calculate the probability density function of the estimator Rm
t

(19). To begin with, it is noted that the numerator and denominator (19) are constructed
with moving averages of the incidence series It (Appendix A), which is a procedure that
involves the overlap of “crude” incidence It in the calculations of the means Imt and of
Imt−s. Therefore, it cannot be said that the numerator and the denominator are independent.
The same occurs between the means Imt−s of the denominator ∑t

s=1 ws Imt−s (from now
on denoted as Λmt). As this lack of independence makes the analytical calculation of a
formula for the probability density function of Rm

t impossible, the problem was approached
by applying the experimental method of Monte Carlo simulations, for which we worked
with the generator of a series of incidence (Figure 2).

With the generator, 320 series of It of 128 days were obtained, each of which was
subjected to a calculation of moving averages, to finally obtain the curves of Rm

t , using
Equation (19). Figure 5 shows a superposition of 10 of these curves.
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Figure 5. Superposition of 10 randomly generated Rm
t curves. Each Rm

t curve was generated on
calculus based on a specific Imt series and applying (19). Following a Monte Carlo simulation
process, the Imt series were calculated with the It series data generated by a random incidence
series generator.

For each instant of observation, we obtained a sample of 320 Rm
t values coming

from the curves (you can imagine 320 curves in Figure 5) and calculated the mean and
the standard deviation of Rm

t from these values. Furthermore, at 10-day intervals, the
corresponding histograms were constructed. Figure 6 shows the histogram of 320 Rm

t
values, for t = 100.
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Figure 6. Histogram of the values of 320 random versions of Rm
t , at time t = 100, following a

Monte Carlo simulation process based on the It series data generated with the random incidence
series generator.

For practical purposes, this histogram can be said to follow a normal distribution. Thus:

Rm
t ∼ N

(
Rµ

t , σ2
Rm

t

)
(20)

This experimental finding suggests an analytical way to calculate the probability
density of Rm

t , even if it is by way of approximation.
We can discompose Imt−s into its model components (Imt−s = Iµ

t−s + em
t−s), as we

performed with It−s (1). Thus, let us replace Imt−s in the denominator of Equation (19):

Rm
t =

Imt

∑t
s=1 wt,s

(
Iµ
t−s + em

t−s

) =
Imt

∑t
s=1 ws Iµ

t−s + ∑t
s=1 wsem

t−s
(21)

where the em
t−s values are error components which follow a normal distribution N

(
0, σ2

t−s
nt

)
,

with nt as the number of incidences defined to calculate the incidence mean in the moving
average procedure (Appendix A). This means the time series values of em

t−s delimit a com-
pressed bandwidth compared with the bandwidth of et−s. Thus, it gives us confidence to

assume that
t

∑
s=1

wt,s Iµ
t−s �

t
∑

s=1
wt,sem

t−s (which is true in general):

Rm
t ≈

Imt

∑t
s=1 ws Iµ

t−s
(22)

In summary, considering the denominator
t

∑
s=1

ws Iµ
t−s is a constant, an alternative

function for the probability density of Rm
t , could be:

g(Rm
t ) =

1√
2πσRm

t

e
− 1

2

(
Rm

t −Rµ
t

σRm
t

)2

⇒ Rm
t ∼ N(Rµ

t , σ2
Rm

t
)

Rµ
t =

Iµ
t

Λµ
t

, σRm
t
= σt

Λµ
t
√

nt
, Λµ

t =
t

∑
s=1

ws Iµ
t−s

(23)
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Consecutively, the estimators for the parameters of Equation (23) are:

Rm
t =

Imt

Λm
t

, σ̂Rm
t

=
σ̂t

Λm
t
√

nt
, Λm

t =
t

∑
s=1

ws Imt−s (24)

3.7. The Confidence Interval of Rm
t

The confidence interval is straightforwardly calculated from Equation (24):

Rm
t − t α

2 ,nt−2σ̂Rm
t
< Rµ

t < Rm
t + t α

2 ,nt−2σ̂Rm
t

(25)

This result will be tested later in Section 4.3.
We use a t-Student distribution to compensate for any effect that could cause the

number nt used in the moving average calculation of Imt. The degree of freedom (nt − 2)
used is a consequence of Imt (22), because it can be interpreted as the middle point of a
line through nt points (see Appendix A, we use the centered moving average method), the
same reasoning as if it were a case of simple regression analysis.

Equation (25) specifically is the instantaneous reproduction number confidence inter-
val without uncertainty in the serial interval, because there is another type of confidence
interval which considers serial interval uncertainty [16]. This means, although the serial
interval is still considered to have stable values in theory, it could be impossible to obtain
serial interval data to calculate the ws factors. This could happen, for example, at the
beginning of an epidemic. This condition can be handled by modeling the uncertainty in
the serial interval parameters [16], which are the mean (µS) and the standard deviation (σS).
It is assumed that these parameters are random independent normal distributed variables,
which they really are not. We follow the same procedure of the Monte Carlo simulation,
but instead of changing It, we changed µS and σS simultaneously. To emphasize that
µS and σS will be considered as random variables, they will be replaced by ms and ss,
respectively. Thus:

ms ∼ N
(

msµ, ms2
σ

)
, (26)

where msµ and ms2
σ are the mean and the variance of ms.

Moreover:
ss ∼ N

(
ssµ, ss2

σ

)
(27)

where ssµ and ss2
σ are the mean and the variance of ss.

To identify the effect of a specific random pair j of each Monte Carlo iteration, super-
scripts will be applied: (

ms(j), ss(j)
)
→ w(j)

1 , w(j)
2 , w(j)

3 . . . (28)

Consider Equation (19), again:

Rm
t =

Imt

∑t
s=1 ws Imt−s

(29)

For each observation instant t, we propose a Monte Carlo simulation process as follows:
The denominator of Equation (29):

1. Generate N random pairs
(

ms(j), ss(j)
)

.

2. Calculate the weights w(j)
s for each pair j.

3. Calculate the denominator
t

∑
s=1

w(j)
s Imt−s for each pair j. Apply each pair

(
ms(j), ss(j)

)
in the calculation of Rm

t :
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4. Calculate the values of the means and standard deviations corresponding to each pair:

Rm
t,j =

Imt

Λm
t,j

, σ̂
(j)
Rm

t
=

σ̂t

Λm
t,j
√

nt
, Λm

t,j =
t

∑
s=1

w(j)
s Imt−s (30)

5. Calculate the general mean of all means Rm
t,j:

Rm
t =

1
N

N

∑
j

Rm
t,j (31)

6. Calculate the general standard deviation by using the following formula:

σ̂Rm
t
=

√√√√ 1
N

N

∑
j

[(
σ̂

j
Rm

t

)2
+
(

Rm
t,j − Rm

t

)2
]

(32)

7. Given the mean (31), the standard deviation (32), and a significance level α, assuming a
Gamma distribution, calculate the lower and upper limits of the confidence interval
for the population mean of Rm

t , for each observation instant t.

The derivation and proof of this procedure are in Appendix C.
It should be noticed that this procedure used a Gamma distribution in step 7, when

this distribution is in fact a subrogated function of a summatory of normal distributions
(Appendix C). To take care of the effect caused by time of moving average (nt), we should
have used Student’s t-test distributions instead to obtain a more conservative confidence
interval, but unfortunately it cannot be handled with a Gamma distribution as a subrogated
density function. Therefore, steps 5, 6, and 7 produce a confidence interval a little narrower
than the conservative confidence interval to which we could aspire. It is a tradeoff to speed
up the computation process.

4. Results

This section provides graphical demonstrations which support the assumptions com-
pleted through Section 3. At the end, a case with real incidence data of a pandemic will
be presented.

4.1. Simulated Incidence Data Series

Figure 7 shows a superposition of different types of incidence series. Crude incidence
data It was generated by simulation in the spreadsheet (Figure 2), adding aleatory noise et to
the ideal model of Iµ

t , following the model Equations (2) and (3). Moving average incidence
series (Imt) was generated using 15 crude incidence data per calculation (nk), as described
in Appendix A.

It is important to note there is no appreciable delay between these graphs (Figure 7),
especially the moving average incidence series. We used a centered moving average method.

4.2. Process Calculation of Rm
t

The Imt series was generated with the moving average of It; then, Λm
t was generated

with the denominator of the Equation (19). With this, for each t instant, we can calculate
Rm

t (19). In fact, in Figure 8, it is easy to say when the Rm
t curve will be greater than 1, or

less than 1. Note the smoothness of the Λm
t curve. As there is no appreciable randomness

in the Λm
t curve, we can assume it is statistically constant in each instant t. This condition

simplifies the deduction of the probability density function of Rm
t (23) and its confidence

interval (25).
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average incidence (green-smooth dotted). The It incidence series was generated with the random
incidence series generator. All curves are synchronized.

Mathematics 2022, 9, x FOR PEER REVIEW 5 of 10 
 

 

 
Figure 7. Crude 𝐼௧  incidence series (orange-zigzag), ideal model incidence (blue-smooth), and 
moving average incidence (green-smooth dotted). The 𝐼௧ incidence series was generated with the 
random incidence series generator. All curves are synchronized. 

 
Figure 8. 𝐼𝑚௧ moving average series (blue) and 𝛬௧௠ weighted average series (orange). The division 
of 𝐼𝑚௧ by 𝛬௧௠ produces the 𝑅௧௠ curve. 

 
Figure 9. Comparison between reproduction number curves, 𝑅௧∗, 𝑅௧௠ exact, and 𝑅௧௠ approx. 

Figure 8. Imt moving average series (blue) and Λm
t weighted average series (orange). The division of

Imt by Λm
t produces the Rm

t curve.

In Figure 9, we have the R∗t calculated with Equation (10), the graph of Rm
t -approximate

calculated with Equation (19), and the graph of Rm
t -exact calculated by the numeric inte-

gration of Equation (11). There is no visible difference between both types of Rm
t graph;

therefore, we can say the Taylor approximation used to obtain Equation (19) was good
enough. The numerical integration was performed, for each instant t, with the standard
method of the trapezoidal rule.

4.3. Process Calculation of the Rm
t Confidence Interval

Table 2, on the right side, has a column of the standard deviation of all the 320 Rm
t

iterations for each t instant (days), as described in Section 3.6. This large quantity of
values gives us confidence that the standard deviation calculated was almost the standard
deviation of the population, which we denote as σMCS

Rm
t

to emphasize it coming from a Monte
Carlo simulation. Therefore, considering Rm

t follows a normal distribution (20), we can
use the values of σMCS

Rm
t

to construct an exact confidence interval to test the confidence
interval we proposed in Equation (25). Figure 10 shows the superposition of both types of
confidence intervals.
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Table 2. Partial table of 320 Monte Carlo iterations of 128 days Rm
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Most of the time, the Frequentist framework graphs, Figure 11b,d, produce wider 
confidence interval graphs than the Bayesian framework graphs, Figure 11a,c. This has 
happened because the Frequentist framework method is open to accept any aleatory var-
iation, not only Poissonian variation, as is the case of the Bayesian framework method. 
Usually, we would like to have a thin confidence interval but, in this case, “thin” means 
we are not aware of the real variability of the data; therefore, the Frequentist framework 
had a better performance than the Bayesian framework, because they show us the com-
plete panorama. 
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Although it is a qualitative graphic test (Figure 10), the approximated method (25) is
good enough for practical purposes. The confidence interval width of the approximated
method is the widest, because it takes care of the sample size nt used for calculating the
moving average of the incidences.

4.4. Comparison between Bayesian Method and Frequentist Method for Calculation of the
Instantaneous Reproduction Number (Rt vs. Rm

t )

All the methods in Figure 11 share the same It series and each graph was calculated
with the serial interval parameters shown in the figure. The “Length of time steps” (same as
time for moving average, nk) was 15 days. The calculus of the graph data of the Bayesian
framework was obtained with the Excel software EpiEstim, developed by Cori et al. [16].
This procedure requires one additional special parameter, the posterior coefficient of variation
(CV) = 0.3. Both Bayesian framework graphs, Figure 11a,c, delay the Frequentist framework
graphs, Figure 11b,d, by 7 days, which is a number rounded down from the length of time
steps divided by 2. It is not a relationship by chance. This happens because we are using a
centered moving average (Appendix A) method to calculate the mean of the incidences It. We
selected this method because, in this way, the mean series is synchronized with the crude
incidence series of It (Figure 7). Thus, the Frequentist framework method produces Rm

t
values synchronized with the steps (days) of observations, which is a great advantage.
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(b) Frequentist framework without serial interval uncertainty; (c) Bayesian framework with serial
interval uncertainty; and (d) Frequentist framework with serial interval uncertainty.

Most of the time, the Frequentist framework graphs, Figure 11b,d, produce wider
confidence interval graphs than the Bayesian framework graphs, Figure 11a,c. This has hap-
pened because the Frequentist framework method is open to accept any aleatory variation,
not only Poissonian variation, as is the case of the Bayesian framework method. Usually,
we would like to have a thin confidence interval but, in this case, “thin” means we are not
aware of the real variability of the data; therefore, the Frequentist framework had a better
performance than the Bayesian framework, because they show us the complete panorama.

Figure 12 shows an interesting relationship between the Bayesian and Frequentist
framework methods; when the Frequentist framework method is 7 days delayed, both



Mathematics 2022, 10, 287 18 of 30

graphs are almost the same. This happens because if we make appropriate approximations,
the equations of both methods are also nearly the same.
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4.5. A Real Case Application: Pandemic COVID-19 in Panama

The data collection of the pandemic of COVID-19 in Panama began in March 2021,
with some isolated cases (Figure 13).

Both instantaneous reproduction number graphs were constructed by using nk time
(Frequentist framework) and the “length of time steps” (Bayesian framework) equal to
15 days. As expected, it found a delay of 7 days; moreover, the confidence interval is wider
in the Frequentist framework than in the Bayesian framework.

In Panama, the health authorities used the Bayesian framework method to calculate
the Rt. The health authorities and scientists knew the pandemic could begin in our country
at any moment (by knowing the world epidemic reports from the beginning in China,
at the end of 2019), but there was no way to know when, where, and how, and the best
procedure to follow. The incidence growth rate was high during the first days, doubling
its value every three days, which caused very large Rm

t (from day 1 to 20, Figure 13a). As
soon as the first pandemic procedures were implemented, and the population mobility was
controlled (around day 50), the pandemic process arrived at a stage the epidemiologists
named community transmission. This means the contagion was between individuals of
the community, locally, following a natural behavior, with the infectious agents moving
through the “windows” not closed by the epidemic procedures. On day 85, the new
procedures began to show effectiveness, because the Rm

t (Figure 13b) diminished, but the
analysts did not notice it until seven days later, because they were using Rt (Figure 13c).
In any case, this condition could be difficult to detect by observing incidence data alone
(Figure 13a). The ideal condition to control an epidemic, according to epidemiologists, is to
obtain a reproductive number below 1. The first time it seemed to be happening was day
60 (Figure 13c), but now, with our Rm

t curve (Figure 13b), we noticed there was too much
variability (wide confidence interval) to have enough confidence. For this reason, we must
be cautious when the instantaneous reproduction number seems to be diminishing and use
the upper limit of its confident interval to take appropriate decisions. We had four moments
when the Rt (Figure 13c) seemed to be less than 1 (days 60, 140, 223, and 312, Figure 13c),
considering its thin confidence interval. Retrospectively thinking, it should be noted that
day 223 (18 October 2021) was a very risky day to take decisions, considering Rt < 1
(Figure 13c), because something happened a few days later when the incidence began to
grow, resulting in the largest incidence peak of Panama. Of course, the health system used
many other indicators to take decisions, and what was important was the proximity of the
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end of the year festivities. If we had used our frequentist method (Figure 13b), the first
moment in which the Rm

t would seem to have decreased would have been on day 310 (13
January 2021), using the criterion of the upper confidence limit.
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4.6. Computational Aspects

The computational experiments were carried out on a computer with the following
hardware characteristics: (i) OS: Windows 10 for 64 bits; (ii) RAM: 4 Gigabytes; and (iii)
processor: Intel Core i3 (7th Gen) i3-7020U Dual-core, 2.30 GHz-4 GB DDR4 SDRAM.
We used Microsoft Excel, from Office 2019, as our software platform. Here we imple-
mented the theory of this paper with our software SeguiEpi, programmed with standard
Excel instructions, including macros. This software is available at: https://github.com/
publiodariocortes/seguiepi/ Size: 11,349 KB (accessed on 29 November 2021).

https://github.com/publiodariocortes/seguiepi/
https://github.com/publiodariocortes/seguiepi/
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After downloading, the user must read the instructions in the worksheet “User man-
ual”. As the software is an application of the theory for Rt calculation, there are two special
modes, with their corresponding run times:

Rt without serial interval uncertainty < 5 s.
Rt with serial interval uncertainty < 60 s.

5. Conclusions

The results of this study are relevant, since epidemiological models are important to
monitor the contagion of diseases and evaluate the effectiveness of health policies, and
the measures adopted by governments to guarantee adequate hospital care. Estimating
the instantaneous reproduction number is a key factor in detecting changes in disease
transmission over time.

The method of calculating the confidence interval of the instantaneous reproduction
number developed in this article is a significant change with respect to other proposed
methods. The explicit formula for calculating Rt (Bayesian framework) produced a curve
delayed with respect to the curve of Rm

t (our Frequentist framework). The delayed time was
about a half of the time of moving average time (nk). Nevertheless, it was not a large issue,
because we can adjust our interpretation of the Rt, considering this delay. The situation
differed with the confidence interval because we included all sources of variability. Therefore,
the main contribution of this work is the proposition of an expression for the confidence
interval of the instantaneous reproduction number, considering all sources of variability
of the incidences. We defend our approach affirming it produced a 95% confidence interval
much more appropriate for using it as a decision tool in controlling the evolution of a
pandemic event, such as COVID-19. We hope the software (SeguiEpi) we are providing
with the implementation of this theory can help in controlling the evolution of epidemics.

Although our results are encouraging, more tests are still needed with data from
other countries and different infectious agents. In any case, it will be necessary to conduct
comparatives studies between the Bayesian frequentist method and our Frequentist method,
such the comparation we made with the case of Panama, including the measures taken by
the authorities, the population behavior, and other relevant situations, to find if there are
connections with the evolution of the epidemics and for recommending improvements in
the decision processes. Moreover, we must continue the investigation of time series analysis
for decoupling the incidences in their model components and, in relation with this matter,
it is necessary to conduct sensitivity analysis to determine the robustness of the Rm

t and its
confidence interval, regarding the parameters defined for decoupling the incidences. This
sensitivity analysis should be performed with simulated and actual incidence data, by using
the software we already have. We have shown how to calculate an optimum confidence
interval considering serial interval uncertainty, but we still need to find a way to develop a
software to perform these tasks, so that we can replace our solution through the subrogated
Gamma function. The solution for this matter is already conceptually completed with what
we obtained with the summation of normal distribution at Appendix C; we only need to
replace the summation of normal distribution with a summation of the Student’s t-test
distribution. The only important problem to solve is the implementation of a software
that automatically performs all the manual tasks we have in our current method. It will
be a great advantage if we could automatically actualize the serial interval parameters by
incorporating the new information collected in the local area; moreover, it will be necessary
to consider the cases of infected people that come from other regions. This problem has
already been solved from a point of view of the Bayesian framework, so we should begin
by deeply understanding this approach. In parallel with the proposed investigations, we
should perform an important revolution to the method of how to control the epidemics
with the implementation of the Statistical Process Control (SPC). It is unquestionable that
the controls applied to combat epidemics are a collection of processes. We implemented
a special tool in the software we are proposing, a Control Chart designed to monitor the
transformed error (Control Panel 3, SeguiEpi Excel software). In this direction, many
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changes can be performed, including the critical thinking and organization of the Six
Sigma Methodology.
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Appendix A. Modeling Incidence Series with Normal Parameters, Means, and the
Standard Deviations

Estimating the model means of the incidences:
The method applied to calculate the Imt means of the incidence series is the centered

moving average (without lag) [21]. This method allows the Imt mean to be calculated with
incidence data from the past and future, resulting in a synchronized pattern with the
original incidences It. The simple way to implement this method does not allow for the
calculation of Imt at the beginning and at the end of the observation period, because the
number of It incidences considered (nk) for the mean calculation should be constant. We
propose a less constrained method that we have named extended centered moving average,
which allows a flexible rule to define the number of incidences applied to calculate the
mean. In our proposed method (A1), N is the total number of points in the series,nk is the
conventional moving average time defined by the analyst, and nt is a dynamic moving
average time calculated for the observation time t.

I f 1 < t <
nk + 1

2
⇒ nt = 2(t− 1) + 1, Imt

1
nt

nt

∑
j=1

Ij,

I f
nk + 1

2
≤ t ≤ N − nk + 1

2
+ 1⇒ nt = nk,

Imt


1
nt

t+ nt−1
2

∑
i=t− nt−1

2

Ii nt odd

∑
t+ nt

2 −1

i=t− nt
2

Ii+∑
t+ nt

2
i=t− nt

2 +1
Ii

2nt
nt even

I f N − nk + 1
2

+ 1 < t < N ⇒ nt = 2(N − t) + 1, Imt
1
nt

nt

∑
j=1

IN−j+1 (A1)

The method described by (A1) was developed experimentally by observing the nu-
merical pattern generated after defining an efficient data structure, easy for software
implementation, with the property that only two t instants did not have means, t = 1 and
t = N. Figure A1 shows one sample of the patterns, where we constructed it by setting
N = 20 and nk = 9.

https://coronavirus.jhu.edu/about/how-to-use-our-data
https://coronavirus.jhu.edu/about/how-to-use-our-data
https://github.com/CSSEGISandData/COVID-19/blob/21b4a7275905738d6bb11627e5ffe76f79cb9b8b/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv#L210
https://github.com/CSSEGISandData/COVID-19/blob/21b4a7275905738d6bb11627e5ffe76f79cb9b8b/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv#L210
https://github.com/CSSEGISandData/COVID-19/blob/21b4a7275905738d6bb11627e5ffe76f79cb9b8b/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv#L210
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Figure A1. An example of a numerical pattern used to deduce the extended centered moving average
method to calculate the Imt mean series. The nt values of the initial and last sections are sequences of
odd numbers, less than nk. The nt value of the main section is nk. There are no defined values for
t = 1 and t = N.

As the maximum nt values are in the main section (Figure A1), it is obvious that
this section will have more precision in means calculation. This difference in precision
will be considered in confidence interval calculation, where the nt value is one of the
applied parameters.

The analyst must take care of the importance of the moving average time (nk) defined.
Its value must be selected carefully to have Imt values near to the population means. The
software provides a set of tests and a diagram to help on this purpose:

• Randomness of sign test (applied to et = It − Imt) should be passed.
• Normality test (applied to the transformed error e∗t , below defined) should be passed.
• Histogram plot (applied to the transformed error e∗t ) should look like a normal pattern.
• Superimposed graphs of It and Imt, where the Imt curve should “navigate” through

the It, revealing no aleatory patterns (for example, week periodicity).

The value of nk assigned must not be too small to make imprecise the estimate of Iµ
t , nor must

it be too large to not allow the randomness of the signs of the errors around the mean.
Estimating the model standard deviation of the incidences:
The proposed incidence model is:

It = Iµ
t + et , et ∼ N

(
0, σ2

t

)
(A2)

The standard deviation we are looking for is precisely the standard deviation of the
error et. Figure A2 shows the scatter diagram of the error vs. the value of the estimator Imt
of one of the simulated time series of the incidence presented in the paper. Note that the
upper contour of the error grows as the value of Imt grows. Although this is a simulation
series, the figure illustrates a typical reality situation.
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Figure A2. Scatter plot diagram of et vs. Imt.

Following a standard procedure of time series analysis, we simply will sketch the
contour of the dots pattern with a general equation:

Contour = k× Imγ
t (A3)

The factor of interest in (A3) is Imγ
t (power function), in which we do not know which

is the most appropriate exponent γ. The usual practice to define γ is to divide the errors et
by the factor Imγ

t (A4), and test with different values of γ, until the scatter diagram of the
transformed error e∗t vs. Imt forms a horizontal band (e∗t becomes homoscedastic in respect
to Imt). All e∗t values are assumed to be normally distributed at each time t, with a standard
deviation denoted by σ∗t . Thus:

e∗t =
et

Imγ
t
∼ N(0, σ∗t ) (A4)

After some trials from γ = 0, it was found that for γ = 0.5, the scatter diagram e∗t vs.
Imt assumes the desired horizontal band shape (Figure A3).
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The shape of the error contour in counting processes, such as those of an epidemic, can-
not always be modeled with a simple power function. There are other functions necessary
to try; for example, logarithm, sine (positive increasing part), hyperbolic tangent, logistic,
etc. All these functions share the quality that they are increasing (positive first derivative)
in the range of their application. In this proposal, we selected a modified weighted average
of the power function and the logistic function, which we named Logipow (A5).

Logistic(Imt) =
1

1+e
4×(1−2a×( Imt

MAX(Imt)
+b))

AdLog(Imt) =
Logistic(Imt)−Logistic(0)

Logistic(MAX(Imt))−Logistic(0) ∗Adjusted Logistic.

Logipow = K
[

β
Imγ

t
MAX(Imγ

t )
+ (1− β)(B + (1− B)AdLog(Imt))

] (A5)

The Logipow function is a kind of intuitive function with the special quality that it can
be modulated with parameters to follow the contour with more flexibility than the standard power
function. Next, we describe the parameter descriptions:

a (slope factor): Provides the slope of the logistic function in its inflexion point.
b (horizontal shift): Shifts the logistic function left (b > 0) and right (b < 0).
B (vertical shift): Shift the logistic function up and down.
β (balance): Defines the mix proportion between the logistic and power functions.
K (scale): This factor does not alter the performance of the function. It provides visual

help to the user of the software.
Figure A4 shows the general sections of one sample curve of the Logipow function.
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Coming back to the Equation (A4), we now change the power function with the more
general function we are proposing:

e∗t =
et

Logipow(Imt)
(A6)

Assuming that Imt is statistically constant (for a practical simplification of the prob-
lem), the estimated standard deviation of e∗t is straightforward calculated:

σ̂∗t =
σ̂t

Logipow(Imt)
(A7)

It is proposed two methods for the estimation of σ∗t :
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1. Assuming that σ∗t is constant within time intervals: For fixed counting process within
the time intervals.

2. Assuming that σ∗t is continually changing over time: For counting processes that we
know are changing but do not know when they change.

Assuming that σ∗t is constant within time intervals:
Let M be the number of time sections of the series of e∗t . Each section of size Nk (with

k = 1, 2, 3, . . . M). Let tk be the starting instant of each section. The moving range average
of the section k is:

RMe∗k =
1

Nk − 1 ∑tk+Nk
t=tk+1

∣∣e∗t − e∗t−1
∣∣, (A8)

The estimated standard deviation σ̂∗k of each section is calculated by dividing RMe∗k
by a conversion factor d2 = 1.128.

σ̂∗k =

(
RMe∗k

d2

)
=

(
RMe∗k
1.128

)
(A9)

Within each section, σ̂∗t will have a constant value of σ̂∗k given by (A9).
This method can be applied to the great section of the entire epidemic time. This is a

special option that can be referred to as assuming that σ∗t is constant all time.
The calculation of the standard deviation through the moving range (A9) is the most

accurate method when only one value is available at each measurement instant [22].
Assuming thatσ∗t is continually changing over time:
Let e∗t be an N size series and all its moving ranges given by:

RMe∗t =
∣∣e∗t − e∗t−1

∣∣, 2 ≤ t ≤ N (A10)

Taking the centered moving average RMe∗t of all these moving ranges, with moving
average time n, for each instant t. The estimated standard deviation σ̂∗t is calculated by
dividing the moving average of the range RMe∗t by a conversion factor d2 = 1.128.

σ̂∗t =

(
RMe∗t

d2

)
=

(
RMe∗t
1.128

)
(A11)

The work to calculate the estimated standard deviation, σ̂t, is summarized by calculat-
ing σ̂∗t and then solving for σ̂t in (A7):

σ̂t = σ̂∗t Logipow(Imt) (A12)

Finally, it is necessary to point out that parameter estimation is a key step in order to
apply the method for calculating the Rm

t , and that we should try to achieve better results,
but we will need to obtain experience in such a way that the conditions of normality do
not apply too much excessive pressure. We have the intangible help of the Central Limit
Theorem applied to the mean variables.

Appendix B. The Probability Density Function of the Noisy Reproduction Number R*
t

Now we will deduce the probability density function of the noisy reproduction number
R∗t needed as a mathematical tool for testing procedures. R∗t was defined as:

R∗t =
It

∑t
s=1 ws It−s

(A13)

Before the beginning of the analysis, it is necessary to clarify some important concepts.
If the specific values of It and all It−s are known, it is possible to estimate their normal
parameters in some way, for example, by the method of Appendix A. The effect of decou-
pling the It and all It−s in constants Iµ

t and Iµ
t−s, and gaussian noisy components et and
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all et−s, is that they become statistically independent variables. The natural correlations
are trespassed to the constant’s components Iµ

t and Iµ
t−s, but it does not matter because

they are constants (statistically frozen), and the errors components et and all et−s become
independent (it is something that can be verified in the error series).

Continuing with (A13), it is observed that the divisor
t

∑
s=1

wt,s It−s is a random variable,

henceforth denoted Λt, which is normally distributed according to N
(

Λµ
t , σ2

Λt

)
. Λµ

t is
straightforward calculated:

Λµ
t =

t

∑
s=1

ws Iµ
t−s (A14)

Furthermore, considering that the incidences It−s of (A13) have their means and
errors decoupled, the calculation of the variance of Λt can be performed knowing that the
incidences It−s are independent variables. Thus:

σ2
Λt

=
t

∑
s=1

w2
s σ2

t−s (A15)

With the above, and knowing R∗t is a ratio (A13) in which the numerator It and the
denominator Λt are independent, the probability density function f (R∗t ) can be calculated
following the general theoretical procedure [23]:

Let X and Y be independent continuous random variables, with pdfs fX(x) and fY(y), respec-
tively. Assume that X is zero for at most a set of isolated points. Let = Y/X. Then:

fW(w) =
∫ ∞

−∞
|x| fX(x) fY(wx)dx (A16)

In summary, the probability density function of R∗t can be calculated by applying

(A16) to the ratio It/Λt, knowing that It and Λt are distributed according to N
(

Iµ
t , σ2

t

)
and

N
(

Λµ
t , σ2

Λt

)
, respectively:

f (R∗t ) =
1

2πσΛt σt
e
−

σ2
t (Λ

µ
t )

2
+σ2

Λt
(Iµ

t )
2

2σ2
Λt

σ2
t


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t +σ2
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(R∗t )

2
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+
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


(A17)

erf(z) is the error function: er f (z) = 2√
π

∫ z
0 e−t2

dt.
Of course, (A17) is a very complex function we should try to simplify (which is

performed in the paper).

Appendix C. Rm
t Confidence Interval Calculation with Serial Interval Uncertainty

Let us begin with a hypothetical problem whose solution will help us to solve the
specific problem of the Rm

t confidence interval with serial interval uncertainty.
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Suppose we have N normal variables xj (j = 1, 2, 3, . . . N), each of which with means

and variances organized in pairs
(

µj, σ2
j

)
. Furthermore, each xj is related to M random

values xj,k (k = 1, 2, 3, . . . M). Thus, the values xj,k are the elements of a matrix:
x1,1 x1,2 . . . x1,M
x2,1 x2,2 . . . x2,M

: : : :
xN,1 xN,2 . . . xN,M

⇒
x1 ∼ N

(
µ1, σ2

1
)

x2 ∼ N
(
µ2, σ2

2
)

: . : . : . : . : . : . : . :
xN ∼ N

(
µN , σ2

N
) (A18)

From this matrix perspective, the specific problem we will try to solve is described
as follows:

Conditions:

1. The values of the means µj and the variances σ2
j are known and come from an

unspecified random process.
2. The values xj,k of the row j of this matrix are random versions of the variable xj ∼

N
(

µj, σ2
j

)
.

3. There is a global variable that we will call x, whose random values are obtained from

the matrix
[

xj,k

]
and that has a population mean µ and variance σ2. The corresponding

probability density function g(x) is unknown.

Question:
Find the pdf g(x), and calculate the mean and the variance of the variable x.
Solution:
Since we are assuming that we know the N random versions of the means and

variances corresponding to the variables xj, the calculation of the mean of x is immediate:

µ =
∑N

j=1 µj

N
(A19)

Now this result (A19) can be used to look at the problem from a different perspective.
Since the mean parameters µ and µj are the expected values of the random variables x and
xj, respectively, equation (A19) can be presented in more detail:

E(x) =
1
N

N

∑
j=1

E
(
xj
)
=

1
N

N

∑
j=1

∫ xj→+∞

xj→−∞

xje
−1
2 (

xj−µj
σj

)
2

√
2πσj

dxj (A20)

Since all the variables xj vary within the same range (−∞,+∞), the result of the N
integrations will not be affected if we make all variables xj vary, which implies that they
are all equal to the same variable, which we will provisionally call y. Thus:

E(x) =
1
N

N

∑
j=1

∫ +∞

−∞

ye
−1
2 (

y−µj
σj

)
2

√
2πσj

dy (A21)

Rearranging factors:

E(x) =
∫ +∞

−∞
y

1
N

N

∑
j=1

e
−1
2 (

y−µj
σj

)
2

√
2πσj

dy (A22)
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It is noted that, in this way, the expected value of x is not affected:

E(x) =
∫ +∞

−∞
y

1
N

N

∑
j=1

e
−1
2 (

y−µj
σj

)
2

√
2πσj

dy =
∑N

j=1 µj

N
= µ (A23)

Since the underlined part of the above equation meets all the requirements to be a
probability density function (always positive function and the total area under the curve is
equal to 1), and the calculated expected value is equal to the value expected of the variable
x, we can consider the possibility that x = y. Thus, the probability density function of x
could be:

g(x) =
1
N

N

∑
j=1

e
−1
2 (

x−µj
σj

)
2

√
2πσj

=
1

N
√

2π

N

∑
j=1

e
−1
2 (

x−µj
σj

)
2

σj
(A24)

If the above equation is right, the variance could be calculated:

V(x) =
1

N
√

2π

∫ +∞

−∞
(x− µ)2

N

∑
j=1

e
−1
2 (

x−µj
σj

)
2

σj
dx (A25)

Solving the integral:

V(x) = ∑N
j=1

σ2
j +

(
µj − µ

)2

N

 =
1
N

N

∑
j=1

[
σ2

j +
(

µj − µ
)2
]
(Jumping to the solution) (A26)

The above hypothetical problem and its solution is the same as our problem of finding the
probability density function of the instantaneous reproduction number Rm

t with serial interval uncertainty.
We only need to make the following variables redefinitions:

µj → Rm
t,j =

Imt
Λm

t,j
, σj → σ̂

(j)
Rm

t
=

σ̂t
Λm

t,j
√

nt
, Λm

t,j =
t

∑
s=1

w(j)
s Imt−s (A27)

The general mean and standard deviation are:

µ =
∑N

j=1 µj

N
→ Rm

t =
∑N

j=1 Rm
t,j

N
(A28)

√
V(x) =

√√√√ 1
N

N

∑
j=1

[
σ2

j +
(

µj − µ
)2
]
→ σ̂Rm

t
=

√√√√ 1
N

N

∑
j=1

[(
σ̂
(j)
Rm

t

)2
+
(

Rm
t,j − Rm

t

)2
]

(A29)

Finally, the probability density function of Rm
t is:

g(x) =
1

N
√

2π

N

∑
j=1

e
−1
2 (

x−µj
σj

)
2

σj
→ f (Rm

t ) =
1

N
√

2π

N

∑
j=1

e

−1
2 (

Rm
t −Rµ

t,j

σ
(j)
Rm

t

)

2

σ
(j)
Rm

t

(A30)

Equation (A30) alone is sufficient to statistically describe Rm
t , but unfortunately, in the calculus

of confidence intervals, it results in the computational processes that need to be run for each instant t
taking a long time to be completed. Therefore, instead of using (A30) we prefer to use a subrogate
probability density function such as the Gamma distribution. In Figure A5, we compare the limits of
the 95% confidence interval obtained by applying the exact function (A30) and a surrogated Gamma
distribution with means and standard deviation given by (A28) and (A29), respectively. The data of
the series of incidence are the same as those used in the paper.
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