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Abstract: A photovoltaic (PV) system is one of the renewable energy resources that can help in
meeting the ever-increasing energy demand. However, installation of PV systems is prone to faults
that can occur unpredictably and remain challenging to detect. Major PV faults that can occur are
line-line and open circuits faults, and if they are not addressed appropriately and timely, they may
lead to serious problems in the PV system. To solve this problem, this study proposes a voting-
based ensemble learning algorithm with linear regression, decision tree, and support vector machine
(EL-VLR-DT-SVM) for PV fault detection and diagnosis. The data acquisition is performed for different
weather conditions to trigger the nonlinear nature of the PV system characteristics. The voltage-
current characteristics are used as input data. The dataset is studied for a deeper understanding, and
pre-processing before feeding it to the EL-VLR-DT-SVM. In the pre-processing step, data are normalized
to obtain more feature space, making it easy for the proposed algorithm to discriminate between
healthy and faulty conditions. To verify the proposed method, it is compared with other algorithms in
terms of accuracy, precision, recall, and F-1 score. The results show that the proposed EL-VLR-DT-SVM

algorithm outperforms the other algorithms.

Keywords: voting-based ensemble learning; decision tree; linear regression; line-line fault; open
circuit; PV fault detection and diagnosis; support vector machine

1. Introduction
1.1. Background

Solar energy harvesting is a promising option because of its massive potential for
power systems. This is evident from increasing photovoltaic (PV) installation, which
is estimated to grow annually by approximately 18% with 123 GW power generated in
2019 [1]. Its contribution to generating energy and supplying power to end-users is believed
to meet the ever-increasing demand for energy. However, installation of PV systems is
prone to faults that can occur unpredictably and remain challenging to detect. This has
motivated engineers and researchers to pay more attention to overcome the interference of
the PV system, such as fault detection and diagnosis (FDD) [2].

There are two main causes that can result in the failure of the PV system, and these
causes are internal and external. The internal cause can be seen in cable dysfunction and
inadequate wiring, whereas the external cause can be seen in shading due to trees or clouds
and hotspot due to ambient temperature. The research community is extensively working
on overcoming these challenges of PV system failures.

Many studies on PV fault detection have been conducted with different methodologies,
advantages, and limitations [1,3–12]. A single algorithm for detecting PV faults has already
been explored extensively. A multi-layer perceptron neural network (MLPNN) has been
proposed to recognize the PV faults [13]. The use of discrete wavelet transform (DWT)
with Daubechies 5 (db5) property is considered to decompose and reconstruct the signals.
The results of this study have concluded that the MLPNN model is able to recognize
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existing PV faults successfully. However, this work requires much attention because feature
extraction on a wavelet and hidden layer building on neural network (NN) architecture is
not an easy task. Garoudja et al. [14] has proposed a probabilistic neural network (PNN)
algorithm for PV fault detection. The PV parameters were extracted using the best-so-far
artificial bee colony (ABC) algorithm. Considering both noisy and noiseless datasets, the
PNN was able to produce accuracies of 98.19% and 100%, respectively. Even though an
excellent performance was achieved with the algorithm, obtaining a noiseless dataset and
constructing hidden layers on the PNN is challenging and requires careful work. Both
these works suffer from the same problem of dataset selection. The examples of used
datasets should be chosen carefully for NN layer construction to avoid time-intensive work.
Otherwise, the model will not function effectively in detecting PV faults. Mandal et al. [15]
has developed a PV fault detection system using a support vector machine (SVM). The
accuracy values of 88.33%, 85.40%, and 85.00% were obtained for scenarios of one versus all
(OVA), adaptive directed acyclic graph (ADAG), and one versus one (OVO), respectively.
The SVM was also employed by [16,17]. An accuracy value ranging from 18.31% to
100.00%, depending upon the different mismatch percentages used, has been reported
in [16]. Yi et al. [17] have reported an accuracy of 91.40% and 94.74% from the experimental
results. Tao et al. [18] have investigated a deep belief network optimized by a genetic
algorithm (GA-DBN). This study has successfully classified PV faults with an accuracy rate
of 95.73%. A more advanced method has been proposed by [19] via a convolutional neural
network (CNN), AlexNet, and SVM. However, the results showcased relatively low values
of accuracies in the range of 69.39–73.53%. Therefore, based on the aforementioned studies,
it can be inferred that for a more robust performance there is still a need for further research.

The emergence of ensemble learning (EL) methods offers advantages in addressing
some of the shortcomings of the existing work as mentioned above. This method is believed
to perform better because it is a combination of some algorithms for detecting PV faults. The
EL method was proposed by Eskandari et al. [20] for line-line faults using a combination of
three algorithms, namely SVM, naïve Bayes (NB), and k-nearest neighbor (KNN). Under
different scenarios, these classifiers were able to perform well with 99.00% and 99.50%
accuracy. Bagging and stacking-based ELs were explored by Justin et al. [21] for detecting
the energy production anomalies of PV faults. The outcomes were 79.50% for bagging-based
EL and 94.00% for stack-based EL. The EL of quadratic discriminant analysis, extra trees
with entropy, and decision tree (QDA-ETent-DT), which outperformed the other comparable
classifiers, was investigated by Kapucu et al. [22]. When applied for recognizing two PV
faults namely partial shading, and short circuit, the EL yielded an accuracy rate of 97.46%
before optimization and 97.67% after optimization. Better performance is still needed to
obtain a more robust result in detecting PV faults. Adhya et al. [23] have reported good
performance, yielding an accuracy of approximately 99.00% after employing the EL of
the light gradient boosting method (LGBM), categorical boosting (CatBoost), and extreme
gradient boosting (XGBoost) in diagnosing the PV faults. However, the feature selection
process and EL type have not been fully addressed in this study. The EL method was
also proposed by Dhibi et al. [24], using SVM, KNN, and DT. Two principal component
analyses (PCAs), including kernel PCA (KPCA) and reduced kernel PCA (RKPCA), were
developed. PCA development aimed to obtain better performance and lower computational
load. Although this study yielded an excellent performance, executing EL was still time-
consuming. The developed PCAs-based EL method needed 110.36 and 221.85 s for RKPCA
and KPCA, respectively.

Likewise, random forest (RF), which is the EL of DTs, was used in recognizing PV
faults that occur in the PV systems [25–29]. In [25], Euclidean distance-based reduced
kernel RF (RK-RFED) and K-means clustering-based reduced kernel RF (RK-RFKmeans)
were used to detect the occurrence of PV faults with 10-fold cross-validation. It resulted
in a good performance with a computational time of 113.75 and 154.50 s for RK-RFED
and RK-RFKmeans, respectively. In [26], RF was employed to recognize line-line faults,
degradation, open circuits, and partial shading. Compared to DT, RF showed a better
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accuracy rate. In [27], a pre-processing stage was developed for an interval reduced
kernel principal component analysis. The resulting data were then fed to RF to obtain
the classification process. Although employed for detecting islanding, partial shading,
open-circuit/short-circuit, and output current sensor faults, the proposed algorithm or
model was able to produce high accuracy with low computational time. In [28], RF was
proposed as a comparative model for other machine learning (ML) algorithms. RF is still
considered a good model because it enables high accuracy in classifying six existing PV
faults. In [29], RF and other algorithms were investigated to recognize two PV faults. RF
showed good results via F1 score identification. However, the use of the RF algorithm
incurs a large memory and heavy computational load because of the number of trees used
in building the RF.

1.2. Aim and Contributions

To overcome the aforementioned drawbacks, a voting-based ensemble learning algo-
rithm with linear regression, decision tree, and support vector machine (EL-VLR-DT-SVM)
is developed in this work to offer better performance in detecting the occurrence of faults
in the PV system. Other EL algorithms were also used as benchmarks for the purpose of
comparison. To obtain better justification, the proposed study not only uses accuracy, but
also discusses other performance indicators, such as precision, recall, and F-1 score. In
addition, computational time and a confusion matrix are performed. For pre-processing
of data, additional data normalization is also explored to investigate its effect on the algo-
rithm. In contrast, previous studies have used only one kind of data normalization [20,29].
As the performance of a PV system depends on the external environment, two different
weather conditions are considered in this study. Although these weather factors may
trigger nonlinearity signals of the PV system, the proposed EL-VLR-DT-SVM algorithm still
exhibits excellent performance. Additionally, the proposed algorithm is compared with
other related studies to investigate its reliability.

1.3. Paper Organization

The paper is organized as follows. Section 2 presents the PV fault events. Section 3
describes the proposed method. Section 4 provides the results and discussion, including
dataset, dataset exploration, dataset preparation, feature selection and data pre-processing,
performance assessment, and comparison with the related studies. Finally, Section 5
presents the conclusions of the work.

2. PV Fault Events

In a PV system, the PV output characteristics are nonlinear [30]. This occurs because
of certain conditions, such as different weather conditions. Many faults may remain
undetected owing to the nonlinear nature of the PV output characteristics. Many researchers
and engineers have been working to find the best solution for detecting various early PV
faults with high accuracy and low computational load. In this study, two PV faults are
considered, namely line-line (L-L) and open circuit (OC) faults. These faults are of great
importance because the frequency of occurrence of both these faults [31,32] in PV systems
is relatively high.

Figure 1 illustrates the fault occurrences in a PV system. The L-L fault can exist
either in the intra string or extra string, whereas the OC fault can occur in the PV string
connection. The existing L-L faults in the PV systems may be caused by undesired or
faulty connections [33] and chewed wires by rodents and animals [34]. If these faults are
not treated appropriately and quickly, they may cause fire hazards. The OC faults are
possibly caused by broken wires of the connection system, leading to power loss in the PV
systems [35]. If these two faults are not addressed correctly and appropriately, they may
cause damage to the PV system. Hence, PV fault detection is crucial for maintaining the
performance and reliability of the PV systems.
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3. Proposed Method

A voting-based ensemble learning with linear regression, decision tree, and support
vector machine (EL-VLR-DT-SVM) for PV fault detection is developed in this work. Figure 2
shows the proposed method and the process of the learning algorithm. The advantage
of voting-based EL algorithms lies in the freedom to choose more single ML algorithms
and thus combine them to prove their effectiveness in detecting the PV faults. Therefore,
more algorithms can be useful for the classification task instead of relying on a single
algorithm. Using the selected features of voltage-current (V-I) to detect PV faults, the
proposed algorithm can detect L-L faults and OC faults effectively.
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3.1. Exploratory Data Analysis (EDA)

Exploration of the dataset plays a crucial role in obtaining a deeper understanding of
the dataset. Herein, some exploration processes are conducted, such as data information,
missing values check, data description, and unique values check. From these processes, the
next steps of dataset preparation can be performed accurately. For example, if there is a
missing value, a handling process is required.
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3.2. Feature Selection

In a dataset, many features can be found. However, not all features contribute to
a good performance. In this study, the coefficient score methodology is employed to
determine the most influential features. The coefficient score selects all the possible feature
combinations. Then, they are calculated to obtain the best features that can be used later in
building the model algorithm. Therefore, the computationally intensive problem can be
overcome by running the algorithm with fewer features for detecting the PV faults.

3.3. Pre-Processing Data

The dataset is completely prepared up to this stage. Some types of pre-processing
involving label class partition, label encoder, concatenation, dropping, and normalization
are carried out as a next step. Label class partition aims to separate each condition of the
dataset (normal, L-L fault, and OC). Label encoder is conducted to change each categorical
data to numerical data. This is necessary because an ML algorithm cannot interpret
categorical data. Then, concatenation of data from each condition is obtained before
normalization. In normalization, the MinMax scaler and standard scaler are used to
normalize the dataset. Mathematically, the MinMax scaler and standard scaler can be
expressed as (1) and (2), respectively. This normalization aims to attain more structured
data, making the algorithm easy to differentiate between healthy and faulty conditions.
Splitting of data is then conducted resulting in 70% training and 30% testing data.

z =
(x− xmin)

xmax − xmin
(1)

z =
(x− u)

s
(2)

where

z the normalized data
x the data intended to be normalized
xmin the minimum value of x
xmax the maximum value of x
u the mean of training data
s the standard deviation

3.4. Cross Validation

In learning algorithm evaluation, cross-validation (CV) is widely used. It aims to
obtain more robust results for PV fault detection. Herein, K-fold CV is employed with
K = 10 and shuffle data setting kept as True. Thus, there are ten processes of the testing
algorithm, each resulting in a different performance. The data are randomly split into ten
folds. The 1st fold is taken to test the algorithm, and the rest of the folds are used for data
validation. Then, the 2nd fold is taken, and the rest of the folds are used for data validation.
This process continues until ten times as many folds are defined.

3.5. Conventional Algorithm
3.5.1. Linear Regression

LR was first introduced by Galton in 1877 [36]. The LR algorithm represents the linear
relationship between the data input and the target class. As this study uses more than one
feature as input data, multiple linear regression is used. Mathematically, the LR is defined
as shown in (3).

c = B0 + B1·X (3)

where

c the target class
B0 the bias coefficient
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B1 the coefficient of input data
X the data input

3.5.2. Decision Tree

A DT algorithm splits data through nodes. Each node retains the representative
information and eliminates unrelated information. Therefore, the data gradually becomes
smaller in volume until the last iteration [37]. Mathematically, a DT model can be expressed
as shown in (4)–(7). For a dataset x, the target class is obtained as shown in (4).

c =
M

∑
m=1

cm IRm(x) (4)

where

c the target class of data x
M the node
Rm the region of m
cm the estimated prediction
I the represented target classes

Then, the square error is used according to the mean of the data input in the region of
Rm to obtain the optimum constant of cm. Then, obtaining tree T(x) for the lowest prediction
risk can be expressed as shown in (5).

{cm, Rm}M
1 = argmin

N

∑
i=1

[ci − T(xi)]
2 (5)

where

ci ith estimated prediction
T(xi) ith obtained tree

The possible constant region (e(R)) that aims at obtaining the minimum loss can be
seen in (6). Thus, the quality score for node split j can be obtained as expressed in (7).

e(R) =
1
N ∑

x∈R

(
ci −mean

(
{ci}N

1

))2
(6)

I
(
xj, sj

)
= e(R)− e

(
Rl
)
− e(Rr) (7)

where

I
(

xj, sj
)

the quality score on xj, sj

xj the input variable
sj the split on sj.
Rl the left region
Rr the right region
e
(

Rl
)

the result on Rl

e(Rr) the result on Rr

3.5.3. Support Vector Machine

The SVM algorithm works based on its hyperplane, which divides the dataset into
target classes. This discrimination is conducted with respect to the support vectors among
the dataset. The hyperplane aims to search for the maximum distance between support
vectors [16]. The wider the distance, the higher the accuracy. The SVM can be defined
mathematically as shown in (8)–(10). Suppose that x is a dataset of two classes x1, x2, as
shown in (8).

x = {x1,x2,} (8)
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The function of the hyperplane is y, as shown in (9) where w is the margin between
the hyperplane and the support vector of one target class, and b is the bias.

w·x + b = y
w·x + b = 0

(9)

Finally, the prediction of two target classes (+1, −1) can be obtained, as expressed in (10).

h(xi) =

{
+1, i f w·x + b ≥ 0
−1, i f w·x + b < 0

(10)

where h(xi) is the hyperplane of xi.

3.6. Proposed EL-VLR-DT-SVM Algorithm

The premise of the EL algorithm is the likelihood of overcoming the shortcomings of
traditional machine learning algorithms. As EL combines conventional ML algorithms [38],
the performance of the EL-based algorithm can be improved [39]. In this study, the
EL-VLR-DT-SVM is developed to detect the occurrence of PV faults. This proposed model
combines three basic models, i.e., LR, DT, and SVM to obtain the final performance of the PV
fault detection. This ensemble method is expected to be a better algorithm for generalizing
a given dataset, instead of using a single classifier. Each prediction result is summed, and
the final performance is obtained via a majority vote. To tune the hyperparameters of the
proposed EL-VLR-DT-SVM algorithm, a GridSearch methodology is used to find the fittest
parameters of each conventional algorithm. Table 1 shows the parameters used with the
GridSearch methodology.

Table 1. Tuning hyperparameters for the proposed algorithm.

Model Items Parameters

LR
Fit intercept False

n-jobs 1

DT

criterion Entropy
max-depth 1000

splitter Random
min-sample-split 2

SVM

C 3
kernel Poly
degree 8
gamma scale

coef0 0.2

The proposed algorithm for detecting the occurrence of PV faults is shown in Figure 2.
There are two main stages of the algorithm that are discussed as follows:

I. Data Preparation

Step 1: EDA that aims to obtain the first look at how the dataset will be used.
Step 2: Feature selection that aims to obtain the most important features needed for the
classification using the coefficient score.
Step 3: Pre-processing data to prepare the dataset and normalize it before splitting and
classification.
Step 4: Dataset is split into 70% training and 30% testing data.
Step 5: Cross-validation that aims to train and test the dataset using the model with a
predefined k-number.

II. Building Model

Step 1: Defining three intended basic models, i.e., LR, DT, and SVM.
Step 2: Tuning the hyperparameters using the GridSearch methodology.
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Step 3: Training and testing the proposed algorithm.
Step 4: Obtaining the result via voting-based probability.
Step 5: Obtaining performance assessments via accuracy, F1 score, recall, precision, and
computational time. In addition, we have visualized the obtained performance in the
confusion matrix.

3.7. Performance Indicators

To obtain a better justification of the proposed algorithm in detecting occurrence of PV
faults, some indicators are evaluated, including accuracy, precision, recall, F1 score, and
computational time.

3.7.1. Accuracy

One performance indicator that is commonly used in ML applications to detect PV
faults is the accuracy score. The accuracy value represents the proportion of correct
predictions by the proposed algorithm. It can be mathematically expressed as (11).

Accuracy =
TP + TN

TP + TN + FN + FP
(11)

where

TP true positive
TN true negative
FN false negative
FP false positive

3.7.2. Precision

The precision indicator refers to the positive predictive value of the proposed algorithm
for a given dataset. In the mathematical expression, the precision can be written as (12).

Precision =
TP

TP + FP
(12)

3.7.3. Recall

To evaluate the performance of the proposed algorithm, a recall indicator is utilized
to investigate the true positive rate. The recall value shows the ability of the proposed
algorithm to identify all positive samples of a given dataset. This can be expressed mathe-
matically as (13).

Recall =
TP

TP + FN
(13)

3.7.4. F1 Score

The F1 score measures the harmonic mean of the precision and recall. The proposed
algorithm can be rated as a well-performed model for detecting PV faults when the F1
score is close to 1. Otherwise, it can be rated as a bad algorithm when the F1 score is close
to 0. The mathematical expression for the F1 score is given by (14).

F1 score =
2× Precision× Recall

Precision + Recall
=

2TP
2TP + FP + FN

(14)

3.7.5. Confusion Matrix

Confusion matrix (CM) in a classification task is commonly used to investigate the
performance of the proposed algorithm. In Figure 3, a confusion matrix is shown to detect
the occurrence of PV faults. Well-performed algorithms have high true positive and true
negative numbers, whereas high false positive and high false negative numbers indicate
unreliable algorithms.
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3.7.6. Computational Time

Another indicator that should be considered when evaluating the proposed algorithm
is the required computational time, which is measured in seconds. A computational load is
important to consider because it shows how long a personal computer takes to realize a
built model. A low computational time indicates faster fault detection.

4. Results and Discussion

This section presents the results and discussion of the proposed EL-VLR-DT-SVM al-
gorithm to detect the occurrence of PV faults under different weather conditions. Some
parts that are covered and explained in this section include dataset, dataset exploration,
performance assessment, and comparison with the existing studies. To better justify the
performance of the proposed algorithm for PV fault detection, some assessment indicators
are considered, such as accuracy, precision, recall, F1 score, and computational load. A visu-
alization of the confusion matrix is also shown to obtain a more intuitive understanding of
the performance of the EL-VLR-DT-SVM algorithm. In this study, three scenarios are chosen
to detect two common PV faults and these scenarios are: (1) without normalization, (2) Min-
Max scaler normalization, and (3) standard scaler normalization. All classification tasks in
this PV fault detection are accomplished using a personal computer with the specification
of 6.0 GB dedicated GPU memory, 8.0 shared GPU memory, and a processor of Intel(R)
Core (TM) i7-10700F CPU @ 2.90 GHz (16 CPUs) ~2.9 GHz.

4.1. Dataset

A publicly available dataset is used in this study [40]. The dataset is collected during
different weather conditions both in winter and summer. The reason is that the real-world
applications of the PV system will be working in a variety of weather conditions. Four
category values are measured, including irradiation, temperature, voltage, and current [29].
Irradiation is measured using a commercial lux meter (LX1330B) with an error rate of ±2%.
The lux range applied was between 0.01 and 200 Klux, and the temperature was in the
range of 1–7 ◦C. Then, the average values of temperature were stored for data acquisition.
The OC voltage of the PV is 39 V, whereas the short-circuit current is 9 A. The specifications
of the PV system used in this study are shown in Table 2. This proposed study only uses
(V-I) characteristics because they show the highest rank on feature performance using the
coefficient score methodology for PV faults detection.
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Table 2. PV array specification.

Specification Parameter Description/Value

Maximum power (Pmax) 1.8 kW
Short circuit current (Isc) 9 A

Open circuit voltage (Voc) 39 V
Parallel connection 2 lines
Serial connection 3 PV arrays
Connection type Grid-connected

4.2. Dataset Exploration

EDA plays a crucial role before going further to the pre-processing, building of the
proposed algorithm, and finally, obtaining the results. After the dataset is stored, to
obtain a more intuitive understanding, the availability of the figure showing dispersion and
correlation of data is strongly suggested. However, pre-processing of data is carried out first
to obtain the label encoder by changing the categorical target classes to the numerical ones.
The normal (or healthy condition), L-L faults, and OC faults are assigned the numerical
values of 0, 1, and 2, respectively. The data dispersion and correlation between the target
class and the V-I characteristics are shown in Figure 4. S1V and S2V represent the voltages
in PV strings 1 and 2, respectively. The current of PV string 1 is denoted by S1A, whereas
the current flowing in PV string 2 is denoted by S2A. Note that the V-I characteristics are
used in the algorithm after the feature selection process, which is explained in Section 4.4.
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Furthermore, the description of the collected data is also presented to detail everything
related to the data, such as features, range index, data type, etc. Table 3 presents the
description of the acquired data in detail. There are three types of data with non-null
conditions, and a length of 3000. The dataset is balanced according to the count value,
and thus, it does not require further steps that are needed for unbalanced data. It should
be noted that the unbalanced data and the non-linear nature of the V-I characteristics
are two different things. The balanced-unbalanced data are related to the number of the
data elements in each target class, whereas the nonlinear nature of the V-I characteristics
indicates that data are not arranged in a sequential order. These differences are essential to
know because the data description influences how the user understands and processes the
raw dataset.

Table 3. Data description.

Column/Feature Count Non-Null Condition Data Type

S1A 3000 non-null float64
S2A 3000 non-null float64
S1V 3000 non-null int64
S2V 3000 non-null int64

Light 3000 non-null float64
Temperature 3000 non-null int64

Weather 3000 non-null object
State 3000 non-null object

4.3. Data Preparation

The data preparation process is shown in the green box with dashed lines in Figure 2.
First, the dataset is extensively explored, as explained in the previous part of dataset ex-
ploration, in order to obtain a better understanding prior to further processes. The dataset
consists of eight features, including S1A, S2A, S1V, S2V, light, temperature, weather, and
state. Not all of these features contribute to the good performance of the algorithm. As a
result, the features are selected based on their importance value using a coefficient score.
Current (S1A, S2A) and voltage (S1V, S2V) show the highest contribution to good perfor-
mance, as shown in the following section of feature selection and data pre-processing. Thus,
the V-I characteristics are used as input for the proposed EL-VLR-DT-SVM algorithm. Then,
data pre-processing steps are conducted, such as label class partition, label encoder, and
concatenation before data normalization. Three classes are used, namely normal/healthy
condition, L-L fault, and OC fault, which were assigned the numerical values of 0, 1, and
2, respectively. The dataset is then split into two parts, 70% for training and 30% for
testing. K-fold cross-validation with K equal to 10 is deployed before the data are fed to the
proposed algorithm.

4.4. Feature Selection and Data Pre-Processing

In this study, seven features are ranked using the coefficient score to obtain the most
important features that are eventually used in the model. SIA, S2A, S1V, and S2V are
selected and assigned a numerical value of 0, 1, 2, and 3, respectively. Additionally, light,
temperature, and weather are assigned 4, 5, and 6, respectively. Note that the feature
state is not used because it is composed of the target class. The performance of the
feature importance score is shown in Figure 5. According to the coefficient score of each
tested feature, a right decision can be made using a positive coefficient score. The V-I
characteristics show the most important feature to be used for the algorithm to detect PV
faults. The density of the V-I characteristics is illustrated in Figure 6. The data dispersion
and correlation before normalization towards the target class can be seen in Figure 4, as
explained in the previous section. Data normalization is then conducted using two types of
normalization, called the MinMax scaler and Standard scaler. In the MinMax scaler, the
range lies between 0 and 1, whereas the unit standard deviation and mean value are used in
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the Standard scaler. These two data normalizations are used, and the results are compared
with the previous studies that have used any one of the two normalization methods [20,29].
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4.5. Performance Assessment

The performance of the proposed EL-VLR-DT-SVM algorithm for three scenarios is
assessed and compared to the other algorithms that are used as benchmarks. To better
verify the reliability of the proposed algorithm, some performance indicators are used,
including accuracy, precision, recall, F1 score, and computational time. These indicators are
important to use because the dataset is acquired under different weather conditions where
the nonlinear nature of the dataset can emerge. This nonlinearity makes the occurrence of
PV faults difficult to recognize.

Finding the most appropriate algorithm for detecting the occurrence of PV faults is
challenging. Many researchers face difficulties, and thus, sometimes, trial and error become
a solution. However, this process is time consuming. In this proposed study, the probability
of the proposed algorithm is determined and compared with other algorithms to prove
that the proposed algorithm has a higher chance of recognizing the occurrence of PV faults.
It is noteworthy that the probability cannot be found in some of the algorithms that are
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available in the literature. Thus, parameter adjustments are first conducted, such as setting
the activation probability to True. In addition, this probability is used in one versus all
classification. The probability of each algorithm is shown in Figure 7. This figure highlights
that the proposed EL-VLR-DT-SVM algorithm is close to the perfectly calibrated line, showing
a good performance in detecting the occurrence of PV faults.
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Figure 8 shows the comparison of the accuracy of the proposed algorithm with other
algorithms. In all scenarios, the proposed EL-VLR-DT-SVM algorithm outperforms all other
algorithms, namely AdaBoost, stochastic gradient descent (SGD), naïve Bayes (NB), linear
discriminant analysis (LDA), linear regression (LR), decision tree (DT), and support vector
machine (SVM), k-nearest neighbor (KNN), reduced kernel principal component analysis
with the EL of SVM, KNN, and DT (RKPCA-EL), and multi-layer perceptron neural network
(MLPNN). In Scenario 1, AdaBoost, SGD, and NB were only able to produce an accuracy
of less than 90.00%. A higher accuracy of approximately 90.00% was obtained with LDA
and LR, whereas the DT, SVM, RKPCA-EL, KNN, and MLPNN yielded approximately
99.00% accuracy. However, the proposed EL-VLR-DT-SVM algorithm produced an accuracy
of 99.89% in detecting the L-L and OC faults in the PV system.
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In the last two scenarios, L-L and OC faults are better recognized by the proposed
algorithm than any other algorithms. The performance is 100.00% for both scenarios
with the proposed algorithm. In contrast, DT, SVM, RKPCA-EL, KNN, and MLPNN
yielded accuracies above 95.00%, whereas the remaining algorithms were only able to
produce accuracy below 95.00%. The MLPNN and RKPCA-EL, which were proposed
by [13,24], were not able to produce 100.00% accuracy when using the dataset in the
current study. Under different weather conditions, the nonlinear nature of the dataset
may make algorithms more difficult to recognize the occurrence of PV faults. Herein, to
obtain a more intuitive understanding of the performance of the EL-VLR-DT-SVM for the
detection of PV faults, a confusion matrix is shown in Table 4. In the confusion matrix
of Scenario 1, the L-L and OC faults are well recognized. However, one misclassification
occurs in the healthy condition, which is detected as an L-L fault. In the confusion matrix
of Scenario 2 and 3, when a pre-processing of MinMax and Standard scaler normalization
is deployed, it resulted in an increase in the accuracy. An excellent result of 100.00%
accuracy is obtained for both scenarios, as evident from the confusion matrix with not even
a single misclassification.

Table 4. Confusion matrix of the proposed algorithm in three different scenarios.

Confusion Matrix

Scenario 1 Scenario 2 Scenario 3 293 1 0
0 308 0
0 0 298

  294 0 0
0 308 0
0 0 298

  294 0 0
0 308 0
0 0 298



The precision, recall, and F-1 scores of different algorithms in all three scenarios are
listed in Table 5. The values of these three indicators should be close to 1 for better results.
In all three scenarios, the proposed EL-VLR-DT-SVM algorithm has outperformed all the other
algorithms. Excellent performance is achieved in Scenarios 2 and 3 with perfect precision,
recall, and F-1 scores.

Table 5. Algorithm performance indicators.

Scenario Algorithm Precision Recall F-1 Score

Scenario 1

AdaBoost 0.496 0.666 0.550
SGD 0.503 0.666 0.560
NB 0.866 0.856 0.853

LDA 0.923 0.920 0.920
LR 0.917 0.915 0.916
DT 0.987 0.986 0.986

SVM 0.993 0.993 0.993
RKPCA-EL 0.994 0.994 0.995

KNN 0.994 0.995 0.996
MLPNN 0.990 0.992 0.991

Proposed Method 0.998 0.998 0.998

Scenario 2

AdaBoost 0.50 0.666 0.553
SGD 0.856 0.856 0.853
NB 0.866 0.856 0.856

LDA 0.920 0.916 0.916
LR 0.873 0.876 0.876
DT 0.990 0.986 0.986

SVM 0.998 0.998 0.998
RKPCA-EL 0.995 0.995 0.995

KNN 0.995 0.995 0.996
MLPNN 0.992 0.992 0.993

Proposed Method 1 1 1



Mathematics 2022, 10, 285 15 of 18

Table 5. Cont.

Scenario Algorithm Precision Recall F-1 Score

Scenario 3

AdaBoost 0.493 0.666 0.550
SGD 0.890 0.883 0.8883
NB 0.876 0.866 0.863

LDA 0.923 0.923 0.920
LR 0.918 0.916 0.916
DT 0.997 0.997 0.997

SVM 0.998 0.998 0.998
RKPCA-EL 0.997 0.996 0.997

KNN 0.996 0.996 0.996
MLPNN 0.992 0.993 0.993

Proposed Method 1 1 1

In Scenario 1, the proposed EL-VLR-DT-SVM algorithm cannot produce excellent perfor-
mance owing to one misclassified target class. However, it still shows better performance
in comparison to other algorithms with a Precision, Recall, and F1 score of 0.998 each. From
this performance, the deployment of data normalization, either the MinMax or Standard
scaler, is strongly suggested to produce better results. In terms of computational time,
scenarios with data normalization also show a faster response than those without data
normalization, as shown in Table 6.

Table 6. Computational time of the proposed method.

Scenario Scenario 1 Scenario 2 Scenario 3

Time (second) 0.581 0.508 0.305

4.6. Comparison with Existing Studies

Efforts have been made to compare the proposed study with related studies to prove its
reliability in detecting PV fault events and Table 7 shows this comparison. Eskandari et al. [20]
proposed the EL algorithm by employing three classifiers namely SVM, NB, and KNN. Under
different scenarios, this study produced good results in classifying the L-L fault of the PV
system. Although this work reported satisfying result, different weather conditions were not
considered in this study. In addition, no data normalizations were performed, and it detected
only one L-L fault.

Table 7. Comparison with related studies.

Year Reference

Different Weather
Conditions Data Normalization Resul

Yes No

2020 [20]
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In Scenario 1, the proposed EL-VLR-DT-SVM algorithm cannot produce excellent perfor-

mance owing to one misclassified target class. However, it still shows better performance 

in comparison to other algorithms with a Precision, Recall, and F1 score of 0.998 each. 

From this performance, the deployment of data normalization, either the MinMax or 

Standard scaler, is strongly suggested to produce better results. In terms of computational 

time, scenarios with data normalization also show a faster response than those without 

data normalization, as shown in Table 6. 

Table 6. Computational time of the proposed method. 

Scenario Scenario 1  Scenario 2 Scenario 3 

Time (second) 0.581 0.508 0.305 

4.6. Comparison with Existing Studies 

Efforts have been made to compare the proposed study with related studies to prove 

its reliability in detecting PV fault events and Table 7 shows this comparison. Eskandari 

et al. [20] proposed the EL algorithm by employing three classifiers namely SVM, NB, and 

KNN. Under different scenarios, this study produced good results in classifying the L-L 

fault of the PV system. Although this work reported satisfying result, different weather 

conditions were not considered in this study. In addition, no data normalizations were 

performed, and it detected only one L-L fault. 

Table 7. Comparison with related studies. 

Year Reference 

Different Weather  

Conditions Data Normalization Result 

Yes No 

2020 [20]    Standard scaler 99.00% and 99.50% under different scenarios 

2020 [21]    Not defined 
(a) 79.50% for bagging-based ensemble learning 

(b) 94.00% for stacked-based ensemble learning 

2021 [22]    Not defined 
(a) 97.46% before optimization 

(b) 97.67% after optimization 

Proposed work   
MinMax scaler 

Standard scaler 

(a) EL-VLR-DT-SVM 99.89% (Scenario 1) 

(b) EL-VLR-DT-SVM 100.00% (Scenario 2) 

(c) EL-VLR-DT-SVM 100.00% (Scenario 3) 

MinMax scaler
Standard scaler

(a) EL-VLR-DT-SVM 99.89% (Scenario 1)
(b) EL-VLR-DT-SVM 100.00% (Scenario 2)
(c) EL-VLR-DT-SVM 100.00% (Scenario 3)

In [21], the EL algorithm was conducted by recognizing the anomaly energy produc-
tion in PV systems. Two types of Els, namely bagging and stack-based method, were
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evaluated in this study. The stack-based method with 94.00% accuracy outperformed the
bagging-based method having only 79.50% accuracy.

A good result of the PV fault detection was reported in [22]. They employed QDA-
ETent-DT to yield an accuracy of 97.46% and 97.67% before and after optimization scenarios,
respectively. However, different weather conditions were not considered in this study.

In the present study, EL-VLR-DT-SVM algorithm is developed. This study has considered
different weather conditions for data acquisition. It also presents a further investigation on
data normalization. The results of the proposed EL-VLR-DT-SVM have been validated with
other algorithms for the purpose of benchmarking. The proposed study shows excellent
results for three different scenarios. Therefore, this work can guide further research to
improve the reliability of the PV systems.

5. Conclusions

An algorithm for voting-based ensemble learning with linear regression, decision
tree, and support vector machine (EL-VLR-DT-SVM) was developed for PV fault detection
and diagnosis (FDD). Different weather conditions were considered in this study because
they cannot be ignored in real world applications. After the raw data were acquired, it
was explored via exploratory data analysis (EDA). Data information, data description,
missing values check, etc., were conducted. A coefficient score was computed to obtain
the most important features of the PV fault classification. Thus, the selected features of the
V-I characteristics were pre-processed with data normalization. Its two types were further
investigated to determine their effects on the performance of the proposed algorithm where
the aim was to prepare the data before feeding it to the proposed algorithm. The perfor-
mance of the proposed EL-VLR-DT-SVM algorithm was comparatively assessed with other
algorithms for the purpose of benchmarking, by using different performance indicators
for better justification. The result showed that the proposed algorithm outperformed the
compared algorithms on all indicators, such as accuracy, precision, recall, and F-1 score. The
accuracies of 99.89%, 100.00%, and 100.00% were achieved for the proposed algorithm in
Scenario 1–3, respectively. In terms of computational load, the proposed algorithm worked
very well in Scenario 3 with a computational time of only 0.305 s, outperforming the com-
putational time in Scenario 1 and 2. These results indicate that the proposed algorithm for
PV fault detection has a good performance.

Author Contributions: Conceptualization, N.-C.Y.; Funding acquisition, N.-C.Y.; Investigation,
N.-C.Y. and H.I.; Methodology, N.-C.Y. and H.I.; Software and python programing, N.-C.Y. and
H.I.; Supervision, N.-C.Y.; Validation, N.-C.Y. and H.I.; Writing original manuscript, H.I.; Writing—
review and editing, N.-C.Y. and H.I. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was partially supported by the Ministry of Science and Technology (MOST) in
Taiwan (MOST 110-2622-8-011-012–SB) and the DELTA-NTUST Joint Research Center.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was partially supported by the Ministry of Science and Technology
(MOST) in Taiwan. The authors would like to thank the funding provided by MOST (MOST 110-2622-
8-011-012–SB) and DELTA-NTUST Joint Research Center.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khalil, I.U.; Ul-Haq, A.; Mahmoud, Y.; Jalal, M.; Aamir, M.; Ahsan, M.U.; Mehmood, K. Comparative Analysis of Photovoltaic

Faults and Performance Evaluation of its Detection Techniques. IEEE Access 2020, 8, 26676–26700. (In English) [CrossRef]
2. Harrou, F.; Sun, Y.; Taghezouit, B.; Saidi, A.; Hamlati, M.E. Reliable fault detection and diagnosis of photovoltaic systems based

on statistical monitoring approaches. Renew. Energy 2018, 116, 22–37. (In English) [CrossRef]

http://doi.org/10.1109/ACCESS.2020.2970531
http://doi.org/10.1016/j.renene.2017.09.048


Mathematics 2022, 10, 285 17 of 18

3. Chine, W.; Mellit, A.; Lughi, V.; Malek, A.; Sulligoi, G.; Pavan, A.M. A novel fault diagnosis technique for photovoltaic systems
based on artificial neural networks. Renew. Energy 2016, 90, 501–512. (In English) [CrossRef]

4. Triki-Lahiani, A.; Bennani-Ben Abdelghani, A.; Slama-Belkhodja, I. Fault detection and monitoring systems for photovoltaic
installations: A review. Renew. Sustain. Energy Rev. 2018, 82, 2680–2692. (In English) [CrossRef]

5. Mellit, A.; Tina, G.M.; Kalogirou, S.A. Fault detection and diagnosis methods for photovoltaic systems: A review. Renew. Sustain.
Energy Rev. 2018, 91, 1–17. (In English) [CrossRef]

6. Pillai, D.S.; Rajasekar, N. A comprehensive review on protection challenges and fault diagnosis in PV systems. Renew. Sustain.
Energy Rev. 2018, 91, 18–40. (In English) [CrossRef]

7. Livera, A.; Theristis, M.; Makrides, G.; Georghiou, G.E. Recent advances in failure diagnosis techniques based on performance
data analysis for grid-connected photovoltaic systems. Renew. Energy 2019, 133, 126–143. (In English) [CrossRef]

8. Appiah, A.Y.; Zhang, X.H.; Ayawli, B.B.K.; Kyeremeh, F. Review and Performance Evaluation of Photovoltaic Array Fault
Detection and Diagnosis Techniques. Int. J. Photoenergy 2019, 2019, 6953530. (In English) [CrossRef]

9. Li, B.; Delpha, C.; Diallo, D.; Migan-Dubois, A. Application of Artificial Neural Networks to photovoltaic fault detection and
diagnosis: A review. Renew. Sustain. Energy Rev. 2021, 138, 110512. (In English) [CrossRef]

10. Mellit, A.; Kalogirou, S. Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of
solar photovoltaic systems: Challenges, recommendations and future directions. Renew. Sustain. Energy Rev. 2021, 143, 110889.
(In English) [CrossRef]

11. Tina, G.M.; Ventura, C.; Ferlito, S.; De Vito, S. A State-of-Art-Review on Machine-Learning Based Methods for PV. Appl. Sci. 2021,
11, 7550. (In English) [CrossRef]

12. Madeti, S.R.; Singh, S.N. A comprehensive study on different types of faults and detection techniques for solar photovoltaic
system. Sol. Energy 2017, 158, 161–185. (In English) [CrossRef]

13. Ahmad, S.; Hasan, N.; Kurukuru, V.B.; Khan, M.A.; Haque, A. Fault classification for single phase photovoltaic systems using
machine learning techniques. In Proceedings of the 2018 8th IEEE India International Conference on Power Electronics (IICPE),
Jaipur, India, 13–15 December 2018; pp. 1–6.

14. Garoudja, E.; Chouder, A.; Kara, K.; Silvestre, S. An enhanced machine learning based approach for failures detection and
diagnosis of PV systems. Energy Convers. Manag. 2017, 151, 496–513. [CrossRef]

15. Mandal, R.K.; Kale, P.G. Assessment of different multiclass SVM strategies for fault classification in a PV system. In Proceed-
ings of the 7th International Conference on Advances in Energy Research, Bombay, India, 10–12 December 2019; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 747–756.

16. Yi, Z.; Etemadi, A.H. A novel detection algorithm for Line-to-Line faults in Photovoltaic (PV) arrays based on support vector
machine (SVM). In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21
July 2016; pp. 1–4.

17. Yi, Z.H.; Etemadi, A.H. Line-to-Line Fault Detection for Photovoltaic Arrays Based on Multiresolution Signal Decomposition and
Two-Stage Support Vector Machine. IEEE Trans. Ind. Electron. 2017, 64, 8546–8556. (In English) [CrossRef]

18. Tao, C.; Wang, X.; Gao, F.; Wang, M. Fault Diagnosis of photovoltaic array based on deep belief network optimized by genetic
algorithm. Chin. J. Electr. Eng. 2020, 6, 106–114. [CrossRef]

19. Aziz, F.; Ul Haq, A.; Ahmad, S.; Mahmoud, Y.; Jalal, M.; Ali, U. A Novel Convolutional Neural Network-Based Approach for
Fault Classification in Photovoltaic Arrays. IEEE Access 2020, 8, 41889–41904. (In English) [CrossRef]

20. Eskandari, A.; Milimonfared, J.; Aghaei, M. Line-line fault detection and classification for photovoltaic systems using ensemble
learning model based on I-V characteristics. Sol. Energy 2020, 211, 354–365. (In English) [CrossRef]

21. Justin, D.; Concepcion, R.S.; Calinao, H.A.; Lauguico, S.C.; Dadios, R.P.; Vicerra, R.R.P. Application of Ensemble Learning with
Mean Shift Clustering for Output Profile Classification and Anomaly Detection in Energy Production of Grid-Tied Photovoltaic
System. In Proceedings of the 2020 12th International Conference on Information Technology and Electrical Engineering (ICITEE),
Yogyakarta, Indonesia, 6–8 October 2020; pp. 286–291.

22. Kapucu, C.; Cubukcu, M. A supervised ensemble learning method for fault diagnosis in photovoltaic strings. Energy 2021, 227,
120463. (In English) [CrossRef]

23. Adhya, D.; Chatterjee, S.; Chakraborty, A.K. Performance assessment of selective machine learning techniques for improved PV
array fault diagnosis. Sustain. Energy Grids Netw. 2022, 29, 100582. [CrossRef]

24. Dhibi, K.; Mansouri, M.; Bouzrara, K.; Nounou, H.; Nounou, M. An Enhanced Ensemble Learning-Based Fault Detection and
Diagnosis for Grid-Connected PV Systems. IEEE Access 2021, 9, 155622–155633. (In English) [CrossRef]

25. Dhibi, K.; Fezai, R.; Mansouri, M.; Trabelsi, M.; Kouadri, A.; Bouzara, K.; Nounou, H.; Nounou, M. Reduced Kernel Random
Forest Technique for Fault Detection and Classification in Grid-Tied PV Systems. IEEE J. Photovolt. 2020, 10, 1864–1871. (In English)
[CrossRef]

26. Chen, Z.C.; Han, F.; Wu, L.; Yu, J.; Cheng, S.; Lin, P.; Chen, H. Random forest based intelligent fault diagnosis for PV arrays using
array voltage and string currents. Energy Convers. Manag. 2018, 178, 250–264. (In English) [CrossRef]

27. Dhibi, K.; Fezai, R.; Mansouri, M.; Trabelsi, M.; Bouzrara, K.; Nounou, H.; Nounou, M. A Hybrid Fault Detection and Diagnosis
of Grid-Tied PV Systems: Enhanced Random Forest Classifier Using Data Reduction and Interval-Valued Representation. IEEE
Access 2021, 9, 64267–64277. (In English) [CrossRef]

http://doi.org/10.1016/j.renene.2016.01.036
http://doi.org/10.1016/j.rser.2017.09.101
http://doi.org/10.1016/j.rser.2018.03.062
http://doi.org/10.1016/j.rser.2018.03.082
http://doi.org/10.1016/j.renene.2018.09.101
http://doi.org/10.1155/2019/6953530
http://doi.org/10.1016/j.rser.2020.110512
http://doi.org/10.1016/j.rser.2021.110889
http://doi.org/10.3390/app11167550
http://doi.org/10.1016/j.solener.2017.08.069
http://doi.org/10.1016/j.enconman.2017.09.019
http://doi.org/10.1109/TIE.2017.2703681
http://doi.org/10.23919/CJEE.2020.000024
http://doi.org/10.1109/ACCESS.2020.2977116
http://doi.org/10.1016/j.solener.2020.09.071
http://doi.org/10.1016/j.energy.2021.120463
http://doi.org/10.1016/j.segan.2021.100582
http://doi.org/10.1109/ACCESS.2021.3128749
http://doi.org/10.1109/JPHOTOV.2020.3011068
http://doi.org/10.1016/j.enconman.2018.10.040
http://doi.org/10.1109/ACCESS.2021.3074784


Mathematics 2022, 10, 285 18 of 18

28. Pahwa, K.; Sharma, M.; Saggu, M.S.; Mandpura, A.K. Performance Evaluation of Machine Learning Techniques for Fault
Detection and Classification in PV Array Systems. In Proceedings of the 2020 7th International Conference on Signal Processing
and Integrated Networks (SPIN), Noida, India, 27–28 February 2020; pp. 791–796.

29. Basnet, B.; Chun, H.; Bang, J. An Intelligent Fault Detection Model for Fault Detection in Photovoltaic Systems. J. Sens. 2020, 2020,
6960328. (In English) [CrossRef]

30. Chen, C.-R.; Ouedraogo, F.B.; Chang, Y.-M.; Larasati, D.A.; Tan, S.-W. Hour-Ahead Photovoltaic Output Forecasting Using
Wavelet-ANFIS. Mathematics 2021, 9, 2438. [CrossRef]

31. Pillai, D.S.; Blaabjerg, F.; Rajasekar, N. A Comparative Evaluation of Advanced Fault Detection Approaches for PV Systems. IEEE
J. Photovolt. 2019, 9, 513–527. (In English) [CrossRef]

32. Sabbaghpur Arani, M.; Hejazi, M.A. The comprehensive study of electrical faults in PV arrays. J. Electr. Comput. Eng. 2016, 2016,
8712960. [CrossRef]

33. Voutsinas, S.; Karolidis, D.; Voyiatzis, I.; Samarakou, M. Photovoltaic Faults: A comparative overview of detection and iden-
tification methods. In Proceedings of the 2021 10th International Conference on Modern Circuits and Systems Technologies
(MOCAST), Thessaloniki, Greece, 5–7 July 2021; pp. 1–5.

34. Chandrasekharan, S.; Subramaniam, S.K.; Natarajan, B. Current indicator based fault detection algorithm for identification of
faulty string in solar PV system. IET Renew. Power Gen. 2021, 15, 1596–1611. [CrossRef]

35. Zaki, S.A.; Zhu, H.; Yao, J.; Sayed, A.R.; Abdelbaky, M.A. Detection and localization the open and short circuit faults in PV system:
A MILP approach. In Proceedings of the 2020 Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China,
29–31 May 2020; pp. 187–193. (In English)

36. Stanton, J.M. Galton, Pearson, and the peas: A brief history of linear regression for statistics instructors. J. Stat. Educ. 2001, 9,
1069–1898. [CrossRef]

37. Benkercha, R.; Moulahoum, S. Fault detection and diagnosis based on C4.5 decision tree algorithm for grid connected PV system.
Sol. Energy 2018, 173, 610–634. (In English) [CrossRef]

38. Zhang, C.; Ma, Y. Ensemble Machine Learning: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2012.
39. Bowles, M. Machine Learning with Spark and Python: Essential Techniques for Predictive Analytics; John Wiley & Sons: Hoboken, NJ,

USA, 2019.
40. Chun, H.; Basnet, B.; Bang, J. Dataset: Fault Detection in Photovoltaic Systems 2020. Available online: https://github.com/

benjamin2044/PV_fault_Python/blob/master/Solar_categorical.csv (accessed on 1 December 2021).

http://doi.org/10.1155/2020/6960328
http://doi.org/10.3390/math9192438
http://doi.org/10.1109/JPHOTOV.2019.2892189
http://doi.org/10.1155/2016/8712960
http://doi.org/10.1049/rpg2.12135
http://doi.org/10.1080/10691898.2001.11910537
http://doi.org/10.1016/j.solener.2018.07.089
https://github.com/benjamin2044/PV_fault_Python/blob/master/Solar_categorical.csv
https://github.com/benjamin2044/PV_fault_Python/blob/master/Solar_categorical.csv

	Introduction 
	Background 
	Aim and Contributions 
	Paper Organization 

	PV Fault Events 
	Proposed Method 
	Exploratory Data Analysis (EDA) 
	Feature Selection 
	Pre-Processing Data 
	Cross Validation 
	Conventional Algorithm 
	Linear Regression 
	Decision Tree 
	Support Vector Machine 

	Proposed EL-VLR-DT-SVM Algorithm 
	Performance Indicators 
	Accuracy 
	Precision 
	Recall 
	F1 Score 
	Confusion Matrix 
	Computational Time 


	Results and Discussion 
	Dataset 
	Dataset Exploration 
	Data Preparation 
	Feature Selection and Data Pre-Processing 
	Performance Assessment 
	Comparison with Existing Studies 

	Conclusions 
	References

