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Abstract: Time-delay is an inevitable factor in practice, which may affect the performance of optimal
control. In this paper, the event-triggered impulsive optimal control for linear continuous-time
dynamic systems is studied. The event-triggered impulsive optimal feedback controller with input
time-delay is presented, where the impulsive instants are determined by some designed event-
triggering function and condition depending on the state of the system. Some sufficient conditions
are given for guaranteeing the exponential stability with the optimal controller. Moreover, the Zeno-
behavior for the impulsive instants is excluded. Finally, an example with numerical simulation is
given to verify the validity of the theoretical results.
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1. Introduction

Optimal control is an important branch of modern control theory. The system can
realize the optimization of the performance index during the process from the initial state
to the terminal state under the optimal control. By using the optimal control theory, the
purpose of energy and time minimization can be achieved, which plays an important role in
realizing the efficient utilization of resources, reducing energy consumption and improving
economic benefits. Optimal control theory has important applications in robotics [1],
vehicles [2], aerospace [3,4], medical and chemical industry [5], and so on.

Time-delay is ubiquitous in many practical systems. It comes from different sources,
such as measurement delays, transportation delays and communication lags. Under the
influence of time-delay, system performance will be deteriorated, and even the system will
become unstable [6,7]. Thus, it is necessary to study the optimal control of systems with
time-delay. In [8], an optimal feedback control based on integral reinforcement learning was
proposed for linear continuous systems with input time-delay. In [9,10], optimal regulators
for linear systems with single and multiple input time-delay was investigated, respectively.
In [11], the time-delay stochastic optimal control problem with nonconvex control domain
and diffusion term containing both control and its delayed term was investigated. In [12],
the optimal control for mean-field continuous-time systems subject to input time-delay
was studied. The optimal control for linear system with input time-delay was studied, this
delay system was transformed into a delay-free linear system, and a new optimal feedback
controller was designed in [13].

In addition, impulsive effect widely exists in dynamic systems. One of the advantages
of the impulse effect is that it can stabilize an unstable system by using a few small pulses,
which widely applied in practice, such as ecosystem management [14], treatment and
transmission of epidemic diseases [15,16], orbit transfer of communications satellites [17],
etc. Meanwhile, impulsive optimal control problems have been extensively concerned.
However, it should be pointed out that the impulsive instants in [18–20] were fixed and
predetermined or just the upper and lower bounds of impulsive intervals were given. This
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sampling method, independent of the state of the system, may lead to high frequency of
controller update, and result in the waste of computing resources. To address these issue,
Event-triggered Control (ETC) method was proposed in [21,22]. Then, combining ETC
and impulsive control, more and more researchers have developed the event-triggered
impulsive control (ETIC), where the event-triggering functions and conditions are pre-set,
and impulsive instants are determined by some specific events [23,24]. ETIC is expected to
reduce communication load and controller updates frequency, which motivates its wide
applications. In [25], the exponential stability of nonlinear systems with input time-delay by
means of ETIC was studied. In [26], ETIC approach was proposed to achieve synchroniza-
tion of leader-following coupled dynamical systems. In [27], the synchronization problem
of neural network was studied by using ETIC, the static and dynamic event-triggering
conditions were proposed, respectively. Under the ETIC strategy, stabilization of impulsive
systems with stochastic time-delay was discussed in [28]. Although these results with ETIC
have been investigated, the problem of ETIC of systems with input time-delay, even for
linear case, is seldom considered. Hence, establishing optimal control results for linear
systems via ETIC, especially for systems with input time-delay, is still a challenge.

Based on the above discussions, the event-triggered impulsive optimal control for lin-
ear continuous-time dynamic system is investigated in this paper. In Section 2, considering
the influence of input time-delay, an optimal state feedback controller with time delay is
designed, where the impulsive instants are determined by some designed event-triggering
functions and conditions, which depend on the state of the system. In Section 3, based on
stability theory, some sufficient conditions are given for guaranteeing the exponential sta-
bility with the optimal controller. Moreover, the Zeno-behavior for the impulsive instants is
excluded. In Section 4, the validity of the theoretical results is verified by using an example
with numerical simulation. Conclusion and future study are made in Section 5.

Notations: Rm×n denotes the set of matrix with m rows and n columns, and all the
elements are real numbers. For x ∈ Rn, A ∈ Rn×n, ‖x‖ and ‖A‖ are the Euclidean norm
and the corresponding induced matrix norm, respectively.

2. Preliminaries

Consider the following linear continuous-time dynamic system

ẋ = Ax(t) + Bu(t− τ), (1)

where A ∈ Rn×n, B ∈ Rn×m, and x(t) ∈ Rn assumed completely measurable is the system
state, u(t− τ) ∈ Rm×1 is the control variable, τ is the input time-delay. We assume that
(A,B) is stabilizable and the control occurs when t ≥ τ.

Based on the advantage of impulsive control, the following impulsive control will
be used {

u(t− τ) = Kx(tk − τ), f or t ∈ [tk, tk+1),
x(t) = Ckx(t−), f or t = tk, k = 1, 2, · · · ,

(2)

where x(t−) denotes the left limitation of x(t), K ∈ Rm×n is the control gain matrix to be
designed later.

Impulsive control for linear continuous-time dynamic systems has attracted extensive
research [13,29,30]. However, the impulsive instants in [13,29,30] were given in advance,
which were independent of the system, and may cause unnecessary update of controller.

In this paper, event-triggered mechanism is used to determine the impulsive instants
dynamically. The event-triggering impulsive instants tk(k = 1, 2, · · · ) are defined iteratively
by [24]

tk+1 = inf{t ∈ R|t > tk, f (t) ≥ 0}, (3)

where
f (t) = ‖e(t)‖ − σ‖x(tk)‖ − βe−λ(t−t0) (4)
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is said to be the event-triggering function for some σ ∈ (0, 1), β > 0, λ > 0 and e(t) =
x(tk)− x(t). e(t) is reset to 0 at each impulsive instant. By (1) and (2), we can obtain{

ẋ(t) = Ax(t) + BK(x(t− τ) + e(t− τ)), f or t ∈ [tk, tk+1),
x(t) = Ckx(t−), f or t = tk, k = 1, 2, · · · .

(5)

The problem of this paper is to design K and Ck, such that the following integral
quadratic cost function J reaches a minimum value [31]

J =
1
2

∫ ∞

0

[
xT(t)Qx(t) + uT(t)Wu(t)

]
dt

+
1
2

∞

∑
k=1

xT(t−k )Qkx
(
t−k
)
, (6)

where Q = QT ≥ 0, Qk = QT
k ≥ 0 and W = WT > 0 are of appropriate dimensions.

Based on Lemma 2.1 in [13] and the necessary conditions for optimality in [31], with
mild revision, we have the following lemma.

Lemma 1. Consider the liner continuous-time dynamic system (1). Let K = −W−1BT P. Then,
the optimal control can be expressed in the following form

u∗(t− τ) = −W−1BT Px(tk − τ), (7)

where P ∈ Rn×n is the symmetric positive definite solution of the Algebraic Riccati Equation (ARE)
for any positive semidefinite matrix Q

PA + AT P− PB0W−1BT
0 P + Q = 0, (8)

where B0 = e−Aτ B.

Remark 1. Qk in the cost function (6) can be determined by the following formula

(eAτ)T PeAτ = Qk + CT
k (e

Aτ)T PeAτCk,

with some given Ck.

Definition 1 ([25]). Given a locally Lipschitz function V : Rn → R+, the upper right-hand Dini
derivative of V along system (1) is defined by

D+V[ f ] = lim
h→0+

sup
1
h

V(x + h f )−V(x).

Definition 2 ([32]). System (1) is said to achieve event-triggered impulsive optimal control with
exponential convergence rate, if there are positive constants M > 0 and α > 0 such that the solution
of the system (5) satisfies

‖x(t)‖ = M‖x(t0)‖ exp(−α(t− t0)), t ≥ t0.

Definition 3 ([32]). There is no Zeno-behavior for the impulsive instants if in f
k
{tk+1 − tk} > 0.

3. Main Results

Inspired by the demonstrations in [13,31,33,34], we get the following two theorems.
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3.1. Stability Analysis

In this section, exponential stability of system (1) with the proposed optimal controller

is discussed. Denote G = AT + A + 2BKKT BT , a1 = 1 + σ2

(1−σ)2 , a2 = 2σβ

(1−σ)2 , a3 = β2

(1−σ)2 ,

sup
k
{tk+1 − tk} ≤ ρ < ∞.

Theorem 1. Consider the liner continuous-time dynamic system (1) with K = −W−1BT P and
the impulsive instants (3). If there are impulsive gain matrices Ck satisfying ‖Ck‖ < γ < 1 and
a1e2λτ + γ(2λ + λmax(G) + ln γ

ρ ) < 0. Then, the event-triggered impulsive optimal control can
be achieved with exponential convergence rate for any τ ≥ 0, σ ∈ (0, 1).

Proof. Let V(t) = xT(t)x(t) be the Lyapunov candidate function. For t ∈ [tk, tk+1), com-
puting the time derivative of V(t) along the trajectory of (5) yields

V̇(t) =ẋT(t)x(t) + xT(t)ẋ(t)

=(Ax(t) + BKx(tk − τ))Tx(t)

+ xT(t)(Ax(t) + BKx(tk − τ))

=xT(t)(AT + A)x(t) + xT(tk − τ)KT BTx(t)

+ xT(t)BKx(tk − τ)

=xT(t)(AT + A)x(t) + xT(t− τ)KT BTx(t)

+ eT(t− τ)KT BTx(t) + xT(t)BKx(t− τ)

+ xT(t)BKe(t− τ)

=xT(t)(AT + A)x(t) + 2xT(t)BKx(t− τ)

+ 2xT(t)BKe(t− τ)

≤xT(t)(AT + A)x(t)

+ 2xT(t)BKKT BTx(t)

+ xT(t− τ)x(t− τ) + eT(t− τ)e(t− τ)

≤xT(t)(AT + A + 2BKKT BT)x(t)

+ xT(t− τ)x(t− τ) + eT(t− τ)e(t− τ).

By event-triggering condition in (3), it holds

‖e(t)‖ ≤ σ‖x(t)‖+ βe−λ(t−t0)

1− σ
.

Then,

V̇(t) ≤λmax(G)‖x(t)‖2 + ‖x(t− τ)‖2 + ‖e(t− τ)‖2

≤λmax(G)‖x(t)‖2 + ‖x(t− τ)‖2 + (
σ‖x(t− τ)‖+ βe−λ(t−τ−t0)

1− σ
)2

≤λmax(G)‖x(t)‖2 + ‖x(t− τ)‖2

+
σ2

(1− σ)2 ‖x(t− τ)‖2 +
2σβe−λ(t−τ−t0)

(1− σ)2 ‖x(t− τ)‖+ β2e−2λ(t−τ−t0)

(1− σ)2

≤λmax(G)V(t) + (1 +
σ2

(1− σ)2 )‖x(t− τ)‖2

+
2σβe−λ(t−τ−t0)

(1− σ)2 ‖x(t− τ)‖+ β2e−2λ(t−τ−t0)

(1− σ)2 .
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By the variation of parameter formula, one can derive that

V(t) ≤eλmax(G)(t−tk)V(tk)

+
∫ t

tk

eλmax(G)(t−s)((1 +
σ2

(1− σ)2 )‖x(s− τ)‖2+

2σβe−λ(s−τ−t0)

(1− σ)2 ‖x(s− τ)‖+ β2e−2λ(s−τ−t0)

(1− σ)2 )ds.

It follows that

‖x(t)‖2 ≤eλmax(G)(t−tk)‖x(tk)‖2

+
∫ t

tk

eλmax(G)(t−s)((1 +
σ2

(1− σ)2 )‖x(s− τ)‖2+

2σβe−λ(s−τ−t0)

(1− σ)2 ‖x(s− τ)‖+ β2e−2λ(s−τ−t0)

(1− σ)2 )ds. (9)

At impulsive instants tk, k = 1, 2, · · · , there exist appropriate matrices ‖Ck‖ ≤ γ < 1,
k = 1, 2, · · · . It follows from the discrete part of (2),(5) that

‖x(tk)‖2 ≤ ‖Ck‖2 ·
∥∥x
(
t−k
)∥∥2

≤ ‖Ck‖
∥∥x
(
t−k
)∥∥2

≤ γ
∥∥x
(
t−k
)∥∥2, k = 1, 2, · · · . (10)

Then, for t ∈ [t1, t2), we have

‖x(t)‖2 ≤eλmax(G)(t−t1)‖x(t1)‖2

+
∫ t

t1

eλmax(G)(t−s)((1 +
σ2

(1− σ)2 )‖x(s− τ)‖2+

2σβe−λ(s−τ−t0)

(1− σ)2 ‖x(s− τ)‖+ β2e−2λ(s−τ−t0)

(1− σ)2 )ds, (11)

and

‖x(t1)‖2 ≤γ
∥∥x
(
t−1
)∥∥2

=γ{eλmax(G)(t1−t0)‖x(t0)‖2

+
∫ t1

t0

eλmax(G)(t1−s)((1 +
σ2

(1− σ)2 )‖x(s− τ)‖2+

2σβe−λ(s−τ−t0)

(1− σ)2 ‖x(s− τ)‖+ β2e−2λ(s−τ−t0)

(1− σ)2 )ds}.
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Thus, for t ∈ [t1, t2), we obtain that

‖x(t)‖2 ≤γeλmax(G)(t−t0)‖x(t0)‖2

+ γ
∫ t1

t0

eλmax(G)(t−s)((1 +
σ2

(1− σ)2 )‖x(s− τ)‖2

2σβe−λ(s−τ−t0)

(1− σ)2 ‖x(s− τ)‖+ β2e−2λ(s−τ−t0)

(1− σ)2 )ds

+
∫ t

t1

eλmax(G)(t−s)((1 +
σ2

(1− σ)2 )‖x(s− τ)‖2+

2σβe−λ(s−τ−t0)

(1− σ)2 ‖x(s− τ)‖+ β2e−2λ(s−τ−t0)

(1− σ)2 )ds.

In generally, by mathematical induction, for t ∈ [tk, tk+1), the following inequality
holds

‖x(t)‖2 ≤ ∏
t0<tk<t

γeλmax(G)(t−t0)‖x(t0)‖2

+
∫ t

t0
∏

s<tk<t
γeλmax(G)(t−s)((1 +

σ2

(1− σ)2 )‖x(s− τ)‖2+

2σβe−λ(s−τ−t0)

(1− σ)2 ‖x(s− τ)‖+ β2e−2λ(s−τ−t0)

(1− σ)2 )ds, (12)

where ∏
s<tk<t

γ = γl , l is the total number of impulsive instant tk satisfying tk ∈ (s, t).

In term of (12), we have

‖x(t)‖2 ≤γ
t−t0

ρ −1eλmax(G)(t−t0)‖x(t0)‖2

+
∫ t

t0

γ
t−s

ρ −1eλmax(G)(t−s)((1 +
σ2

(1− σ)2 )‖x(s− τ)‖2+

2σβe−λ(s−τ−t0)

(1− σ)2 ‖x(s− τ)‖+ β2e−2λ(s−τ−t0)

(1− σ)2 )ds

≤ 1
γ

e(λmax(G)+ ln γ
ρ )(t−t0)‖x(t0)‖2

+
∫ t

t0

1
γ

e(λmax(G)+ ln γ
ρ )(t−s)

((1 +
σ2

(1− σ)2 )‖x(s− τ)‖2+

2σβe−λ(s−τ−t0)

(1− σ)2 ‖x(s− τ)‖+ β2e−2λ(s−τ−t0)

(1− σ)2 )ds. (13)

In the following, for any η > 1, it will be proved that

‖x(t)‖ < ηZe−λ(t−t0) = ‖v(t)‖, t ≥ t0, (14)

where Z = max{ 1√
γ‖x(t0)‖,

−a2e2λτ−
√

a2
2e4λτ−4(a1e2λτ+γ(2λ+λmax(G)+ ln γ

ρ ))a3e2λτ

2(a1e2λτ+γ(2λ+λmax(G)+ ln γ
ρ ))

}.

Otherwise, there must exist a t∗>t0 such that

‖x(t∗)‖2 = ‖v(t∗)‖2and‖x(t)‖ < ‖v(t)‖, f or t ∈ [t0, t∗).
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By (13), we can get that

‖v(t∗)‖2 =‖x(t∗)‖2

≤ 1
γ

e(λmax(G)+ ln γ
ρ )(t∗−t0)‖x(t0)‖2

+
∫ t∗

t0

1
γ

e(λmax(G)+ ln γ
ρ )(t∗−s)

[a1‖x(s− τ)‖2

+ a2e−λ(s−τ−t0)‖x(s− τ)‖+ a3e−2λ(s−τ−t0)]ds

<
η2

γ
e(λmax(G)+ ln γ

ρ )(t∗−t0)‖x(t0)‖2

+
∫ t∗

t0

1
γ

e(λmax(G)+ ln γ
ρ )(t∗−s)

[a1η2Z2e−2λ(s−τ−t0)

+ a2η2Ze−2λ(s−τ−t0) + a3η2e−2λ(s−τ−t0)]ds

=
η2

γ
e(λmax(G)+ ln γ

ρ )(t∗−t0)‖x(t0)‖2

+
∫ t∗

t0

a1η2Z2 + a2η2Z + a3η2

γ
e2λτe(λmax(G)+ ln γ

ρ )(t∗−s)e−2λ(s−t0)ds

=
η2

γ
e(λmax(G)+ ln γ

ρ )(t∗−t0)‖x(t0)‖2

− (a1η2Z2 + a2η2Z + a3η2)e2λτ

γ(2λ + λmax(G) + ln γ
ρ )

[e−2λ(t∗−t0) − e(λmax(G)+ ln γ
ρ )(t∗−t0)]

=
η2

γ
{e(λmax(G)+ ln γ

ρ )(t∗−t0)‖x(t0)‖2

− a1Z2 + a2Z + a3

2λ + λmax(G) + ln γ
ρ

e2λτ [e−2λ(t∗−t0) − e(λmax(G)+ ln γ
ρ )(t∗−t0)]}. (15)

Case I: Z = 1√
γ‖x(t0)‖, which implies that

1
γ
‖x(t0)‖2 +

a1Z2 + a2Z + a3

γ(2λ + λmax(G) + ln γ
ρ )

e2λτ ≥ 0,

then, by (15), we obtain that

‖v(t∗)‖2 <
η2

γ
e−2λ(t∗−t0)‖x(t0)‖2 = η2Z2e−2λ(t∗−t0) = ‖v(t∗)‖2. (16)

Case II: Z =
−a2e2λτ−

√
a2

2e4λτ−4(a1e2λτ+γ(2λ+λmax(G)+ ln γ
ρ ))a3e2λτ

2(a1e2λτ+γ(2λ+λmax(G)+ ln γ
ρ ))

, which implies that

1
γ
‖x(t0)‖2 +

a1Z2 + a2Z + a3

γ(2λ + λmax(G) + ln γ
ρ )

e2λτ < 0,

then, by (15), we obtain that

‖v(t∗)‖2 < −η2 a1Z2 + a2Z + a3

γ(2λ + λmax(G) + ln γ
ρ )

e2λτe−2λ(t∗−t0)

= η2Z2e−2λ(t∗−t0) = ‖v(t∗)‖2. (17)

The contradiction in (16) or (17) reveals that (14) is valid for any η > 1. Let η → 1, one has

‖x(t)‖ ≤ Ze−λ(t−t0), t ≥ t0, (18)

which implies event-triggered impulsive optimal control is achieved with exponential convergence
rate.
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3.2. Exclusion of the Zeno-Behavior

Theorem 2. Zeno-behavior for impulsive instants determined by (3) is excluded with the same
conditions as Theorem 1.

Proof. Computing the right-upper Dini derivative of ‖e(t)‖ along the solution of (5) over
interval [tk, tk+1), we have

D+‖e(t)‖ ≤‖ė(t)‖ = ‖ẋ(t)‖
=‖Ax(t) + BK(x(t− τ) + e(t− τ))‖
≤‖A‖‖x(t)‖+ ‖BK‖‖x(t− τ)‖+ ‖BK‖‖e(t− τ)‖
≤‖A‖‖x(t)‖+ ‖BK‖‖x(t− τ)‖

+ σ‖BK‖‖x(tk − τ)‖+ ‖BK‖βe−λ(t−τ−t0)

≤‖A‖Ze−λ(t−t0) + ‖BK‖Ze−λ(t−τ−t0)

+ σZ‖BK‖e−λ(tk−τ−t0) + ‖BK‖βe−λ(t−τ−t0). (19)

Since e(tk) = 0, it follows from (19) that

‖e(t)‖ ≤
∫ t

tk

[‖A‖Ze−λ(s−t0) + ‖BK‖Ze−λ(s−τ−t0)

+ σZ‖BK‖e−λ(tk−τ−t0) + ‖BK‖βe−λ(s−τ−t0)]ds

≤‖A‖Z
λ

[e−λ(tk−t0) − e−λ(t−t0)]

+
‖BK‖Z

λ
[e−λ(tk−τ−t0) − e−λ(t−τ−t0)]

+
‖BK‖β

λ
[e−λ(tk−τ−t0) − e−λ(t−τ−t0)]

+ σZ‖BK‖e−λ(tk−τ−t0)(t− tk). (20)

The next event will not be triggered until triggering function crosses zero, i.e.,

σ‖x(tk+1)‖+ βe−λ(tk+1−t0) ≤‖e(tk+1)‖

≤‖A‖Z
λ

[e−λ(tk−t0) − e−λ(tk+1−t0)]

+
‖BK‖Z

λ
[e−λ(tk−τ−t0) − e−λ(tk+1−τ−t0)]

+
‖BK‖β

λ
[e−λ(tk−τ−t0) − e−λ(tk+1−τ−t0)]

+ σZ‖BK‖e−λ(tk−τ−t0)(tk+1 − tk).

Denote Tk = tk+1 − tk,

βe−λTk ≤‖A‖Z
λ

[
1− e−λTk

]
+
‖BK‖Z

λ
eλτ [1− e−λTk ]

+
‖BK‖β

λ
eλτ [1− e−λTk ] + σZ‖BK‖eλτTk. (21)

By (21), one can easily derive that

{Tk > 0 :
‖A‖Z

λ
[1− e−λTk ] +

‖BK‖Z
λ

eλτ [1− e−λTk ]

+
‖BK‖β

λ
eλτ [1− e−λTk ] + σZ‖BK‖eλτTk − βe−λTk ≥ 0}

is nonempty and T = inf
k
{Tk} > 0, which implies that the Zeno-behavior is excluded.
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4. Numerical Simulations

In this section, an example is presented to illustrate the theoretical results obtained in
Section 3. Consider linear continuous-time dynamic system (1) with

A =

 −0.46 −0.26 0.04
−0.21 0.11 0.16
−0.04 −0.64 −0.14

, B =

1
0
0

.

In order to obtain the optimal control gain matrix K, parameter matrices Q and W are

chosen as Q =

 1 0 0
0 1 0
0 0 1

, W=10.

Then, P can be obtained by (8) and then

K = −W−1BT P =
(
−0.2014 0.8468 0.0858

)
. (22)

The impulsive gain matrices Ck are designed as Ck =

 0.002 0 −0.048
−0.08 −0.01 −0.01
−0.01 −0.01 0.022

,

k = 1, 2, · · · , ‖Ck‖ = 0.0818.

Then, we have Qk =

 7.23 7.29 7.28
7.29 7.32 7.32
7.28 7.32 7.32

.

Let ‖Ck‖ < γ < 1, ρ = 0.11.
Therefore, for any bounded τ ≥ 0, σ ∈ (0, 1), β > 0, λ > 0, the event-triggered

impulsive optimal control is achieved with exponential convergence rate by Theorem 1.
In term of Algorithm 1, let the initial condition be x0(t) =

[
−0.9 0.5 0.8

]T, t ∈ [−τ, 0].
If τ = 0.1, γ = 0.253, σ = 0.22, λ = 0.05, β = 0.1. Then, a1e2λτ + γ(2λ + λmax(G) +
ln γ

ρ ) = −0.0085 < 0. If τ = 1, γ = 0.28, σ = 0.22, λ = 0.05, β = 0.1. Then,

a1e2λτ + γ(2λ + λmax(G) + ln γ
ρ ) = −0.0076 < 0. The simulation results are shown in

Figures 1–8, where the impulsive instants are described by ∗.

Algorithm 1: Event-Triggered Impulsive Optimal Control Strategy
Input: 1.Initialize all parameters, such as optimal control parameters,

event-triggered parameters, input time-delay parameters and so on.
2.Input last triggering times tk, optimal controller update in tk − τ, state of

agents x(t).
Output: Optimal control

1 for t = t0 : tend do
2 Define system state x0(t) ;
3 Update system state x(t) based on Equation (1);
4 Compute control error with e(t) = x(tk)− x(t);
5 Compute the threshold by formal (4);
6 if ‖e(t)‖2 exceeds the threshold then
7 The event has occurred, and the event instant has been recorded as tk+1;
8 Update the state x(t) at impulsive instant tk+1 with x(t) = Ckx(t−k );
9 else

10 Update the state x(t) at instant t which belongs to interval [tk, tk+1) ;
11 end
12 end
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Figure 1. State of the system with τ = 0.1.

Figure 2. Controller with event–triggered impulse and τ = 0.1.
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Figure 3. Impulsive instants with τ = 0.1.

Figure 4. ‖e(t)‖ and σ‖x(tk)‖+ βe−λ(t−t0) with τ = 0.1 .
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Figure 5. State of the system with τ = 1.

Figure 6. Controller with event–triggered impulse and τ = 1 .
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Figure 7. Impulsive instants with τ = 1.

Figure 8. ‖e(t)‖ and σ‖x(tk)‖+ βe−λ(t−t0) with τ = 1.

Remark 2. From Algorithm 1, one can see that the impulsive control is an important factor which
influences the convergence of the systems. Figure 9 shows that the event-triggered optimal control
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cannot be achieved without impulsive control, which implied that the impulsive control plays key
role of the stability.

Figure 9. State of the system without impulse.

5. Conclusions

Based on optimal control theory and the stability theory of functional differential
equations with impulse, the event-triggered impulsive optimal control for linear continuous-
time dynamic systems with input time-delay is investigated in this paper. Considering the
influence of input time-delay and impulsive jump, the performance index and impulsive
control protocol were designed. Some sufficient conditions are given for guaranteeing the
exponential stability with the optimal controller. The event-triggered impulsive optimal
control problem for switching systems will be discussed in future.
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