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Abstract: In the world of optimization, especially concerning metaheuristics, solving complex prob-
lems represented by applying big data and constraint instances can be difficult. This is mainly due to
the difficulty of implementing efficient solutions that can solve complex optimization problems in ad-
equate time, which do exist in different industries. Big data has demonstrated its efficiency in solving
different concerns in information management. In this paper, an approach based on multiprocessing
is proposed wherein clusterization and parallelism are used together to improve the search process
of metaheuristics when solving large instances of complex optimization problems, incorporating
collaborative elements that enhance the quality of the solution. The proposal deals with machine
learning algorithms to improve the segmentation of the search space. Particularly, two different
clustering methods belonging to automatic learning techniques, are implemented on bio-inspired
algorithms to smartly initialize their solution population, and then organize the resolution from the
beginning of the search. The results show that this approach is competitive with other techniques
in solving a large set of cases of a well-known NP-hard problem without incorporating too much
additional complexity into the metaheuristic algorithms.

Keywords: distributed metaheuristics; parallel metaheuristic; big data clustering; optimization
problems

1. Introduction

In the optimization sphere, the solving of distinctly large and complex problems
also involves important information management issues [1]. For instance, most of these
problems are currently tackled using metaheuristic algorithms, which attempt to optimize
the values obtained by an objective function; this is done through an exploration of a large
number of potential solutions, carried out by a population of agents [2]. This exploration
is governed by a movement/disturbance operator, which decides the regions to be ana-
lyzed. Naturally, this process involves huge areas of information that often require large
computational efforts to be analyzed and may not deliver acceptable results [3]. Thus,
there is a problem to be solved in the exploration/exploitation duality to concentrate the
search on the areas known as the “neighborhoods of solutions”, where there is a higher
probability of finding better quality solutions [3]. The objective of this study is to present a
framework to improve the efficiency and effectiveness of the metaheuristic search process
by increasing the number of global optima found and reducing the time or computational
costs taken for the same. This is done by implementing the search process in several runs
of metaheuristic algorithms, in an autonomous and parallel way (nodes). However, this is
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to be coordinated and with the grouping of the solution space in groups of solutions with
similar characteristics by means of machine learning algorithms’ methods for clustering.
These algorithms are used at the beginning and during the search process to analyze the
available solutions according to various criteria and cluster them in terms of similarity.
The framework uses the best solutions found for each cluster from all nodes and distributes
them to replace the lowest quality solutions available at that time. In addition, parallel
execution and exploitation of these segregated spaces are performed by distributing the
searches through parallelism based on big data tools.

Thus, this research aims to demonstrate that the subdivision of the solution space
into homogeneous groups, combined with the cooperation between the nodes generated
according to the results found with the proposed framework, versus those by the standard
versions of metaheuristics, allows for the improvement of the exploration and exploitation
characteristics independent of the algorithms used in the process. Additionally, the use
of a distributed platform enables cooperation during runtime and decreases the waiting
time to obtain an optimal solution, compared to the time required by non-distributed
algorithms. In a distributed platform, the total computation time cannot be measured akin
to a standalone execution, so the total number of evaluations of the objective function has
also been used as an indicator (MFE).

We have implemented an instance of this framework using four different population
metaheuristic algorithms—the binary black hole (BBH) [4], the soccer league competition
(SLC) [5], the shuffled frog-leaping algorithm (SFLA) [6] and the spotted hyena optimizer
(SHO) [7] to combine the different search strategies that each one presents. These algorithms
were selected because they are population-based, and there are previous work on tuned
versions, which facilitated further comparisons. However, the architecture can be extended
to almost any iterative population metaheuristics.

The rest of this paper is organized as follows: Section 2 explains the related work
concerning the combination of metaheuristics and machine learning algorithms. Section 3
details the proposed framework, and Section 4 reviews the metaheuristics used and the
addressed optimization problem. The methodology is demonstrated in Section 5, the statis-
tical analysis used is presented in Section 6, and the experimental results are detailed in
Section 7. Finally, the conclusions are presented in Section 8.

2. Related Work

The relationship of metaheuristics to data science is broad and mainly framed as two
primary types of collaboration [8,9]. On the one hand, metaheuristics can be a powerful aux-
iliary tool for different machine learning algorithms that need to solve NP-hard problems,
or require fast optimization for large volumes of data with complex constraints, such as au-
tomatically finding the optimal value of K for the Kmeans clustering algorithm [10], finding
tuning parameters by searching for optimal values [11], or problems that require mini-
mization or maximization for classification algorithms to improve their efficiency [12–14].
These types of situations are common in tasks associated with image recognition, pattern
recognition or deep learning [15,16].

The second approach corresponds to the opposite strategy, i.e., the combination of
both techniques in a common and unique process to solve complex optimization or other
types of problems. Metaheuristics, being a non-deterministic algorithm, must face a series
of unpredictable situations in the search for solutions, and it is at this point where machine
learning algorithms support them. Oliveira et al. [17] proposed, for example, a framework
that enhances clustering by combining Kmeans with metaheuristics in a distributed en-
vironment and Zhang et al. proposed a hybrid solution for geotechnical problems [18].
On the other hand, machine learning and metaheuristics have been combined to solve
problems, such as disastrous natural hazards [19], classification of biomedical data [20] and
multiple other applications [21].

In optimization algorithms, and especially in metaheuristics, there is currently a
promising line of research called “hybridization,” which consists of combining metaheuris-
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tic algorithms with various other types of approaches, mainly in the area of machine learn-
ing. This is no longer an assistive approach, but involves the use of both techniques together
to solve problems that are too complex to be solved by each of them separately [22,23]. New
computational capabilities have brought new problems that require special approaches to
be solved, such as massive image processing, and it is in this context that hybrid algorithms
are presented as effective solutions [24].

This last approach has shown improved results for complex problems that require
high computational consumption and complex parameter tuning. This is because the
combination of techniques allows the automation of many of the tasks that previously had
to be performed manually [25]. Among the areas in which effective solutions have been
implemented are healthcare [26], transportation [27] and energy [28]. Usually, the imple-
mentation of parallel metaheuristics is done by means of complex programming techniques
and extensive use of available hardware [29]. This results in high implementation complex-
ity, platform dependency and extensive alteration of the algorithms used [30].

3. Preliminaries
3.1. Framework Description

A relevant aspect in optimization using metaheuristics is the initial generation of
solutions for the search space, which is generally a random process that validates that
only feasible solutions are generated. In traditional implementations of metaheuristics,
this aspect is usually adjusted by tuning the specific method that creates the initial set of
solutions. However, in distributed environments, additional aspects must be taken into
consideration. On the other hand, during the search process of a population metaheuristic,
the set of initial solutions change iteratively, as the algorithm converges towards neighbor-
hoods and solutions of better quality, which is always a stochastic process and regulated by
the operators that each algorithm has [31].

In the present work, the above mentioned strategy is implemented to incorporate some
new elements. First, the search is not performed by a single instance of a metaheuristic
algorithm, but rather a series of distributed executions are generated, each separately but in
communication with a central controller component. Each node corresponds to a particular
algorithm execution, so it is necessary to segment the search space in order to distribute it
among the different nodes and stimulate exploration. Two aspects to be performed at the
beginning of the process are the determination of the search space in terms of partitioning
criteria, and the number of nodes that will be needed later on. After multiple exploratory
experiments, two criteria were defined to differentiate groups of solutions: the quality of
fitness and the distance from a randomly generated vector at the beginning of the process.
These two elements together allow a good differentiation among solution groups from a
primeval set.

As mentioned above, a strategy has been established to enable collaboration levels
between nodes and thus allow better results to be shared among different executions
and nodes. The different nodes are triggered and coordinated by a central coordinator
(CC), which iteratively receives the best found fitness for each performance—basically,
a parameter set interval of iterations, in such a way that each node reports its best fitness
to the CC and finds the best ones from all. Once determined, the CC distributes the
selected best solutions toward all nodes, thus improving the quality of all searching spaces.
The mechanism for the interaction between nodes is based on the periodic supervision of the
results of each instance by the CC, which, in the event of a significant improvement in any of
them, distributes part of the set of solutions with better fitness to the others. To achieve this,
the algorithm’s executions are interrupted periodically after a certain number of iterations,
according to a global parameter, to inform the CC of their results and the reception of a
subset of better quality solutions found by another node, which contributes to enriching its
own. The value of this parameter was experimentally established in 100 iterations, which
has been repeated throughout the search process for all nodes. Once one of the nodes finds
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the global optimum or the exit criterion, the CC reviews the solutions found and delivers
the found optimum, along with some other values. The Figure 1 shows this relationship:

Primeval set generation

K and clustering algorithm selection

Node /
algorithm 2

Node /
algorithm 1

Node /
algorithm n

Central coordinator

Optimal solution

Figure 1. Collaboration strategy.

Upon analysis of the figure from top to bottom, the generation of an extended set of
feasible solutions called a “primeval set” is observed. The process continues by determining
the clustering algorithm to use and the appropriate number of clusters to generate (K),
as can see in the second stage. In general, different clustering algorithms can deliver
different results for the same data [32]. Therefore, to ensure an adequate distribution of
solutions, two data science algorithms were used, which were then compared: Kmeans [33]
and agglomerative clustering [34]. This stage was only executed once centrally, requiring
a minimum portion of time, with respect to the total time taken by the entire process.
At runtime, it was determined which of the two methods is better balanced and distributed
for different quantities of groups or clusters that are then generated in the third step. These
clusters were then used as input to a MapReduce approach, making it responsible for
parallelizing the search through different nodes. It was determined that at least the same
number of nodes will be generated as clusters; thus, the number of nodes will always be
greater than K. Each node executes a metaheuristic with its assigned group of solutions,
while a central layer coordinates its operation. The solid red line represents the interactions
of nodes with the CC every 100 iterations to report the results, and the dotted blue line
represents the distribution of values selected by the CC. The use of parallel populations
makes it possible to multiply the processing capacity, achieving optimal results in less time
compared to a standalone architecture. Additionally, the distributed execution offers the
possibility of dividing the search into different neighborhoods of solutions, increasing the
exploration/exploitation capacity within the search process.

Best solutions are exchanged between nodes permanently over a set number of it-
erations. In the event that one of the nodes finds the global optimum, it will inform the
CC at the end of the current set of iterations and the cluster runs will stop. On the other
hand, those solutions closer to the global optimum will prevail as the iterations progress,
since they will be distributed among the nodes and replace those with worse fitness. Then,
the very mechanics of permanent exchange of better quality solutions causes that always
the best fitness solutions found are present in all the nodes. Considering that the best
solutions found replace the worst ones of the other nodes, the solutions of neighborhoods
that so far are of regular or acceptable quality will be preserved, in order to stimulate the
exploration in other neighborhoods while minimizing the stagnation in local solutions.

For each algorithm used, their respective parameters were determined experimentally
by means of their standalone execution. The same values were then used in the distributed
executions, in order to make possible the comparison of results between both modalities.
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We have illustrated notable improvements over a large instance set of the well-known
NP-hard set covering problem, where the proposed approach is able to compete with
other modern metaheuristics, while clearly outperforming the non-parallel version of some
algorithms. Moreover, the framework presented is flexible enough to allow the addition of
new algorithms, or replacing those used in this work. This is relevant, as the results show
heterogeneous performance among the different algorithms.

3.2. Clustering

To separate the solutions into different groups, according to the described characteris-
tics, the Kmeans [33] and agglomerative clustering [34] algorithms were used. The used
clustering algorithms used are learning techniques based on model-free strategies, which
do not require a training phase and can therefore be applied without the need for a prior
representative sample of solutions for each algorithm. Both algorithms are commonly used
unsupervised machine learning techniques know for being flexible, quick and reliable [35].

To use them, it is crucial to previously determine a value that corresponds to the
number of clusters into which data will be divided. This number is represented by “K”.
Both algorithms are executed, and their results are compared using the silhouette coefficient
method [36] to determine the appropriate K value, and the algorithm that delivers the
better results. Once the value of K is determined, the selected algorithm is applied to the
entire initial set of solutions, assigning a cluster number to each of them.

Subsequently, the solutions are separated and grouped according to the assigned
cluster, extracting the solutions needed to cover each one according to the initial parameter
of each algorithm, similar to selecting the solutions of best fitness for each cluster. At this
point, the distributed execution can start. The K nodes are generated and assigned one of
the predefined algorithms: BBH, SLC, SFLA and SHO. If K is greater than the number of
available algorithms (four in this research), the algorithms are repeated in a fixed sequence
until the defined K is completed. The number of algorithms used is arbitrary and responds
to tactical reasons, and there is no reason for there to be more of them.

4. Implemented Metaheuristics and Optimization Problem

For experimental purposes, we decided to tackle a well-known optimization problem
to compare our results with previous results and have an abundant bibliography. For this
reason, a classical NP-hard problem, the set covering problem (SCP), was selected. How-
ever, the proposed framework can be easily adapted to solve some other more complex
modeling problems.

Regarding the algorithms used, four factors were considered: First, population algo-
rithms were selected because they are more directly adaptable to the proposed architecture,
although other types of algorithms can also be easily incorporated. Second, relatively
modern algorithms with reported results were preferred in order to have a first-hand
approximation of their effectiveness, and the recommended parameter values for each of
them. Third, they were algorithms with differences in their convergence rates to determine
if the variable is a relevant factor in the values obtained. Finally, considering that what we
want to evaluate is the difference in behavior as a whole, and not the intrinsic nature and
quality of each of them, we chose some that had already been used by researchers in the
past, in order to facilitate their adaptation.

4.1. Set Covering Problem

Considering (aij) an binary array A defined by m rows and n columns, and a C vector
(cj) of n columns containing the costs assigned to each other, then we can then define the
SCP as follows:

Minimize
n

∑
j=1

cjxj (1)

where:
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n

∑
j=1

aijxj ≥ 1 ∀ i ∈ {1, ..., m}

xj ∈ {0, 1}; j ∈ {1, ..., n}

This ensures that each row is covered by at least one column where there is a cost
associated with it. This problem was introduced in 1972 by Karp [37] and was used to
optimize problems of element location that provide spatial coverage, such as community
services [38], telecommunications antennas [39] and others [40].

4.2. Metaheuristics Implemented

The algorithms used in this work were selected based on two aspects. Firstly, they
correspond to population algorithms of different complexities, from a very simple one
such as BBH to others with more complex operators, such as SFLA and SHO. Secondly,
the research team has several published works using these same algorithms, so the work
of adaptation, tuning and comparison of results was relatively easy. Notwithstanding
these observations, the work focuses on the collaborative and distributed execution of
the algorithms and not on the nature, operators or parametrization of them, so that the
proposed framework can be extended to many other algorithms, traditional or new.

4.2.1. Binary Black Hole Algorithm

The binary black hole algorithm [4] faces the problem of determining solutions through
the development of a set of stars called universe, using a population algorithm. It proposes
the rotation of the universe around the star that has the best fitness, i.e., the one with lowest
fitness value. This rotation is applied by an operator that moves each star in each iteration
of the algorithm, and determines if there is a new black hole in each cycle. If it so happens, it
replaces the previous one. This operation is repeated until the stop criterion is met, making
the last black hole found the proposed final solution. Eventually, a star may exceed the
distance defined by the radius of the event horizon. In this case, the star can collapse into a
black hole and will be removed from the universe, substituted by a new star. The input for
the algorithm are the universe size and max iterations, and the output is the last black hole
found. The procedure can be seen in Algorithm 1.

Algorithm 1: Binary black hole algorithm.

1 big bang execution;
2 bh← black hole determination;
3 i← 1;
4 while is not stop criteria do
5 if f (xi) < f (bh) then
6 bh← xi;
7 else
8 xi rotation;
9 if xi collapsed in event horizon then

10 replace xi;
11 end
12 end
13 if xi is not f easible then
14 repair xi;
15 end
16 i← i + 1;
17 end
18 return post-process results and visualization
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4.2.2. Soccer League Competition Algorithm

Soccer league competition algorithm is a metaheuristic model based on soccer compe-
titions [41]. This approach considers solutions as soccer players, and sets them up as soccer
teams. There are movement operators applied to the players, emulating the dynamics gen-
erated in real matches to win and become the best football player of the season. Players are
defined as two types: fixed players and substitutes ones. The convergence of the population
towards the global optimum is achieved through competition among teams competing for
the top positions in the classification table. Players also compete to be fixed and be the star
ones of their respective teams. The goal is to find the best feasible solution that achieves
the best value from the evaluation function, using operators who evaluate the players and
teams’ performances and exchange solutions. The algorithm inputs are the number of
teams and fixed and substitute players. The output is the star player. Algorithm 2 details
the resolution process.

Algorithm 2: Soccer league competition algorithm.

1 Nteams ← number o f teams;
2 (N f p, Nsp)← number o f f ixed and substitute players;
3 P← generate initial population(Nteams, N f p, Nsp);
4 while is not the stop criteria do
5 P← sort the player set by player power;
6 S∗ ← get the super star player;
7 MS← set the match schedule;

8 Nmatches ←
Nteams(Nteams−1)

2 ;
9 foreach m← 1 to Nmatches do

10 (i, j)← (MS[m, 1], MS[m, 2]) /1 & 2 team indexes f or the matches;
11 (Ti, Tj)← gets players (i, P) and (j, P) f rom team;
12 (w, l)← get winner and looser team− index;
13 S∗ ← get the star player;
14 foreach FP ∈ Tw do
15 FP← imitation operator;
16 end
17 foreach FP ∈ Tw do
18 SP← provocation operator;
19 end
20 foreach FP ∈ Ti do
21 FP← mutation operator;
22 end
23 foreach FP ∈ Ti do
24 SP← substitution operator;
25 end
26 end
27 end
28 return post-process results and visualization

4.2.3. Shuffled Frog-Leaping Algorithm

The shuffled frog leaping algorithm is a population-based cooperative search meta-
heuristic, inspired by natural memetics [6]. The algorithm manages a set of interacting
virtual population of frogs, partitioned into different memeplexes, including elements of
local search and global information exchange. The frogs simulate hosts of memes, where
a meme is a basic unit of cultural evolution. This algorithm performs independent local
searches on each memeplex, using a variant of the particle swarm optimization method.
The frogs are shuffled periodically and reorganized into new memeplexes. This technique
is similar to that used in the complex evolutionary shuffle algorithm, to ensure global
exploration. To improve randomness, frogs are randomly generated and replaced in the
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population. The algorithm input are the number of memeplexes, frogs in each memeplex,
iterations in each memeplex and maximum algorithm iterations, while the output is the
best frog fitness. Algorithm 3 explains the step-by-step of the resolution process.

Algorithm 3: Shuffled frog leaping algorithm.

1 Generate random population o f P solutions(individuals);
2 foreach Pi do
3 calculate f itness f or Pi;
4 end
5 Sort the whole population P in descending order o f their f itness;
6 while is not stop criteria do
7 Divide the population P into m memeplexes;
8 foreach memeplex do
9 Determine the best and worst individuals;

10 Improve the worst individual position;
11 Repeat f or a speci f ic number o f iterations;
12 end
13 Combine the evolved memeplexes;
14 Sort the population P in descending order o f their f itness;
15 end
16 return post-process results and visualization

4.2.4. Spotted Hyena Optimizer Algorithm

The fundamental concept of this algorithm is the natural hunting strategy of the
spotted hyena [7]. The three basic steps of this proposed spotted hyena optimizer algorithm
are searching, encircling, and attacking for prey. Spotted hyenas first search for prey,
depending on their position residing in the solution space, and then move away from each
other to attack their prey.

Similarly, we use operators with random values to force the search agents to move far
away from the prey, thereby stimulating the SHO algorithm to search globally. To encircle
the prey, the best solution is considered the target prey, and the other search agents or
spotted hyenas can update their positions according to this optimal solution. The other
search agents will try to update their positions after the best search candidate solution is
defined. The third step of SHO algorithm is the attack strategy, which sets up a cluster of
optimal solutions against the best search agent, and updates the positions of other search
agents. The input for algorithm is the population Pi (i = 1, 2, ..., n) and the output is the
best search agent. Algorithm 4 presents the search process.
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Algorithm 4: Spotted Hyena Optimizer algorithm.

1 initialize the parameters h, B, E, and N;
2 calculate the f itness o f each search agent;
3 Ph ← the best search agent;
4 Ch ← the group or cluster o f all f or optimal solutions;
5 while x < max number o f iterations do
6 foreach search agent do
7 update the position o f current agent;
8 end
9 update h, B, E, and N;

10 if any search agent goes beyond the given search space then
11 adjust it;
12 end
13 calculate the f itness o f each search agent;
14 if there is a better solution than previous optimal then
15 Ph ← new optimal solution;
16 end
17 update the group Ch;
18 x ← x + 1;
19 end
20 return post-process results and visualization

5. Metodology
5.1. Platform

The Amazon elastic cloud (EC2) platform was used as the experimental environment
for both modalities, configuring two-processor machines with 8 GB of RAM memory.
In case of the distributed version, an equivalent virtual machine was implemented for each
node. Each of them was executed separately, and the parameter setting was determined
experimentally for each instance group. They were selected according to Table 1.

The algorithms were written in Python 3.7, and the experiments were conducted for
NR instances, proposed by the OR-Library [42] for the SCP (NRE to NRH). They instances
consisted of datasets of 500 × 5000 and 1000 × 10,000 lines and columns, respectively,
and they were unicost problems from [43]. The results obtained by standalone algorithms
were taken as a basis for comparison to those that were subsequently generated with the
distributed framework. The analysis was focused on this comparison, and not on improv-
ing results by tuning the parameters or modifying the operators. Once the standalone
experiments were completed, the distributed experiments were run on the Spark 2.2.3,
platform with the same parameters. As mentioned above, the execution was collective,
i.e., all nodes participated in a coordinated way in the searching for best solutions, reporting
results to the CC every 100 iterations. This value was determined experimentally, and it
corresponds to the approximate average number of iterations in which the four algorithms
show improvements in searching. If new algorithms are incorporated or proposed, or they
are replaced, the value of this parameter should be reevaluated. This collaboration among
different algorithms means that the optimum found is a consequence of the search in differ-
ent neighborhoods, carried out by different algorithms. Therefore, it does not correspond
to a single metaheuristic, even if it is a particular one that finds the best value.
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Table 1. Algorithms main parameters.

BBH SHO SLC SFLA

Parameter Value Parameter Value Parameter Value Parameter Value

Universe size 70 Hyenas quantity 40 Teams quantity 10 Memeplex quantity 8

Max iterations 10,000 Max iterations 10,000 Max iterations 10,000 Frogs in memeplex 8

Fixed players 6 Iter. memeplex 30

Suplent players 5 Max iterations 10,000

Im. factor 5

Mult. factor 5

Reduction 15

Sust. factor 50

5.2. Experimental Design

Considering that the nodes of the distributed platform execute the same versions of
the standalone algorithms, the improvement can be interpreted mainly as a product of two
aspects of the proposed architecture: the clustering of the search space, and the collaboration
among nodes. The resolution time and the number of calls to the objective function
are variables subject to several conditions that make them not very objective. However,
because the standalone and distributed experiments were run in similar environments and
platforms, it is relevant to explain them.

The standalone experiments were performed by grouping by each of the instances
and algorithms, i.e., 80 modalities that were run 31 times each, totaling 2480 experiments.
In addition, the distributed version was run 31 times for each instance, i.e., 620 experiments.

Because the proposed method is not metaheuristic itself, but the coordinated work
of several of them, it becomes relevant to figure out the contribution of each one in the
complete search towards the optimum value. As noted above, every 100 iterations, the al-
gorithms reported the best solution found to the CC. If this solution was better than the
current optimal, the other algorithms were informed of the same, we can observe this
behavior in the Figure 2.

If we consider the existing iterations since the previous optimum was received, and the
new one that was found in an algorithm as collaboration time, we can quantify the per-
centage of participation for each algorithm in the search process. In the same way, it is
important to know the behavior of this collaboration for different algorithms, in different
stages of the search. For better analysis, the entire search process was divided into deciles.

To determine how decisive the number of nodes generated is in the results obtained,
the experiments were replicated in three modalities. The first method consisted of generat-
ing K nodes, i.e., a unique node for each cluster. The second one consisted the generation
of 2K nodes. In other words, two nodes for each detected cluster. The third one, in analogy,
corresponded to the generation of 3K nodes.

Because K is generally larger than the number of used algorithms, for each round of
experiments, the algorithms were assigned in fixed sequence, i.e., for K = 4, each cluster
was addressed by a different algorithm, and for k > 4, the algorithms started repeating in a
fixed order.
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K nodes generation

Node 2 Node KNode 1

CC

Best
found?

Global optimum

Replace
solutions

Yes

No

Figure 2. Procesing flow.

6. Statistical Analysis

Due to the stochastic nature of metaheuristics, it is not sufficient to present good
results about the optimums found; it is important to demonstrate statistical regularity of
the obtained values as well. This can be explained by results which do not necessarily
satisfy qualities such as normality, homoscedasticity and independence, as demonstrated
by [44,45]. For this purpose, Lanza and Gómez [46] proposed a methodology to compare
two algorithms, or variations of them, considering the regularity and consistency of results.
The details can be seen in the Figure 3:

The first step was to determine the outliers in the results of each algorithm, for all
instances used. For this purpose, the average result for each of the experiments were
calculated for every instance. The first and third quartiles and the interquartile range were
calculated next. In the cases in which extreme outliers were found, these values were
eliminated from the results table, leaving only the mild ones to be analyzed. The next
steps were to determine the data distribution and independence, i.e., whether it has normal
distribution or can be considered statistically belonging to different sets. For the first,
the Shapiro–Wilk and Kolmogorov–Smirnov–Lilliefors tests were applied to detect the
normality of the results. These tests were raised for the four algorithms used, and also
for the distributed execution. To determine whether the proposed architecture was more
regular and statistically coherent than each of the standalone algorithms, the Wilcoxon
and Wilcoxon–Mann–Whitney tests were applied to the paired and independent datasets,
respectively. This method was applied to each sequence of experiments in the three
modalities described in the previous section.
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Figure 3. Statistical methodology.

7. Experimental Results

Table 2 shows the best results obtained for each instance of the set covering problem.
These are highlighted in bold font. ZBKS is the known global optimum for each instance,
while MinSFLA, MinSHO, MinSLC and MinBBH were the best values obtained for each
instance by the standalone algorithms. The RPD in each experiment group is the relative

percentage deviation from the known optimum, calculated as follows:
( Min f ound∗100

Zbks

)
− 100.

For the following tables, we report the MinDT , MaxDT , MedDT and RPDDT columns
that show the minimum, maximum, median and RPD values obtained with the proposed
framekork (DT).

Table 3 shows the best results obtained for each SCP benchmark by the version
distributed on K nodes, compared to the RPDs with those of the standalone versions.
Again, the best results are highlighted in bold font. The MFE corresponds to the number of
evaluations performed of the objective function, and CT is the computation time in minutes
for total execution.

Tables 4 and 5 show results for the execution with 2K nodes and 3K node, respectively.
We employed bold font to illustrate the best results, again. In the resolved benchmarks,
it is possible to notice a greater difference in the RPDs obtained, as well as in the num-
ber of found global optimums. This is relevant, since these instances represent types of
problems that present difficulties in being solved using metaheuristics and demand higher
computational power due to the large volume of data.
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Table 2. Results comparison for standalone versions.

Instance ZBKS MinSFLA RPDSFLA MinSHO RPDSHO MinSLC RPDSLC MinBBH RPDBBH

NRE1 29 41 41.38 29 0.00 34 17.24 52 79.31

NRE2 30 31 3.33 32 6.67 37 23.33 46 53.33

NRE3 27 38 40.74 29 7.41 38 40.74 28 3.70

NRE4 28 40 42.86 32 14.29 31 10.71 29 3.57

NRE5 28 41 46.43 28 0.00 39 39.29 28 0.00

NRF1 14 14 0.00 18 28.57 23 64.29 17 21.43

NRF2 15 18 20.00 15 0.00 18 20.00 18 20.00

NRF3 14 16 14.29 14 0.00 20 42.86 14 0.00

NRF4 14 15 7.14 15 7.14 18 28.57 16 14.29

NRF5 13 16 23.08 14 7.69 17 30.77 14 7.69

NRG1 176 201 14.20 190 7.95 185 5.11 180 2.27

NRG2 151 166 9.93 158 4.64 176 16.56 153 1.32

NRG3 166 170 2.41 170 2.41 173 4.22 166 0.00

NRG4 168 169 0.60 170 1.19 181 7.74 197 17.26

NRG5 168 183 8.93 169 0.60 189 12.50 171 1.79

NRH1 63 68 7.94 66 4.76 69 9.52 71 12.70

NRH2 63 69 9.52 66 4.76 66 4.76 70 11.11

NRH3 59 63 6.78 59 0.00 66 11.86 67 13.56

NRH4 59 73 23.73 61 3.39 62 5.08 69 16.95

NRH5 55 70 27.27 58 5.45 61 10.91 64 16.36

For the standalone versions of the SFLA, SHO, SLC and BBH algorithms, the average
RPDs are 17.53, 5.35, 20.30 and 14.83, respectively, but for the distributed (DT) K, 2K and
3K versions, they are 3.40, 2.56 and 2.10, respectively, which are significantly lower. It is
clear from the above tables that for the K, 2K and 3K node versions, 60%, 80% and 80%,
respectively, of the instances performed as well or better in the DT architecture than in any
of the standalone algorithms. Figure 4 shows the average times in minutes used by the
autonomous and DT algorithms that find the minimum values of some instances, or the
output criteria, grouped by instance type.
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Table 3. K nodes RPD comparison for standalone and distributed versions.

Instance BKS MinDT MaxDT MedDT RPDDT RPDSFLA RPDSHO RPDSLC RPDBBH MFE CT

NRE1 29 29 55 43 0.00 41.38 0.00 17.24 79.31 1,071,926 2.060

NRE2 30 32 58 49 6.67 3.33 6.67 23.33 53.33 1,068,618 2.054

NRE3 27 28 33 30 3.70 40.74 7.41 40.74 3.70 1,000,391 1.923

NRE4 28 29 56 46 3.57 42.86 14.29 10.71 3.57 922,880 1.774

NRE5 28 28 61 47 0.00 46.43 0.00 39.29 0.00 960,027 1845

NRF1 14 15 35 24 7.14 0.00 28.57 64.29 21.43 1,071,669 1600

NRF2 15 15 29 23 0.00 20.00 0.00 20.00 20.00 1,158,639 1729

NRF3 14 14 25 22 0.00 14.29 0.00 42.86 0.00 1,131,867 1689

NRF4 14 15 22 19 7.14 7.14 7.14 28.57 14.29 1,225,920 1830

NRF5 13 14 27 23 7.69 23.08 7.69 30.77 7.69 1,282,364 1915

NRG1 176 178 219 195 1.14 14.20 7.95 5.11 2.27 876,533 2020

NRG2 151 153 190 172 1.32 9.93 4.64 16.56 1.32 952,975 2197

NRG3 166 172 199 182 3.61 2.41 2.41 4.22 0.00 966,945 2228

NRG4 168 174 205 191 3.57 0.60 1.19 7.74 17.26 897,329 2069

NRG5 168 175 226 201 4.17 8.93 0.60 12.50 1.79 929,964 2143

NRH1 63 66 83 75 4.76 7.94 4.76 9.52 12.70 968,004 1940

NRH2 63 65 85 74 3.17 9.52 4.76 4.76 11.11 1,052,336 2109

NRH3 59 59 94 81 0.00 6.78 0.00 11.86 13.56 1,018,750 2042

NRH4 59 63 100 83 6.78 23.73 3.39 5.08 16.95 989,600 1983

NRH5 55 57 101 77 3.64 27.27 5.45 10.91 16.36 1,050,947 2.106

AVG 3.40 17.53 5.35 20.30 14.83 1,029,884 1963

The above graphs show that the proposed architecture, on average, always solved the
instances in less computational time than the best standalone algorithm.

Figure 5 shows how the average percentage of collaboration is distributed for each
algorithm, considering all the resolved instances.

In Figure 6, the percentage of participation for each algorithm in each decile X-axis is
represented on the Y-axis, so it is easy to observe the importance of each algorithm in all
stages of the search.
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Table 4. 2K nodes RPD comparison for standalone and distributed versions.

Instance BKS MinDT MaxDT MedDT RPDDT RPDSFLA RPDSHO RPDSLC RPDBBH MFE CT

NRE1 29 29 55 42 0.00 41.38 0.00 17.24 79.31 2,004,884 2.493

NRE2 30 31 52 41 3.33 3.33 6.67 23.33 53.33 2,033,992 2378

NRE3 27 28 33 30 3.70 40.74 7.41 40.74 3.70 1,999,607 2490

NRE4 28 29 48 39 3.57 42.86 14.29 10.71 3.57 1,772,022 1952

NRE5 28 28 44 36 0.00 46.43 0.00 39.29 0.00 1,908,427 2156

NRF1 14 15 29 22 7.14 0.00 28.57 64.29 21.43 2,051,072 1698

NRF2 15 15 30 22 0.00 20.00 0.00 20.00 20.00 2,137,033 1657

NRF3 14 15 25 20 7.14 14.29 0.00 42.86 0.00 2,226,238 1851

NRF4 14 14 21 18 0.00 7.14 7.14 28.57 14.29 2,299,324 2301

NRF5 13 14 25 20 7.69 23.08 7.69 30.77 7.69 2,286,180 2488

NRG1 176 177 201 189 0.57 14.20 7.95 5.11 2.27 1,597,704 2497

NRG2 151 151 190 172 0.00 9.93 4.64 16.56 1.32 1,549,860 2.517

NRG3 166 170 187 179 2.41 2.41 2.41 4.22 0.00 1,592,800 3088

NRG4 168 171 176 174 1.79 0.60 1.19 7.74 17.26 1,586,827 2515

NRG5 168 169 201 185 0.60 8.93 0.60 12.50 1.79 1,514,488 2908

NRH1 63 65 83 74 3.17 7.94 4.76 9.52 12.70 1,901,904 2324

NRH2 63 65 80 72 3.17 9.52 4.76 4.76 11.11 1,931,757 2447

NRH3 59 59 79 69 0.00 6.78 0.00 11.86 13.56 1,867,105 2615

NRH4 59 62 94 78 5.08 23.73 3.39 5.08 16.95 1,849,555 2596

NRH5 55 56 77 67 1.82 27.27 5.45 10.91 16.36 1,922,298 2.839

AVG 2.56 17.53 5.35 20.30 14.83 1,901,654 2391

As it can be observed, the SHO and BBH algorithms participate in most of the optimum
searches. The SFLA participates only partially, and the SLC only participates during the
first iterations. One of the factors that explains this is the difference in the convergence
rates of the algorithms. Those that converge faster have greater collaboration, but when the
convergence rates of the algorithms are relatively similar, collaboration must be encouraged.
This is the case for the SHO and BBH algorithms, which have similar convergence rates
and cooperate with each other for most of the process, as opposed to the SLC, which has a
very slow convergence.
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Figure 4. Average solving time comparison (mins).

Table 5. 3K nodes RPD comparison for standalone and distributed versions.

Instance BKS MinDT MaxDT MedDT RPDDT RPDSFLA RPDSHO RPDSLC RPDBBH MFE CT

NRE1 29 29 52 41 0.00 41.38 0.00 17.24 79.31 2,909,407 2.735

NRE2 30 31 52 42 3.33 3.33 6.67 23.33 53.33 2,827,970 2640

NRE3 27 28 32 30 3.70 40.74 7.41 40.74 3.70 2,747,377 2527

NRE4 28 29 48 39 3.57 42.86 14.29 10.71 3.57 2,589,137 1900

NRE5 28 28 41 35 0.00 46.43 0.00 39.29 0.00 2,719,367 2159

NRF1 14 15 29 22 7.14 0.00 28.57 64.29 21.43 2,899,910 1449

NRF2 15 15 30 23 0.00 20.00 0.00 20.00 20.00 2,826,411 1611

NRF3 14 14 22 18 0.00 14.29 0.00 42.86 0.00 2,904,276 1697

NRF4 14 14 20 17 0.00 7.14 7.14 28.57 14.29 2,829,308 2246

NRF5 13 14 25 20 7.69 23.08 7.69 30.77 7.69 2,734,454 2514

NRG1 176 176 196 186 0.00 14.20 7.95 5.11 2.27 2,551,637 2678

NRG2 151 154 188 171 1.99 9.93 4.64 16.56 1.32 2,645,503 2958

NRG3 166 170 187 179 2.41 2.41 2.41 4.22 0.00 2,635,247 3433

NRG4 168 171 176 174 1.79 0.60 1.19 7.74 17.26 2,688,812 2764

NRG5 168 169 201 185 0.60 8.93 0.60 12.50 1.79 2,786,969 3171

NRH1 63 65 80 73 3.17 7.94 4.76 9.52 12.70 2,891,291 2428

NRH2 63 65 79 72 3.17 9.52 4.76 4.76 11.11 2,891,423 2774

NRH3 59 59 77 68 0.00 6.78 0.00 11.86 13.56 2,946,120 2799

NRH4 59 61 90 76 3.39 23.73 3.39 5.08 16.95 2,778,388 2696

NRH5 55 55 76 66 0.00 27.27 5.45 10.91 16.36 3,001,766 3063

AVG 2.10 17.53 5.35 20.30 14.83 2,790,239 2512
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BBH
35.1%

SLC
1.4%

SFLA
15.3%

SHO
48.2%

Figure 5. Average percentage of participation in the searching.

Figure 6. Collaboration evolution for each algorithm.

To show the different convergence rates of each algorithm and the DT version, Figure 7
plots the evolution of the minimums found in each iteration, for each algorithm, for one
of the solved instances. The rest of the instances presented the same behavior, with small
differences of low significance.

Figure 7. Convergences best execution of HRF1 instance.
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Statistical Analysis

With these results, a table was constructed to determine the outliers, according to the
following conditions:

Mild outlier : value < Q1 − (1.5 IQR) or > Q3 + (1.5 IQR)
Extreme outlier : value < Q1 − (3 IQR) or > Q3 + (3 IQR)

All the experiments had a p-value < 0.05. Therefore, it cannot be assumed that H0 was
satisfied for any of the instances or algorithms. Similarly, their non-normal distribution
was validated, and the independence of the results obtained was tested, resulting in most
of them being independent, although a few were classified as dependent. According to the
methodology detailed above, it is necessary to determine the statistical consistency of the
independent and DT algorithms by applying the Wilcoxon and Wilcoxon–Mann–Whitney
tests to the paired and independent datasets, respectively. The analysis was performed
with the DT with K, 2K and 3K nodes, but since the statistical results between them were
not significantly different, we show the values obtained with K nodes. Table 6 shows the
algorithm selected for all tested instances.

Figure 8 compares the global results distribution for statistical analysis. Al- most three
quarters of instances have better statistical regularity in the distributed algorithm.

BBH
35.1%

SLC
1.4%

SFLA
15.3%

SHO
48.2%

Figure 8. Algorithm selection distribution.

Table 7 compares the instances detailing the standalone and DT algorithms with the
best resultsas well as the statistically selected ones. In those cases in which the first two
concur, the respective line is noted (ND = no difference). We can observe that in 75% of the
instances, there is a coincidence in the algorithm that reports the best result, regardless of
which is statistically the best.

We can observe that in 75% of the instances there is a coincidence in the algorithm that
reports the best result, regardless of which is selected as the best statistically.

Figures 9–12 show the results distribution for each instance, considering the minimum,
maximum, median and interquartile distance for the DT algorithm version.

Some regularity can be observed in them, with a median approximately equidistant
from the quartiles. The intervals between the maximum and minimum, as well as among
the quartiles vary, according to the probabilistic nature of the algorithms.
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Table 6. Algorithm selected for tested instances.

SFLA-DT SHO-DT

Instance Selected Instance Selected Instance Selected Instance Selected

NRE1 SFLA NRG1 DT NRE1 DT NRG1 DT

NRE2 DT NRG2 SFLA NRE2 SHO NRG2 SHO

NRE3 DT NRG3 DT NRE3 SHO NRG3 DT

NRE4 SFLA NRG4 ND NRE4 DT NRG4 ND

NRE5 ND NRG5 DT NRE5 DT NRG5 DT

NRF1 DT NRH1 DT NRF1 SHO NRH1 SHO

NRF2 DT NRH2 DT NRF2 SHO NRH2 DT

NRF3 DT NRH3 DT NRF3 DT NRH3 SHO

NRF4 DT NRH4 DT NRF4 DT NRH4 DT

NRF5 DT NRH5 DT NRF5 DT NRH5 DT

SCL-DT BBH-DT

Instance Selected Instance Selected Instance Selected Instance Selected

NRE1 ND NRG1 DT NRE1 BBH NRG1 DT

NRE2 SLC NRG2 DT NRE2 DT NRG2 DT

NRE3 DT NRG3 DT NRE3 DT NRG3 DT

NRE4 SLC NRG4 DT NRE4 DT NRG4 DT

NRE5 DT NRG5 DT NRE5 DT NRG5 DT

NRF1 DT NRH1 DT NRF1 ND NRH1 DT

NRF2 DT NRH2 ND NRF2 DT NRH2 BBH

NRF3 DT NRH3 DT NRF3 DT NRH3 BBH

NRF4 DT NRH4 DT NRF4 ND NRH4 BBH

NRF5 DT NRH5 DT NRF5 DT NRH5 DT
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Table 7. Results algorithm comparison.

Instance SA DT Selected Instance SA DT Selected

NRE1 SHO SHO SFLA NRG1 SHO SHO DT

NRE2 SFLA SHO DT NRG2 BBH BBH SFLA

NRE3 BBH BBH DT NRG3 SHO SHO DT

NRE4 SHO SHO SFLA NRG4 SHO BBH ND

NRE5 SHO SHO ND NRG5 SHO SHO DT

NRF1 SHO BBH DT NRH1 BBH BBH DT

NRF2 SHO SHO DT NRH2 SHO SHO DT

NRF3 BBH BBH DT NRH3 SHO BBH DT

NRF4 SHO SHO DT NRH4 SHO SHO DT

NRF5 SHO SHO DT NRH5 SHO BBH DT

Figure 9. NRE Instances.
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Figure 10. NRF Instances.

Figure 11. NRG Instances.
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Figure 12. NRH Instances.

8. Conclusions

In this work, we presented a framework that combines clustering and distributed
parallelism to improve the metaheuristic search process. With the exception of a single
instance, all of them showed improvements with regard to the best values obtained using
the standalone algorithms or at least equaled them. In the experiments, 70% of the instances
had the same or better RPD with the DT version than with the best of the standalone
executions, achieving even more global optimums.

Removing the collaborative and clustering elements from the analysis results in a
parallel execution of several algorithm instances processing the same dataset and with
the same configuration, i.e., the equivalent of running the same number of experiments
sequentially. We can then expect the results to be very similar to those obtained by the
standalone experiments. However, this is not the case.

The results show an improvement in the RPD and statistical consistency of the DT
executed algorithms. So, the key factors in any improvement are explained by the elements
outside the algorithms, i.e., their collaborative work and the clustering of the search space.
The obtained results reflect that the proposed architecture is more efficient when solving
larger instances, making it a competitive alternative for difficult optimization problems.

From the results, we can see that although the number of nodes used is an important
variable for improving the performance of a standalone algorithm, these improvements
do not scale linearly, i.e., doubling the number of nodes does not necessarily double the
number of best results, or halve the time required to find an optimum.

An important aspect is that the proposed approach, which is based on big data tools,
makes solutions easier and cheaper, as it greatly automates the classic coding concerns
associated with building distributed environments while maintaining an excellent degree
of scalability. On the other hand, the clustering proved efficient in stimulating exploration
of various types of neighborhoods, as the collaboration helped in exploiting those with
good solutions. It should be noted that one aspect that appears to be important is that
the correct selection of the algorithms to collaborate is crucial, thus making collaborations
based on similar convergence rates a requisite.



Mathematics 2022, 10, 274 23 of 24

The results of this work suggest research that can allow greater control and predictabil-
ity of the process, such as not only clustering the initial sets of solutions, but also during
the process, as the results progress.
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