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Abstract: A Multinomial Processing Tree (MPT) is a directed tree with a probability associated
with each arc and partitioned terminal vertices. We consider an additional parameter for each
arc, a measure such as time. Each vertex represents a process. An arc descending from a vertex
represents selection of a process outcome. A source vertex represents processing beginning with
stimulus presentation and a terminal vertex represents a response. An experimental factor selectively
influences a vertex if changing the factor level changes parameter values on arcs descending from that
vertex and no others. Earlier work shows that if each of two factors selectively influences a different
vertex in an arbitrary MPT it is equivalent to one of two simple MPTs. Which applies depends on
whether the two selectively influenced vertices are ordered by the factors or not. A special case, the
Standard Binary Tree for Ordered Processes, arises if the vertices are ordered and the factor selectively
influencing the first vertex changes parameter values on only two arcs. We derive necessary and
sufficient conditions, testable by bootstrapping, for this case. Parameter values are not unique. We
give admissible transformations for them. We calculate degrees of freedom needed for goodness of
fit tests.

Keywords: Multinomial Processing Tree; response time; selective influence

1. Introduction

A Multinomial Processing Tree (MPT) consists of a finite set of vertices and a set of
arcs, each arc being an ordered pair of vertices, such that there is no more than one directed
path from one vertex to another, see Figure 1. Associated with each arc is a probability
parameter and possibly other parameters. The sum of the probabilities on arcs descending
from a vertex is 1. A source vertex is a vertex with no incoming arc, that is, a vertex that
is not the second vertex of any arc. A terminal vertex is a vertex with no outgoing arc,
that is, a vertex that is not the first vertex of any arc. The terminal vertices are partitioned
into classes.

Multinomial Processing Trees are widely used to model cognitive processing in percep-
tion, memory, decision making, and movement tasks. For review and discussion, see [1–4].
In an MPT model of a task, each vertex represents a process, for example, an attempt to
retrieve an item from memory. The process has possible outcomes, such as successful
or unsuccessful retrieval. Each possible outcome is represented by a vertex with an arc
directed to it from the vertex representing the process. The probability associated with
the arc is the probability the corresponding outcome occurs after the process starts. When
the task starts, with, say, presentation of a stimulus, processing begins at a source vertex.
One of the outcomes of the source vertex occurs, with the probability associated with the
corresponding arc. The second vertex of the arc is reached and the process represented
by that vertex starts. Steps continue in this fashion until a terminal vertex is reached, at
which a response is made. Responses are partitioned into classes, for example correct and
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incorrect. One class of responses is made at each terminal vertex, although several terminal
vertices may be associated with the same response class.
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developed [9], facilitating analysis of model structure.  

Multinomial Processing Tree models are often tested by goodness of fit. Although 
goodness of fit is a useful consideration, several authors have argued that it is not suffi-
cient for evaluation of a model (e.g., [10,11]. Here we derive conditions that can serve as 
the basis for alternative tests of the MPT model in Figure 1. A distribution free test of each 
condition can be made with bootstrapping, in the manner of [12]. Goodness of fit is an 
evaluation of a model as a whole. Each condition here focuses on a particular parameter. 
If a test of a condition fails, one learns that the corresponding parameter does not behave 
well. A result here is useful for testing with goodness of fit. Evaluation of a goodness of 
fit statistic, such as G2, requires degrees of freedom and they are provided here. 

An MPT may have several sources. Usually, these correspond to different conditions. 
For example, one source may be for stimuli that are verbs, another for nouns, and in a 
given condition only one source is relevant and the others can be ignored. We assume the 
MPTs under consideration have only one source. 

The probability of a directed path from one vertex to another is the product of the 
probabilities associated with the arcs on the path. On any particular trial of the task, a 
directed path is followed from the source to a terminal vertex. The probability that a re-
sponse is in a particular class is the sum of probabilities of paths from the source to the 
terminal vertices of that class. 

When a response is made, an observation might be made of the time required to make 
the response, or of some other quantity. To account for these, response times and other 
measures are sometimes incorporated in MPTs (e.g., [12–18]. Here we assume that each 
arc has associated with it, in addition to a probability, another parameter. We often con-
sider the additional parameter to be the time required for the outcome corresponding to 
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Here we focus on the special case of binary trees, those in which exactly two arcs
descend from every nonterminal vertex, as in Figure 1. Empirically, many MPTs are binary
trees. For example, two most often used MPTs, the Process Dissociation Model [5] and
the Quad Model [6] are binary trees. Binary trees are of theoretical interest also. Any
MPT representing response probability can be reparameterized as a binary MPT [7,8].
Further, a way of representing binary MPTs as strings in a context-free language has been
developed [9], facilitating analysis of model structure.

Multinomial Processing Tree models are often tested by goodness of fit. Although
goodness of fit is a useful consideration, several authors have argued that it is not sufficient
for evaluation of a model (e.g., [10,11]. Here we derive conditions that can serve as the
basis for alternative tests of the MPT model in Figure 1. A distribution free test of each
condition can be made with bootstrapping, in the manner of [12]. Goodness of fit is an
evaluation of a model as a whole. Each condition here focuses on a particular parameter.
If a test of a condition fails, one learns that the corresponding parameter does not behave
well. A result here is useful for testing with goodness of fit. Evaluation of a goodness of fit
statistic, such as G2, requires degrees of freedom and they are provided here.

An MPT may have several sources. Usually, these correspond to different conditions.
For example, one source may be for stimuli that are verbs, another for nouns, and in a
given condition only one source is relevant and the others can be ignored. We assume the
MPTs under consideration have only one source.

The probability of a directed path from one vertex to another is the product of the
probabilities associated with the arcs on the path. On any particular trial of the task, a
directed path is followed from the source to a terminal vertex. The probability that a
response is in a particular class is the sum of probabilities of paths from the source to the
terminal vertices of that class.

When a response is made, an observation might be made of the time required to make
the response, or of some other quantity. To account for these, response times and other
measures are sometimes incorporated in MPTs (e.g., [12–18]. Here we assume that each arc
has associated with it, in addition to a probability, another parameter. We often consider
the additional parameter to be the time required for the outcome corresponding to the arc
to occur, but the parameter could have another interpretation, such as a cost, so we call it a
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measure. We assume the measure for a directed path from one vertex to another is the sum
of the measures associated with the arcs on the path.

1.1. Selective Influence

An experimental factor, such as the brightness of a stimulus, selectively influences a
vertex if changing a level of the factor changes parameter values on some arcs descending
from the vertex and on no other arcs. For example, in an MPT model of a list learning, it
was found that changing word frequency changed the probability of target recollection, but
changed no other parameter [19]. We sometimes say the factor selectively influences the
process that the vertex represents. For a review of selective influence in MPTs and more
examples see [20].

Suppose an experiment is carried out with two factors, Φ and Ψ. A level of Factor Φ is
denoted i, with i = 1, . . . , I and a level of Factor Ψ is denoted j, with j = 1, . . . , J. We are
interested in the situation in which each factor selectively influences a different vertex in an
MPT. For example, in Figure 1, the source vertex is selectively influenced by Factor Φ and
a vertex following the source vertex is selectively influenced by Factor Ψ. Parameters on
arcs descending from the source vertex are indexed by the level of Factor Φ. When Factor
Φ is at level i, the probability the vertex on the left is the outcome of the processing at the
source vertex is pA(i) and tA(i) is the measure associated with this outcome (e.g., the time
required for this outcome to occur). Other notation is similar.

For the MPT in Figure 1, when Factor Φ is at level i and Factor Ψ is at level j the
probability p(i, j) of a correct response is

p(i, j) = pA(i)pD+pB(i)pF(j).

The measure t(i, j) associated with a correct response, given a correct response is made,
is a mixture of measures of each of the two paths to a terminal vertex for a correct response.
That is,

t(i, j) = [pA(i)pD /p(i, j)][tA(i)+tD] + [pB(i)pF(j)/p(i, j)][tB(i) + tF(j)].

More conveniently,

p(i, j)t(i, j) = pA(i)pD[tA(i) + tD] + pB(i)pF(j)[ tB(i) + tF(j)].

In equations above and following, probabilities such as pA(i) and measures such as
tA(i) are fixed real numbers. They can be considered as population means. In previous
papers, e.g., [12], we consider the measure associated with each arc in an MPT to be
a random variable. We derive distribution free bootstrapping statistical tests that two
factors selectively influence different vertices in an arbitrary MPT. Tests are based on
observed means, density functions and cumulative distribution functions. Use of the tests
is demonstrated with simulations. Similar tests specifically for the MPT in Figure 1 can be
used, but are beyond the scope of this paper.

1.2. Vertex Arrangements

Consider an MPT in which each of two factors selectively influences a different vertex.
There are only two ways the two vertices can be arranged in the MPT. Suppose there is
a directed path from the source vertex to a terminal vertex, and on this path there is an
arc whose parameter values depend on the level of one of the factors, and also an arc
whose parameter values depend on the level of the other factor. Then we say the vertices
are ordered by the factors, or for short, ordered. If there is no such path, we say the vertices
are unordered by the factors, or for short, unordered. (Note that a path directed from one
selectively influenced vertex to the other will not suffice for the vertices to be ordered by
the factors, if no arc on the path has a parameter whose value depends on a level of one



Mathematics 2022, 10, 267 4 of 20

of the factors.) In the MPT in Figure 1 the selectively influenced vertices are ordered by
the factors.

Two MPTs are equivalent for Factors Φ and Ψ, with respective levels i = 1, . . . ,
I and j = 1, . . . , J, if the MPTs lead to the same values of p(i, j) and t(i, j) for every i and j.
Earlier work shows that if each of two factors selectively influences a different vertex in an
arbitrary MPT with two response classes, that MPT is equivalent to one of two relatively
simple MPTs [21,22]. If in the arbitrary MPT the selectively influenced vertices are ordered
by the factors, the MPT is equivalent to the Standard Tree for Ordered Processes in Figure 2.
Otherwise, the arbitrary MPT is equivalent to the Standard Tree for Unordered Processes in
Figure 3. The MPTs are similar in that in each has two special vertices, one selectively influ-
enced by each factor. They differ in whether or not the two special vertices are connected
by a directed path.
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In what follows, we assume there are exactly two response classes. For binary trees
there is nothing new to consider for selectively influenced vertices that are unordered by
the factors, because the Standard Tree for Unordered Processes is itself a binary tree. For
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vertices ordered by the factors, consider the binary tree in Figure 1, with exactly two arcs
descending from each nonterminal vertex. It turns out that if in an arbitrary MPT with two
response classes, two factors selectively influence vertices v1 and v2 ordered by the factors,
with v1 preceding v2, the arbitrary MPT is equivalent for response probabilities to the MPT
in Figure 1, provided a simple condition is met. The condition is that the factor selectively
influencing vertex v1 changes parameters on only two descending arcs [23].

An example of a binary Multinomial Processing Tree is in [19]. It is an extension
of the MPT usually used in the Process Dissociation model for list learning [5]. In that
model, a test item can be recognized as correct via recollection, i.e., a conscious vivid
reinstatement of features present at study, or if that fails, via the familiarity of the item. The
Dual Recollection Principle [19] is that there are two components of recollection, recollection
of the item (Target Recollection) and recollection of the context (Context Recollection). With
the Process Dissociation Procedure, items are tested in several situations, and a separate
binary MPT is used for each (a forest of trees) [19]. The paper presents experiments on all,
which overall support the Dual Recollection Principle.

There are several MPTs, each with its own source, but in any particular situation only
one MPT applies. For this example, we confine our attention to one MPT, for the situation
in which a test item could be from List 1 or List 2 or neither, and the test item is actually
from List 1. The participant’s task is to respond accept if the item is from either List 1 or
List 2 and reject if not.

In the MPT for this situation, a response is made as follows. The MPT is binary because
each process has two possible outcomes. With probability RC1, Context Recollection occurs
and the item is accepted. If that fails, with probability RT1, Target Recollection occurs and
the item is accepted. If that fails, with probability F1, the item provokes a high level of
familiarity and the item is accepted. If that fails, with response bias probability b12, the item
is accepted and with probability 1 − b12 the item is rejected.

In Experiment 1, lists consist of words. From various considerations, the authors
propose that the word frequency of a test item from List 1 will selectively influence RT1
and the concreteness of the item will selectively influence F1. Let i denote a level of
word frequency and j denote a level of concreteness. Let p(i, j) denote the probability of
acceptance. Then the model predicts

p(i, j) = RC1 + (1 − RC1){RT1(i) + (1 − RT1(i))[F1(j) + (1 − F1(j))b12]}.

Analysis of Experiment 1 indicated that changing word frequency indeed changed val-
ues of RT1 and of no other parameter. However, concreteness did not selectively influence
F1. Although changing concreteness changed values of F1, as proposed, it also changed
values of b12.

Follow up questions come to mind, for which analysis here is helpful. To account for
response probabilities, does any binary MPT exist in which word frequency and concrete-
ness selectively influence two different ordered vertices? In a later paper [13], response time
was modeledwith an MPT using a method of [14]. For a response at a particular terminal
vertex, the response time was considered to be the duration of the entire path from the
source to that vertex. Is there a way to consider durations of individual arcs on such paths?
If so, and a experiment is to be done with word frequency and concreteness as factors, how
many levels of each factor would be needed to test the MPT?

The first question can be readily answered. If there is any MPT that can account
for response probabilities and in the MPT word frequency and concreteness selectively
influence two ordered vertices, the factors would have to do so in the Standard Binary Tree
for Ordered Processes of Figure 1 [23]. Any other suitable MPT must “collapse” into this
one. For a level i of word frequency and a level j of concreteness, it predicts

p(i, j) = pA(i)pD+pB(i)pF(j).
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The equation above for the MPT of Brainerd, et al. (2015) can easily be written in this
form, with

pA(i) = RC1+(1 − RC1)RT1(i)

pD = 1

pB (i) = (1 − RC1)(1 − RT1(i))

pF (j) = F1 (j)+(1 − F1 (j) b12.

(It is by coincidence that in pF(j) and in F1(j) symbol F occurs). Parameter b12 was found
to depend on the level j of concreteness [19], so it can be rewritten as b12(j). Nonetheless,
parameter pF(j) depends on the level j of concreteness and not on the level i of word
frequency. The two factors selectively influence two ordered vertices in the binary MPT in
Figure 1. We emphasize that if this did not happen, no binary MPT exists in which the two
factors selectively influence two ordered vertices.

2. Results

The MPT in Figure 1 is the Standard Binary Tree for Ordered Processes. This paper
presents three results about it. First, the theorem to follow derives conditions this MPT
predicts for response probability and an additional measure such as response time. The
theorem shows further that if the three conditions hold, then the Standard Binary Tree for
Ordered Processes can account for the response probabilities and the additional measure,
no matter how they may have been generated. Second, suppose parameter values are
found that enable the Standard Binary Tree for Ordered Processes to account for response
probabilities and the additional measure. It might seem at first that these are the only
parameter values that can do so, and one might propose theoretical interpretations of the
values. We show that the parameter values are not unique, and show how different sets of
values must be related to each other. Finally, if one wants to test the model with a goodness
of fit statistic, the degrees of freedom are needed and we derive them.

By saying every level of a factor selectively influencing a vertex is effective we mean
the factor has at least two levels and there are no two levels such that when the levels of
all the other factors are fixed, in every response class the probability of a response is the
same for both levels and the additional measure is the same for both levels. (It is possible
that in some response class the probability of a response is the same for both levels, but
the measure changes, or vice versa.) We assume there are two response classes; we label
them as correct and incorrect, but the classes may be of any kind. Suppose Factor Φ is at
level i and Factor Ψ is at level j. The probability of a correct response is denoted p(i, j). The
probability of an incorrect response is 1 − p(i, j). The measure associated with a correct
response is denoted t(i, j) and that associated with an incorrect response is denoted tw(i, j).
For convenience, we denote these quantities with matrices. For example, probability matrix
P has p(i, j) in the cell in row i and column j.

Definition 1. Probability matrix P = (p(i, j)), correct-response-measure matrix T = (t(i, j)), and
incorrect-response-measure matrix Tw = (tw(i, j)) are produced by two factors selectively influencing
two vertices ordered by the factors in the Standard Binary Tree for Ordered Processes, with the
vertex selectively influenced by Factor Φ preceding the vertex selectively influenced by Factor Ψ, if
the following are true. Both factors are effective and for all i and j there are probability parameters
pA(i), pB(i), pC, pD, pE(j), pF(j) such that

0 ≤ pA(i), pB(i), pC, pD, pE(j), pF(j) ≤ 1

pA(i)+pB(i) = 1

pC + pD = 1

pE(j)+pF(j) = 1
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and
p(i, j) = pA(i)pD+pB(i)pF(j).

Further, there are measure parameters tA(i), tB(i), tD, tF(j) such that

p(i, j)t(i, j) = pA(i)pD[tA(i) + tD] + pB(i)pF(j) [ tB(i) +tF(j)].

And there are further measure parameters tC and tE(j) such that

[1− p(i, j)]tw(i, j) = pA(i)[1− pD][ tA(i) +tC] + pB(i)pE(j) [ tB(i) +tE(j)].

2.1. Representation

The following theorem gives necessary and sufficient conditions for response probabil-
ities and response measures to be produced by factors selectively influencing vertices in the
Standard Binary Tree for Ordered Processes. We note that response probabilities p(i, j) are
required to be strictly between 0 and 1 for all levels i and j of the factors, to avoid dividing
by 0 at certain places in the proof. The proof uses a result from [22], which is provided in
the Appendix A here.

Theorem 1. Consider probability matrix P = (p(i, j)), with for all i and j, 0 < p(i, j) < 1; correct-
response measure matrix T = (t(i, j)); and incorrect-response measure matrix Tw = (tw(i, j)).
The following two statements are equivalent.

A. Matrices P, T and Tw are produced by Factor Φ and Factor Ψ selectively influencing two
different vertices ordered by the factors in the Standard Binary Tree for Ordered Processes, with the
vertex selectively influenced by Factor Φ preceding the vertex selectively influenced by Factor Ψ.

B. There is a level n of Factor Ψ and for every level i of Factor Φ there are numbers ri ≥ 0 and
si, such that the following three conditions are true, with h a value of i such that max {ri} = rh:

1. There is a constant k, 0 ≤ k ≤ 1, such that for every i 6= h and j 6= n

p(i, j)p(h, n) − p(i, n)p(h, j) = k[p(i, j) − p(h, j) − p(i, n) + p(h, n)].

2. For every j,
p(i, j) − k = ri[p(h, j) − k].

3. For every j,

rh ri si [p(h, j) − p(h, n)]
= rh [p(i, j)t(i, j) − p(i, n)t(i, n)] − ri [ p(h, j)t(h, j) − p(h, n)t(h, n)]

= −rh{[1 − p(i, j)]tw(i, j) − [1 − p(i, n)]tw(i, n)]}
+ ri{[1 − p(h, j)]tw(h, j) − [1 − p(h, n)]tw(h, n)]}.

(1)

Proof. I. Suppose probability matrix P = (p(i, j)), 0 < P < 1, and measure matrix T = (t(i, j))
are produced by Factor Φ and Factor Ψ selectively influencing two different vertices ordered
by the factors in the Standard Binary Tree for Ordered Processes, with the vertex selectively
influenced by Factor Φ preceding the vertex selectively influenced by Factor Ψ.

Then for any i and j,

p(i, j) = pA(i)pD + pB(i)pF(j) (2)

and
p(i, j)t(i, j) = pA(i)pD[tA(i) + tD] + pB(i)pF(j)[tB(i) + tF(j)]

with
pA(i)= 1− pB(i).
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Let h be a value of i such that max{pB(i)} = pB(h). For every i, let ri =
pB(i)
pB(h)

. Note that
rh = max{ri}. Clearly, 0 ≤ ri.

Let n be a value of j such that min{p(h, j)t(h, j)} = p(h, n)t(h, n).
With a little algebra it follows from Equation (2) that for every i 6= h and j 6= n

p(i, j)p(h, n)− p(i, n)p(h, j) = pD[p(i, j)− p(h, j)− p(i, n) + p(h, j)].

Hence, Condition 1 is true, with k = pD.
Note that if pB(h) = 0, then for every i, pB(i) = 0 so Factor Φ is ineffective. Hence pB(h)

does not equal 0.
From Equation (2), for every i and for every j,

p(i, j) − k = k + pB(i)[pF(j)− k]− k
= [pB(i)/pB(h)]pB(h)[pF(j)− k]

= ri[p(h, j)− k].

Hence, Condition 2 is true.
We turn to Condition 3.
If ri = 0, let si = 0.
For i such that ri 6= 0, let si = tB(i)− tB(h). Clearly, si does not depend on j. We now

consider the right hand side of Equation (1) and show that it equals rhrisi [p(h, j) − p(h, n)].
Suppose ri = 0. Then si = 0, so rhrisi [p(h, j) − p(h, n)] = 0. Because ri = pB (i)/pB (h) = 0,

it follows that pB(i) = 0 and pA(i) = 1. The right hand side of Equation (1) is also 0, that is,

rh [p(i, j)t(i, j) − p(i, n)t(i, n)]
= rh[pA(i)pD − pA(i)pD] = 0.

Then Condition 3 is true if ri = 0.
Suppose ri 6= 0.
Select j such p(h, j) 6= p(h, n). Because neither rh, ri nor p(h, j) − p(h, n) is 0, we can

divide expressions by rhri[p(h, j) − p(h, n)].
On division by rhri[p(h, j) − p(h, n)], the left hand side of Equation (1) is si. On division

by rhri[p(h, j) − p(h, n)], the right hand side of Equation (1) is

[ p(i, j)t(i, j)− p(i, n)t(i, n)]/ri − [ p(h, j)t(h, j)− p(h, n)t(h, n)]/rh
p(h, j)− p(h, n)

(3)

The first term in the numerator of Equation (3) is

[p(i, j)t(i, j)− p(i, n)t(i, n)]/ri = {pB(i)pF(j)[tB(i)+tF(j)]−pB(i)pF(n)[tB(i) + tF(n)]}/ri
= pB(h){pF(j)[tB(i)+tF(j)]−pF(n)[tB(i) + tF(n)]}

Similarly, the second term in the numerator of Equation (3) is

[p(h, j)t(h, j)− p(h, n)t(h, n)]/rh = pB(h){pF(j)[tB(h) + tF(j)]− pF(n)[tB(h) + tF(n)]

The numerator of Equation (3) becomes

pB(h){pF(j)[tB(i)− tB(h)]− pF(n)[tB(i)− tB(h)]}
= pB(h)[pF(j)− pF(n)][tB(i)− tB(h)]

The denominator of Equation (3) is p(h, j) − p(h, n) = pB(h)[pF(j)− pF(n)].
Then the ratio in Equation (1) becomes

tB (i) − tB (h) = si.

Hence, Condition 3 is true.
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II. Suppose Conditions 1, 2 and 3 are true. We begin by showing that matrices P and T
are produced by the Standard Tree for Ordered Processes, and then we show they are also
produced by the Standard Binary Tree for Ordered Processes.

In [23] it is shown that from Conditions 1 and 2, parameters pA(i), pB(i), pC, pD, pE(j),
and pF(j) exist, such that

0 ≤ pA(i), pB(i), pC, pD, pE(j), pF(j) ≤ 1

pA(i) + pB(i) = 1

pC + pD = 1

pE(j) + pF(j) = 1

and
p(i, j) = pA(i)pD + pB(i)pF(j), (4)

with pD = k.
We now show that P and T are produced by Factor Φ and Factor Ψ selectively influ-

encing two vertices in the Standard Tree for Ordered Processes. Necessary and sufficient
conditions are in [22] (see Appendix A).

Renumber the levels of Factor Ψ so pF(1) ≤ . . . ≤ pF(j) ≤ . . . ≤ pF(J). Then by
Equation (4), for every i, p(i, 1) ≤ . . . ≤ p(i, j) ≤ . . . ≤ p(i, J). Hence, Condition 1 of
Theorem 5 of [22] is satisfied.

By Condition 2 of the theorem to be proved, for every level i of Factor Φ there exists a
number ri ≥ 0 such that for every level j,

p(i, j) − k = ri[p(h, j) − k],

where h is a level such that max{ri} = rh. Let n be a level of Factor Ψ such that
min{p(h, j)t(h, j)} = p(h, n)t(h, n). Then for every i and j,

p(i, j) − p(i, n) = p(i, j) − k − [p(i, n) − k]
= ri[p(h, j) − k] − ri[p(h, n) − k]

= ri[p(h, j) − p(h, n)].

Hence Condition 2 of Theorem 5 is satisfied (with i* = h and j* = n).
Condition 3 of Theorem 5 is satisfied because it is the same as Condition 3 of the

theorem to be proved, and we have assumed Condition 3 to be true.
Because Conditions 1, 2 and 3 of Theorem 5 are satisfied, there exist probability

parameters (denoted ϕ) and measure parameters (denoted µ) of the Standard Tree for
Ordered Processes such that the following equations are true for every level i of Factor Φ
and every level j of Factor Ψ, see Figure 2. The arc denoted D in Figure 2 (for the Standard
Tree for Ordered Processes) is denoted ∆ here to distinguish it from arc D in the Standard
Binary Tree for Ordered Processes (Figure 1).

p(i, j) = ϕ∆(i) + ϕB(i)ϕF(j). (5)

p(i, j)t(i, j) = ϕ∆(i)µ∆(i) + ϕB(i)ϕF(j)[µB(i) + µF(j)]. (6)

From the proof of Theorem 5, parameters can be assigned so µF(n) = 0.
Equation (4) has the form of an equation accounting for p(i, j) with the Standard

Tree for Ordered Processes. Then Equations (4) and (5) provide two sets of probability
parameters that account for p(i, j) with the Standard Tree for Ordered Processes. Then
by Theorem 6 of Schweickert and Zheng (2019b), with scaling parameters c and d we can
transform probability parameters in Equation (5) to those in Equation (4), as follows.

For every level i, pB(i) = ϕ*B(i) = cϕB(i).
For every level i, pA(i)pD = ϕ*∆(i) = ϕ∆(i) − cdϕB(i).
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For every level j, pF(j) = ϕ*F(j) = ϕF(j)/c + d.
Now by Theorem 6 of Schweickert and Zheng (2019b), the following transformations

of the measure parameters in Equation (6) are admissible transformations, with scaling
parameters c and d, and with j′ = n and e = 0.

For every level i, let µ*B(i) = µB(i).
Recall that µF(n) = 0.
Let µ*F(n) = µF(n) = 0.
For every level i, let

µ∗∆(i) =
−ϕ∆(i)µ∆(i) + cdϕB(i)µB(i)

cdϕB(i)− ϕ∆(i)

For every level j, let

µ∗F(j) =
ϕF(j)µF(j)
cd + ϕF(i)

Then by Theorem 6, with the transformed parameters, for every level i and every level j,

p(i, j) = ϕ*∆(i) + ϕ*B(i) ϕ*F(j)
= pA(i)pD + pB(i)pF(j)

and
p(i, j)t(i, j) = ϕ*∆(i)µ*∆(i) + ϕ*B(i)ϕ*F(j)[µ*B(i) + µ*F(j)]

= pA(i)pD[µ*∆(i) + 0] + pB(i)pF(j)[µ*B(i) + µ*F(j)].

Then P and T are produced by the Standard Binary Tree for Ordered Processes, with
tA(i) = µ*∆(i), tD = 0, tB(i) = µ*B(i) and tF(j) = µ*F(j).

The subtree of the Standard Binary Tree for Ordered Processes that produces correct
responses has the same form as the subtree that produced incorrect responses. So, reasoning
for P and Tw is similar to that above. �

2.2. Uniqueness of Parameters

Suppose the Standard Binary Tree for Ordered Processes accounts for observed re-
sponse probabilities and response measures with a particular set of parameter values.
Those parameter values are not necessarily the only ones that can account for the data.

2.2.1. Numerical Example

Table 1 gives two different sets of values, old and new, for parameters of the Standard
Binary Tree for Ordered Processes that make the same predictions. The parameter values
are for a particular level i of Factor Φ and a particular level j of Factor Ψ. When Factors Φ
and Ψ have levels i and j, respectively, the old parameter values predict for the probability
of a correct response

p(i, j) = pA(i)pD + pB(i)pF(j) = 0.50 × 0.40 + 0.50 × 0.16 = 0.28.

The new parameter values predict the same

p(i, j) = p*A(i)p*D + p*B(i)p*F(j) = 0.20 × 0.40 + 0.80 × 0.25 = 0.28.

Likewise, the old parameter values predict for the product of correct response proba-
bility and response measure

p(i, j)t(i, j) = pA(i)pD[tA(i) + tD] + pB(i)pF(j)[tB(i) + tF(j)] = 2.26.

And the new parameter values predict the same

p(i, j)t(i, j) = p*A(i)p*D[t*A(i) + t*D] + p*B(i)p*F(j) [t*B(i) + t*F(j)] = 2.26.
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Old and new parameter values are related through the admissible transformations in
Table 2. There are four scaling parameters, c, e, f, and t*F(j′), where j′ is an arbitrary level
of Factor Ψ, chosen so p*F(j′) 6= 0. To insure that new probability parameters are between
0 and 1, the scaling parameters must satisfy the bounds in Table 3, which were derived by
Schweickert and Chen (2008).

Table 1. Numerical Example of Transformed Parameters in The Standard Binary Tree for
Ordered Processes.

Old New 1

pA(i) 0.50 0.20
pB(i) 0.50 0.80
pD 0.40 0.40

pF(j) 0.16 0.25
tA(i) 4.50 7.50
tD 4.00 7.00

tB(i) 2.00 3.00
tF(j) 5.00 2.50

1 New parameter values were obtained from old ones, including pF(j′) = 0.20 and tF(j′) = 8, through the admissible
transformations in Table 2, using scaling parameter values c = 1, e = 3, f = 1 and t*F(j′) = 4.

Table 2. Admissible Transformations of Parameters.

Standard Binary Tree for Ordered Processes 1

p*B(i) = cpB(i)
p*D = pD
p*F(j) = pF(j)/c + (c − 1) pD/c
If p*B(i) 6= 0, t*B(i) = tB(i) + f
If p*F(j) 6= 0,

t∗F(j) = pF(j)tF(j)+ f [pF(j′)−pF(j)]+t∗F(j′)[pF(j′)+(c−1)pD ]−pF(j′)tF(j′)
pF(j)−(c−1)pD

If p*D 6= 0, t*D = tD + e
If p*A(i) 6= 0,

t∗A(i) =
pA(i)tA(i)+pB(i){[tB(i)−tD ](1−c)+[ f+t∗F(j′)][1−c− pF(j′)

pD
]+

pF(j′)tF(j′)
pD

+ce}−e
1−cpB(i)

If p*C 6= 0, t*C = tC + k
If p*E(J) 6= 0,

t∗E(j) = pE(j)tE(j)+ f [pE(j′)−pE(j)]+[c−pF(j′)−(c−1)pD ]t∗E(j′)−pE(j′)tE(j′)
c−pF(j)−(c−1)pD

1 Level j’ of Factor Ψ is chosen so 0 6= p*F(j’) 6= 1.

Table 3. Bounds on Scaling Parameters in Admissible Transformations For the Standard Binary Tree
for Ordered Processes For probability parameters to be between 0 and 1.

0 < c ≤ 1/max{pB(i)}
pD −min{pF(j)} ≤ pD* c

max{pF(j)} − pD ≤ (1 − pD)* c

2.2.2. Admissible Transformations

Suppose response probability and response measure are accounted for by two factors
selectively influencing two vertices in the Standard Binary Tree for Ordered Processes.
If two sets of parameter values are possible, the following theorem gives the relations
between them.

Theorem 2. Suppose probability matrix P and measure matrix T are produced by Factor Φ and
Factor Ψ selectively influencing two different vertices ordered by the factors in the Standard Binary
Tree for Ordered Processes, with the vertex selectively influenced by Factor Φ preceding the vertex
selectively influenced by Factor Ψ, with probability parameters pA(i), pB(i), pD, and pF(j), and
measure parameters tA(i), tB(i), tD, and tF(j).
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Then P and T are produced by Factor Φ and Factor Ψ selectively influencing two different
vertices ordered by the factors in the Standard Binary Tree for Ordered Processes, with the vertex
selectively influenced by Factor Φ preceding the vertex selectively influenced by Factor Ψ, with
probability parameters p*A(i), p*D, p*B(i) and p*F(j), and measure parameters t*A(i), t*D, t*B(i) and
t*F(j) if and only if there are constants c, e and f and a level j′ of Factor Ψ such that the admissible
transformations in Table 2 apply and the bounds in Table 3 are satisfied.

Proof. Suppose probability matrix P = (p(i, j)) and measure matrix T = (t(i, j)) are produced
by Factor Φ and Factor Ψ selectively influencing two different vertices ordered by the factors
in the Standard Binary Tree for Ordered Processes, with the vertex selectively influenced
by Factor Φ preceding the vertex selectively influenced by Factor Ψ, with probability
parameters pA(i), pD, pB(i) and pF(j), and measure parameters tA(i), tD, tB(i) and tF(j).

I. Suppose P and T = (t(i, j)) are also produced by Factor Φ and Factor Ψ selectively
influencing two different vertices ordered by the factors in the Standard Binary Tree for
Ordered Processes, with the vertex selectively influenced by Factor Φ preceding the vertex
selectively influenced by Factor Ψ, with probability parameters p*A(i), p*D, p*B(i) and p*F(j),
and measure parameters t*A(i), t*D, t*B(i) and t*F(j).

The admissible transformations in Table 2, with bounds in Table 3, for the probability
parameters p*A(i), p*D, p*B(i) and p*F(j) were shown to apply in [23].

We turn to admissible transformations for the measure parameters.
Suppose p*A(i), p*D, p*B(i), p*F(j), t*A(i), t*D, t*B(i), and t*F(j) exist with

p(i, j)t(i, j) = p*A(i)p*D [t*A(i) + t*D] + p*B(i)p*F(j) [t*B(i) + t*F(j)].

Also, for any i and j,

p(i, j)t(i, j) = pA(i)pD [tA(i) + tD] + pB(i)pF(j) [tB(i) + tF(j)].

Let j and j′ be two different values of j. Then

p(i, j)t(i, j) − p(i, j′)t(i, j′)
= pA(i)pD [tA(i) + tD] + pB(i)pF(j) [tB(i) + tF(j)] − pA(i)pD [tA(i) + tD]

− pB(i)pF(j′) [tB(i) + tF(j′)]
= pB(i)pF(j) [tB(i) + tF(j)] − pB(i)pF(j′) [tB(i) + tF(j′)].

(7)

Additionally, for the same i and j, due to the assumption of

p(i, j)t(i, j) = p*A(i)p*D [t*A(i) + t*D] + p*B(i)p*F(j) [t*B(i) + t*F(j)],

we have for any i, j and j′

p(i, j)t(i, j) − p(i, j′)t(i, j′)
= p*B(i)p*F(j) [t*B(i) + t*F(j)] − p*B(i)p*F(j′) [t*B(i) + t*F(j′)].

(8)

Because Equations (7) and (8) have the same left side, the right sides are the same,
that is,

pB(i)pF(j) [tB(i) + tF(j)] − pB(i)pF(j′) [tB(i) + tF(j′)]
= p*B(i)p*F(j) [t*B(i) + t*F(j)] − p*B(i)p*F(j′) [t*B(i) + t*F(j′)].

Substitute
p*B(i) = cpB (i)

p*F(j) = pF(j)/c + (c − 1) pD/c.

We have
pB(i)pF(j) [tB(i) + tF(j)] − pB(i)pF(j′) [tB(i) + tF(j′)]

= cpB (i)[pF(j)/c + (c − 1) pD/c][t*B(i) + t*F(j)]
− cpB (i)[pF(j′)/c + (c − 1) pD/c][t*B(i) + t*F (j′)]
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Equivalently,

pF(j)tB(i) + pF(j)tF(j) − pF(j′)tB(i) − pF(j′)tF(j′)
= pF(j)t*B(i) + pF(j)t*F(j) + (c − 1) pD[t*F(j) − t*F(j′)]

− pF(j′)t*B(i) − pF(j′)t*F(j′)

Then we get

[t*B(i) − tB(i)][pF(j′) − pF(j)]
= pF(j)t*F(j) + (c − 1)pD[t*F(j) − t*F(j′)] − pF(j′)t*F(j′)

− pF(j)tF(j) + pF(j′)tF(j′)

As a result, for any j such that pF (j) 6= pF (j′)

t∗B(i)− tB(i) =
pF(j)t∗F(j) + (c− 1)pD[t∗F(j)− t∗F(j′)]− pF(j′)t∗F(j′)− pF(j)tF(j) + pF(j′)tF(j′)

pF(j′)− pF(j)

The left hand side of the above equation cannot change when j changes. So the left
hand side must be a constant, denote it as f.

Hence, t*B(i) = tB(i) + f.
Further, the right hand side equals f.

pF(j)t∗F(j) + (c− 1)pD[t∗F(j)− t∗F(j′)]− pF(j′)t∗F(j′)− pF(j)tF(j) + pF(j′)tF(j′)
pF(j′)− pF(j)

= f

Hence, there is

t∗F(j) =
pF(j)tF(j) + f [pF(j′)− pF(j)] + t∗F(j′)[pF(j′) + (c− 1)pD]− pF(j′)tF(j′)

pF(j) + (c− 1)pD

Similarly, according to the assumptions,

p(i, j)t(i, j) = pA(i)pD [tA(i) + tD] + pB(i)pF(j) [tB(i) + tF(j)]
p(i, j)t(i, j) = p*A(i)p*D [t*A(i) + t*D] + p*B(i)p*F(j) [t*B(i) + t*F(j)].

Also, for any i such that pB(i) 6= 0 and p*B(i) 6= 0, we have

p(i, j)t(i, j)
pB(i)

=
pA(i)pD[tA(i) + tD]

pB(i)
+ pF(j)[tB(i) + tF(j)] (9)

p(i, j)t(i, j)
p∗B(i)

=
p∗A(i)p∗D

[
t∗A(i) + t∗D

]
p∗B(i)

+ p∗F(j)[t∗B(i) + t∗F(j)] (10)

Because p*B(i) = cpB(i), we have

p(i, j)t(i, j)
p∗B(i)

=
p(i, j)t(i, j)

cpB(i)

Also, there is p*D = pD from Table 2.
So Equation (10) can be transformed into

p(i, j)t(i, j)
pB(i)

= c ∗
p∗A(i)p∗D

[
t∗A(i) + t∗D

]
p∗B(i)

+ cp∗F(j)[t∗B(i) + t∗F(j)] (11)
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Then according to Equation (9), for any i and i′ which can be any different value of i
with pB(i′) 6= 0,

p(i, j)t(i, j)
pB(i)

− p(i′ , j)t(i′ , j)
pB(i′)

= pA(i)pD [tA(i)+tD ]
pB(i)

+ pF(j)[tB(i) + tF(j)]− pA(i′)pD [tA(i′)+tD ]
pB(i′)

− pF(j)[tB(i′) + tF(j)]

= pA(i)pDtA(i)
pB(i)

+ pA(i)pDtD
pB(i)

+ pF(j)[tB(i)− tB(i′)]− pA(i′)pDtA(i′)
pB(i′)

− pA(i′)pDtD
pB(i′)

= pA(i)pDtA(i)
pB(i)

− pA(i′)pDtA(i′)
pB(i′)

+ pF(j)[tB(i)− tB(i′)]+
pA(i)pDtD

pB(i)
− pA(i′)pDtD

pB(i′)

= pA(i)pDtA(i)
pB(i)

− pA(i′)pDtA(i′)
pB(i′)

+ pF(j)[tB(i)− tB(i′)]+
[

1−pB(i)
pB(i)

− 1−pB(i′)
pB(i′)

]
pDtD

= pA(i)pDtA(i)
pB(i)

− pA(i′)pDtA(i′)
pB(i′)

+ pF(j)[tB(i)− tB(i′)]+
[

1
pB(i)
− 1

pB(i′)

]
pDtD

(12)

Also, according to Equation (11), we have

p(i, j)t(i, j)
pB(i)

− p(i′ ,j)t(i′ ,j)
pB(i′)

= c
p∗A(i)pD[t∗A(i)+t∗D]

p∗B(i)
+ cp∗F(j)[t∗B(i) + t∗F(j)]− c

p∗A(i
′)pD[t∗A(i′)+t∗D]

p∗B(i
′) − cp∗F(j)[t∗B(i

′) + t∗F(j)]

= c{ p∗A(i)pD[t∗A(i)+t∗D]
p∗B(i)

+ p∗F(j)[t∗B(i) + t∗F(j)]− p∗A(i′)pD[t∗A(i′)+t∗D]
p∗B(i′)

− p∗F(j)[t∗B(i′) + t∗F(j)]}

= c{ p∗A(i)pDt∗A(i)
p∗B(i)

+
p∗A(i)pDt∗D

p∗B(i)
+ p∗F(j)[t∗B(i)− t∗B(i′)]−

p∗A(i′)pDt∗A(i′)
p∗B(i′)

− p∗A(i′)pDt∗D
p∗B(i′)

}

= c{ p∗A(i)pDt∗A(i)
p∗B(i)

− p∗A(i
′)pDt∗A(i

′)
p∗B(i

′) + p∗F(j)[t∗B(i)− t∗B(i
′)] +

p∗A(i)pDt∗D
p∗B(i)

− p∗A(i
′)pDt∗D

p∗B(i
′) }

= c{ p∗A(i)pDt∗A(i)
p∗B(i)

− p∗A(i
′)pDt∗A(i

′)
p∗B(i

′) + p∗F(j)[t∗B(i)− t∗B(i
′)] + [

1−p∗B(i)
p∗B(i)

− 1−p∗B(i
′)

p∗B(i
′) ]pDt∗D}

= c{ p∗A(i)pDt∗A(i)
p∗B(i)

− p∗A(i
′)pDt∗A(i

′)
p∗B(i

′) + p∗F(j)[t∗B(i)− t∗B(i
′)] + [ 1

p∗B(i)
− 1

p∗B(i
′) ]pDt∗D}

(13)

Substitute the following values into Equation (13),

p*B(i) = cpB(i)

p*F(j) = pF(j)/c + (c − 1) pD/c

t*B(i) = tB(i) + f.

Then

p(i, j)t(i, j)
pB(i)

− p(i′ ,j)t(i′ ,j)
pB(i′)

= c{ p∗A(i)pDt∗A(i)
cpB(i)

− p∗A(i
′)pDt∗A(i

′)
cpB(i′)

+
[

pF(j)
c + (c−1)pD

c

]
[tB(i)− tB(i′)] + [ 1

cpB(i)
− 1

cpB(i′)
]pDt∗D}

=
p∗A(i)pDt∗A(i)

pB(i)
− p∗A(i

′)pDt∗A(i
′)

pB(i′)
+ [pF(j) + (c− 1)pD][tB(i)− tB(i′)] + [ 1

pB(i)
− 1

pB(i′)
]pDt∗D

(14)

Because Equations (12) and (14) have the same left side, the right sides are the same,
that is,

pA(i)pDtA(i)
pB(i)

− pA(i′)pDtA(i′)
pB(i′)

+ pF(j)[tB(i)− tB(i′)]+
[

1
pB(i)
− 1

pB(i′)

]
pDtD

=
p∗A(i)pDt∗A(i)

pB(i)
− p∗A(i

′)pDt∗A(i
′)

pB(i′)
+ [pF(j) + (c− 1)pD][tB(i)− tB(i′)] + [ 1

pB(i)
− 1

pB(i′)
]pDt∗D

Equivalently,

pA(i)pDtA(i)
pB(i)

− pA(i′)pDtA(i′)
pB(i′)

+ pF(j)[tB(i)− tB(i′)]−
p∗A(i)pDt∗A(i)

pB(i)
+

p∗A(i
′)pDt∗A(i

′)
pB(i′)

−[pF(j) + (c− 1)pD][tB(i)− tB(i′)]
= [ 1

pB(i)
− 1

pB(i′)
]pDt∗D −

[
1

pB(i)
− 1

pB(i′)

]
pDtD

The left side can be simplified into

pD
pB(i)

[pA(i)tA(i)− p∗A(i)t
∗
A(i)]−

pD
pB(i′)

{pA
(
i′
)
tA
(
i′
)
− p∗A

(
i′
)
t∗A
(
i′
)
}+ (1− c)pD]

[
tB(i)− tB

(
i′
)]
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Meanwhile, the right side can be simplified into

[
1

pB(i)
− 1

pB(i′)
]pD[t∗D − tD]

Then we have,

pD
pB(i)

[
pA(i)tA(i)− p∗A(i)t

∗
A(i)

]
− pD

pB(i′)
{pA(i′)tA(i′)− p∗A(i

′)t∗A(i
′)}+ (1− c)pD][tB(i)− tB(i′)]

= [ 1
pB(i)
− 1

pB(i′)
]pD[t∗D − tD]

So for any i such that pB(i) 6= pB(i′), there is,

t∗D − tD =

pD
pB(i)

[
pA(i)tA(i)− p∗A(i)t

∗
A(i)

]
− pD

pB(i′)
{pA(i′)tA(i′)− p∗A(i

′)t∗A(i
′)}+ (1− c)pD][tB(i)− tB(i′)][

1
pB(i)
− 1

pB(i′)

]
pD

The left hand side of the above equation cannot change when i changes. So the left
hand side must be a constant, denote it as e.

Hence, t*D = tD + e.
Because

p(i, j)t(i, j) = pA(i)pD [tA(i) + tD] + pB(i)pF(j) [tB(i) + tF(j)]

p(i, j)t(i, j) = p*A(i)p*D [t*A(i) + t*D] + p*B(i)p*F(j) [t*B(i) + t*F(j)]

There is
pA(i)pD [tA(i) + tD] + pB(i)pF(j) [tB(i) + tF(j)]
= p∗A(i)p∗D [t∗A(i) + t∗D] + p∗B(i)p∗F(j) [t∗B(i) + t∗F(j)]

Substitute
p*B(i) = cpB(i)

p*F(j) = pF(j)/c + (c − 1) pD/c

t*B(i) = tB(i) + f

t∗F(j) =
pF(j)tF(j) + f ∗ [pF(j′)− pF(j)] + t∗F(j′)[pF(j′) + (c− 1)pD]− pF(j′)tF(j′)

pF(j)− (c− 1)pD

and t*D = tD + e.
We get

pA(i)pD [tA(i) + tD] + pB(i)pF(j) [tB(i) + tF(j)]
= [1− cpB(i)]pD

[
t∗A(i) + tD + e

]
+ cpB(i)

[
pF(j)

c + (c−1)pD
c

]
∗ {tB(i) + f

+
pF(j)tF(j)+ f [pF(j′)−pF(j)]+t∗F(j′)[pF(j′)+(c−1)pD ]−pF(j′)tF(j′)

pF(j)+(c−1)pD
}

Equivalently,

[1− cpB(i)]pD
[
t∗A(i) + tD + e

]
− [1− pB(i)]pD[tA(i) + tD]

= pB(i)pF(j)[tB(i) + tF(j)]− cpB(i)
[

pF(j)
c + (c−1)pD

c

]
∗ {tB(i) + f

+
pF(j)tF(j)+ f [pF(j′)−pF(j)]+t∗F(j′)[pF(j′)+(c−1)pD ]−pF(j′)tF(j′)

pF(j)+(c−1)pD
}

The left side can be simplified into

pD{[1− cpB(i)]t∗A(i)− pA(i)tA(i) + (1− c)pB(i)tD − cepB(i) + e}

The right side can be simplified into

pB(i){tB(i)(1− c)pD +
[

f + t∗F
(

j′
)][

(1− c)pD − pF
(

j′
)]

+ pF
(

j′
)
tF
(

j′
)
}
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Hence,

pD{[1− cpB(i)]t∗A(i)− pA(i)tA(i) + (1− c)pB(i)tD − cepB(i) + e}
= pB(i){tB(i)(1− c)pD + [ f + t∗F(j′)][(1− c)pD − pF(j′)] + pF(j′)tF(j′)}

Then we have,

[1− cpB(i)]t∗A(i)
= pB(i){tB(i)(1− c) + [ f + t∗F(j′)]

[
(1− c)− pF(j′)

pD

]
+ pF(j′)tF(j′)

pD
}

+pA(i)tA(i)− (1− c)pB(i)tD + cepB(i)− e}
= pA(i)tA(i) + pB(i){[tB(i)− tD](1− c) + [ f + t∗F(j′)]

[
(1− c)− pF(j′)

pD

]
+ pF(j′)tF(j′)

pD
+ ce} − e

So we get,

t∗A(i) =
pA(i)tA(i) + pB(i){[tB(i)− tD](1− c) + [ f + t∗F(j′)]

[
(1− c)− pF(j′)

pD

]
+ pF(j′)tF(j′)

pD
+ ce} − e

1− cpB(i)

II. Conversely, suppose for all 1 ≤ i ≤ I, and 1 ≤ j ≤ J, there exist p*A(i), p*D, p*B(i),
p*F(j), t*A(i), t*D, t*B(i), and t*F(j) such that

0 ≤ p*A(i), p*D, p*B(i), p*F(j) ≤ 1

t*A(i), t*D, t*B(i), t*F(j) ≥ 0

with the following equations,
p*B(i) = cpB(i),

p*D = pD,

p*F(j) = pF(j)/c + (c − 1) pD/c,

t*B(i) = tB(i) + f,

t∗F(j) =
pF(j)tF(j) + f ∗ [pF(j′)− pF(j)] + t∗F(j′)[pF(j′) + (c− 1)pD]− pF(j′)tF(j′)

pF(j)− (c− 1)pD
,

t*D = tD + e,

and

t∗A(i) =
pA(i)tA(i) + pB(i)

{
[tB(i)− tD](1− c)+[ f + t∗F(j′)][1− c− pF(j′)

pD

]
+ pF(j′)tF(j′)

pD
+ ce} − e

1− cpB(i)

As well as the bounds for c in Table 3.
Then,

p∗A(i)p∗D
[
t∗A(i) t∗D

]
=
[
1− p∗A

]
p∗D
[
p∗A(i) + t∗D

]
= pA(i)tA(i)pD + pB(i){[tB(i)− tD](1− c)pD + [ f + t∗F(j′)][(1− c)pD − pF(j′)]
+pF(j′)tF(j′) + cepD} − epD + (tD + e)[1− cpB(i)]pD
= pA(i)pD[tD + tA(i)] + pB(i){tB(i)(1− c)pD + [ f + t∗F(j′)][(1− c)pD − pF(j′)]+pF(j′)tF(j′)}
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Meanwhile,

p∗B(i)p∗F[t
∗
B(i) t∗F(j)]

= cpB(i)
[

pF(j)
c + (c−1)pD

c

]
{tB(i) + f

+
pF(j)tF(j)+ f [pF(j′)−pF(j)]+t∗F(j′)[pF(j′)+(c−1)pD ]−pF(j′)tF(j′)

pF(j)+(c−1)pD
}

= pB(i)[pF(j) + (c− 1)pD] ∗ {tB(i) + f

+
pF(j)tF(j)+ f [pF(j′)−pF(j)]+t∗F(j′)[pF(j′)+(c−1)pD ]−pF(j′)tF(j′)

pF(j)+(c−1)pD
}

= pB(i){[tB(i) + f ][pF(j) + (c− 1)pD] + pF(j)tF(j) + f [pF(j′)− pF(j)]
+t∗F(j′)[pF(j′) + (c− 1)pD]− pF(j′)tF(j′)}
= pB(i){tB(i)[pF(j) + (c− 1)pD] + pF(j)tF(j)
+[t∗F(j′) + f ][pF(j′) + (c− 1)pD]− pF(j′)tF(j′)}

Putting these two parts together, we get

p∗A(i)p∗D
[
t∗A(i) + t∗D

]
+ p∗B(i)p∗F(j)[t∗B(i) + t∗F(j)]

= pA(i)pD[tD + tA(i)] + pB(i){tB(i)(1− c)pD + [ f + t∗F(j′)][(1− c)pD − pF(j′)] + pF(j′)tF(j′)}
+pB(i){tB(i)[pF(j) + (c− 1)pD] + pF(j)tF(j) + [t∗F(j′) + f ][pF(j′) + (c− 1)pD]− pF(j′)tF(j′)}
= pA(i)pD[tD + tA(i)] + pB(i)pF(j)[tB(i) + tF(j)]
= p(i, j)t(i, j)

�

2.2.3. Remarks on Nonnegative Measure Values

In some applications the measure associated with an arc may be positive or negative.
For example, the measure in a decision tree is a payoff, which could be positive (a gain)
or negative (a loss). For application to response time, we assume the measure associated
with an arc is a time, a nonnegative quantity. In such an application, an admissible
transformation of a measure must transform a nonnegative quantity to another nonnegative
quantity. The bounds in Table 4 on measure scaling parameters achieve this.

Table 4. Bounds on Scaling Parameters in Admissible Transformations For the Standard Binary Tree
for Ordered Processes For Measure Parameters to be Nonnegative.

max{−tB(i)} ≤ f ≤ min{t∗B(i)}
max{−tD} ≤ e ≤ min{t∗DD}
max{−tC} ≤ k ≤ min{t∗C}

From Table 2, consider the admissible transformation t∗B(i) = tB(i) + f . For both
tB(i) and t∗B(i) to be nonnegative, f has boundaries as

t∗B(i) = tB(i) + f ≥ 0

tB(i) = t∗B(i)− f ≥ 0

So for f, there is max{−tB(i)} ≤ f ≤ min{t∗B(i)}.
From Table 2, consider the admissible transformation t*D = tD + e. For both t*D and tD

to be nonnegative, e has boundaries as

t∗D = tD + e ≥ 0

tD = t∗D − e ≥ 0

So for f, there is max{−tD} ≤ e ≤ min{t∗D}.
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2.3. Degrees of Freedom

It is useful to know the degrees of freedom. When designing an experiment to test
the model, the number of levels of the factors must be large enough to provide at least
one degree of freedom; otherwise parameter values can always be found that fit the data.
After an experiment is done, degrees of freedom are needed to evaluation of a goodness of
fit statistic such as G2. Using the admissible transformations of parameters allows us to
calculate the degrees of freedom for the Standard Binary Tree for Ordered processes in the
following corollary.

Corollary 1. Suppose probability matrix P = (p(i, j)), correct-response-measure matrix T = (t(i, j))
and incorrect-response-measure-matrix Tw = (tw(i, j)) are produced by Factors Φ and Ψ selectively
influencing two vertices ordered by the factors in the Standard Binary Tree for Ordered Processes,
with the vertex selectively influenced by Factor Φ preceding the vertex selectively influenced by
Factor Ψ, with probability parameters pA(i), pB(i), pC, pD, pE(j), and pF(j), and measure parameters
tA(i), tB(i), tC, tD, tE(j), and tF(j).

Suppose Factor Φ has I levels and Factor Ψ has J levels. Then the degrees of freedom are
3IJ − 3I − 3J + 3.

Proof. For each combination of a level i of Factor Φ and a level j of Factor Ψ we have an
observed probability of a correct response, an observed measure for a correct response and
an observed measure for an incorrect response. The probability of an incorrect response is
determined by the probability of a correct response. Hence the total number of observations
is 3IJ. The arc probabilities to be estimated are pA(i), pB(i), pC, pD, pE(j), and pF(j). But for
every i

pA(i) + pB(i) = 1

and for every j,
pE(j) + pF(j) = 1.

Further,
pC + pD = 1.

Hence the number of independent arc probabilities to be estimated is I + J + 1. The arc
measure parameters to be estimated are tA(i), tB(i), tC, tD, tE(j), and tF(j); their number is
2I + 2 + 2J. The scaling parameters to be freely selected are c for arc probabilities, e, f, and
k for measures, also t*E(j′) and t*F(j′) so there are 6 scaling parameters. Hence, there are
3IJ − (I + J + 1) − (2 + 2I + 2J) + 6 = 3(IJ − I − J + 1) = 3(I − 1)(J − 1) degrees of freedom. A
large experiment is not needed to test the MPT; a design with I = 2 levels of one factor and
J = 2 levels of the other factor produces 3 degrees of freedom. �

3. Discussion

Multinomial Processing Trees are widely used as models of phenomena in psychology.
One reason is straightforwardness and relative simplicity, but the major reason is their
ability to often account for data. Agreement with data is usually evaluated by goodness
of fit. Additional support is sometimes provided by a factorial experiment, with tests of
whether factors selectively influence vertices in an MPT (reviewed by [20]).

In a binary MPT exactly two arcs descend from each nonterminal vertex. MPTs with
more than two arcs descending from a vertex are occasionally inferred from data. But many
MPTs currently in use are binary; most in the applications discussed in the reviews cited
above are binary trees.

Here we provide necessary and sufficient conditions, which can be tested by boot-
strapping with data from factorial experiments, for selective influence of the factors on
vertices in a particular binary MPT, the Standard Binary Tree for Ordered Processes. This
MPT has a special role, because under certain conditions if each of two factors selectively
influences a different vertex in an arbitrary MPT, that MPT is equivalent for the factors
to this one. Methods of testing are beyond the scope of this paper, but described in [12].
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Parameter values are not unique. Admissible transformations are given that allow one set
of parameter values to be transformed to another. Degrees of freedom for an experiment
with the two factors are calculated from the number of observations and the number of
parameters to be estimated, both depend on the number of levels of the factors.

Goodness of fit test are general. If a goodness of fit test fails, one learns from the
failure about data points that are far from their predicted values. From this information,
it may be hard to diagnose what went wrong. Conditions to be tested here are focused,
each focusing on a particular parameter. The first two are about probability parameters,
the last is about time (or another measure). If the first two hold but the third does not, an
investigator leans that response probability is accounted for by the probability parameters,
but something is wrong with the way time (or the other measure) is incorporated in the
model. Tests of conditions developed here are intended to be more diagnostic than tests of
overall goodness of fit.
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Appendix A

Theorem 5 of [22].
Suppose for all i and j, 0 < p(i, j) < 1. Probability matrix P = (p(i, j)), correct-response measure

matrix T = (t(i, j)), and incorrect-response-measure matrix Tw = (tw(i, j)) are produced by Factor Φ
and Factor Ψ selectively influencing two different vertices ordered by the factors in the Standard
Tree for Ordered Processes, with the vertex selectively influenced by Factor Φ preceding the vertex
selectively influenced by Factor Ψ, if and only if there is a level n of Factor Ψ and for every level i of
Factor Φ there are numbers ri ≥ 0 and si such that the following three conditions are true.

1. The columns of P can be numbered so j ≥ j′ implies that for every i, p(i, j) ≥ p(i, j′).
2. There are levels i* and j* such that for every i and j,

p(i, j) − p(i, j*) = ri[p(i*, j) − p(i*, j*)].

3. Let max{ri} = rh. For every j,

rhrisi[p(h, j)− p(h, n)]
= rh[p(i, j)t(i, j)− p(i, n)t(i, n)]− ri[p(h, j)t(h, j)− p(h, n)t(h, n)]
= −rh{[1− p(i, j)]tw(i, j)− [1− p(i, n)]tw(i, n)}+ ri[1− p(h, j)]tw(h, j)− [1− p(h, n)]tw(h, n)}.
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