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Abstract: Let G be a group. An automorphism α of G is said to be a cyclic automorphism if the
subgroup 〈x, xα〉 is cyclic for every element x of G. In [F. de Giovanni, M.L. Newell, A. Russo: On
a class of normal endomorphisms of groups, J. Algebra and its Applications 13, (2014), 6pp] the
authors proved that every cyclic automorphism is central, namely, that every cyclic automorphism
acts trivially on the factor group G/Z(G). In this paper, the class FW of groups in which every
element induces by conjugation a cyclic automorphism on a (normal) subgroup of finite index will
be investigated.
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1. Introduction

Let G be a group. Following the work in [1], an automorphism α of G is called a cyclic
automorphism if the subgroup 〈x, xα〉 is cyclic for every element x of G. Clearly, any power
automorphism of G (i.e., an automorphism which maps every subgroup onto itself) is cyclic;
however, the multiplication by a rational number greater than 1 is a cyclic automorphism
of the additive group of rational numbers which is not a power automorphism. Finally, it is
easy to show that any cyclic automorphism of a periodic group is a power automorphism.

In [1], it was proved that any cyclic automorphism of a group G is central, i.e., it
acts trivially on the factor group G/Z(G). Notice that this result is an extension to cyclic
automorphisms of a renowned theorem by Cooper [2] for power automorphisms. It is not
difficult to prove that the set CAut(G) of all cyclic automorphisms of G forms a normal
abelian subgroup of the automorphism group Aut(G) of G. In [3], the structure of CAut(G)
has been investigated in detail and some well-known properties of power automorphisms
(see in [2]) has been extended to cyclic automorphisms. Moreover, the groups in which
every automorphism is cyclic have been characterized there.

In the following, we will say that an element g of a group G induces by conjugation
a weakly cyclic automorphism of G if there exists a normal subgroup W(g) of G such that
the index |G : W(g)| is finite and the subgroup 〈x, xg〉 is cyclic for each element x of
W(g). Let g1 and g2 be elements of G inducing weakly cyclic automorphisms and put
W = W(g1) ∩W(g2). If x is an element of W, then 〈x, xg1〉 = 〈y〉 for some y ∈ W, and so
〈x, xg1〉 is contained in the cyclic subgroup 〈y, yg2〉. It follows that g1g2 induces a weakly
cyclic automorphism of G and hence the set FW(G) of all elements of G inducing by
conjugation weakly cyclic automorphisms of G is a subgroup of G. Moreover, if g is an
element of FW, x is an element of W(g) and y is an element of G, we have that 〈xy−1

, xy−1g〉y
is again a cyclic subgroup of W(g), so that FW(G) is a normal subgroup of G. We name
this subgroup the FW-centre of G. A group which coincides with its FW-center will be
called an FW-group.
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Recall that the cyclic norm C(G) of a group G is defined as the intersection of the
normalizers of every maximal locally cyclic subgroup of G. By [3], Lemma 2.1, any cyclic
automorphism of G fixes all maximal locally cyclic subgroups of G. It follows that C(G)
coincides with the set of all elements of G inducing cyclic automorphisms of G. In particular,
C(G) is a subgroup of FW(G).

In the first part of the article, the class FW of groups in which every element induces
by conjugation a weakly cyclic automorphism will be investigated. In particular, it will be
proved that the class FW coincides with the class FP recently studied by De Falco et al. [4].
Recall here that a group G is said to be an FP-group if every element of G induces by
conjugation a power automorphism on some subgroup of finite index of G. Clearly,
the groups with finitely many conjugacy classes (the so-called FC-groups) are FP-groups,
while every FP-group is an FW-group. The consideration of the infinite dihedral group
D∞ shows that there are FP-groups which are not FC-groups.

Let G be a group and denote by Cyc(G) the set of all elements x of G such that 〈x, y〉
is cyclic for every y in G. It is easy to show that Cyc(G) is a central, characteristic subgroup
of G called the cyclicizer of G (see [5,6]). Clearly, Cyc(G) is locally cyclic and hence every
automorphism of G induces a cyclic automorphism on Cyc(G). In the last part of the article,
groups with non-trivial cyclicizer will be investigated extending to the infinite case some
results in [6–8]. In particular, it is shown that any torsion-free or primary generalized
soluble group with non-trivial cyclicizer is an FW-group. Moreover, the well-known
characterization of finite p-groups with only one subgroup of order p (see, for instance, [9],
5.3.6) will be extended to locally finite groups. Finally, it is proved that the factor group
G/Cyc(G) is finite if and only if G has a finite covering of locally cyclic subgroups.

Most of our notation is standard and can be found in [10].

2. FW-Groups

Our first result is an easy remark concerning cyclic automorphisms of finite order.

Lemma 1. Let G be a group. Every periodic cyclic automorphism of G is a power automorphism.

Proof. Let α be a cyclic automorphism of G, let g be an element of G, and consider a
maximal locally cyclic subgroup M of G such that g ∈ M. As one can easily see that
Mα = M (see, for instance, in [3], Lemma 2.1), then the normal closure 〈x〉〈α〉 is locally
cyclic and hence there exists an element x of G such that 〈g〉〈α〉 = 〈x〉. Clearly, 〈x〉〈α〉 = 〈x〉
and we may suppose that g has infinite order. Therefore, xα = x−1 and gα = g−1. Thus, α
induces a power automorphism on G.

Let G be a group. A normal subgroup W of G is said to be weakly central if every
element of G induces by conjugation a cyclic automorphism of W. Clearly, if G contains a
weakly central subgroup of finite index, then G is an FW-group.

Proposition 1. Let G be a group. If W is a weakly central subgroup of finite index of G, then every
subgroup of W is normal in G. In particular, G is an FP-group.

Proof. First, assume that every inner automorphism of G is cyclic. Then, G coincides with
its cyclic norm and hence every maximal locally cyclic subgroup of G is normal. Let g be
an element of G and consider a maximal locally cyclic subgroup M containing g. As G
is an FC-group (see [3], Theorem 4.2), then the normal closure 〈g〉G of g in G is a finitely
generated subgroup of M. Therefore, 〈g〉 is normal in G and thus G is a Dedekind group.

The above argument shows that W is a Dedekind group. Since a cyclic automorphism
of a periodic group is a power automorphism (see in [3], Lemma 2.3), we may suppose that
W is abelian. It follows that the factor group G/CG(W) is finite and hence every element g
of G induces on W a cyclic automorphism of finite order. The statement now follows from
Lemma 1.
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Corollary 1. Let G be a group all of whose inner automorphisms are cyclic automorphisms. Then
G is a Dedekind group.

Let G be a group. We denote here with FP(G) the FP-centre of G, namely the subgroup
of all elements of G inducing by conjugation power automorphisms on some subgroup of
finite index of G. Clearly, FP(G) is a subgroup of FW(G).

Recall that a non-periodic group is said to be weak if it can be generated by its elements
of infinite order, while it is said to be strong otherwise. In particular, all non-periodic abelian
groups are weak.

Theorem 1. Let G be a group. Then, FW-centre and FP-centre of G coincide.

Proof. As the FP-centre of G is a subgroup of FW(G), we just have to show that every
element of G inducing a weakly cyclic automorphism of G induces a weakly power auto-
morphism of G. Therefore, let g be an element of FW(G) and let W(g) be a normal subgroup
of finite index of G such that g induces on W(g) a cyclic automorphism. By Lemma 1,
we may assume that g induces an aperiodic automorphism on W(g). Clearly, gn ∈W(g)
for some positive integer n and gn 6= 1. If W(g) is weak, then g acts universally on W(g)
(see [3], Theorem 3.5) and then [W(g), g] = {1} as gn belongs to W(g), so we may further
assume that W(g) is strong. If we let W be the subgroup of G generated by every element
of infinite order of G, by Theorem 3.5 in [3], g fixes W and G/W elementwise. Let now x
be an element of finite order of W(g) and let m be the order of x. As 〈x〉 and 〈xg〉 are both
subgroups of order m of the cyclic group 〈x, xg〉, they coincide and this shows that g acts
as a power automorphism on every finite cyclic subgroup of W(g). As g centralizes every
element of infinite order of G, it follows that g induces a power automorphism on W(g)
and our thesis is proved.

Corollary 2. Let G be a group. Then, G is an FW-group if and only if G is an FP-group.

Recall that a subgroup X of a group G is said to be pronormal if the subgroups X and
Xg are conjugate in the subgroup 〈X, Xg〉 for all elements g of G. As any subnormal and
pronormal subgroup of a group is normal, it follows that a group all of whose subgroups
are pronormal is a T-group (i.e., a group in which normality is a transitive relation in
every subgroup). However, the converse is false, as an example due to Kuzennyi and
Subbotin [11] shows. We point out incidentally that in the universe of groups with no
infinite simple sections the property T for a group G is equivalent to saying that every
subgroup of G is weakly normal (see [12]). A tool which is useful to control pronormal
subgroups of a group G is the pronorm of G, which is defined as the set P(G) of all
elements g of G such that X and Xg are conjugate in 〈X, Xg〉 for any subgroup X of G.
The consideration of the alternating group A5 shows that the pronorm of a group need
not be in general a subgroup. On the other hand, the pronorm of a T-group G with no
infinite simple sections is a subgroup of G which coincides with the set L(G) consisting
of all elements g ∈ G such that, if H is a subgroup of G, then g normalizes a subgroup of
finite index of H (see [13], Theorem 2.2). The last result of this section shows in particular
that a T-group G with no infinite simple sections has all subgroups pronormal whenever G
belongs to the class FW .

Corollary 3. Let G be a group. Then, FW(G) is contained in L(G). In particular, if G is a T-group
with no infinite simple sections, FW(G) is a subgroup of P(G).

Proof. By Theorem 1, for every element g of FW(G) we may find a normal subgroup W(g)
of finite index of G on which g acts as a power automorphism. If we let H be a subgroup of
G, then the subgroup H ∩W(g) of W(g) is normalized by g, has finite index in H and this
proves our claim.
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3. Groups with Non-Trivial Cyclicizer

It is straightforward to see that a group with non-trivial cyclicizer is either torsion-free
or periodic. Therefore, it is natural to inspect the cases in which the groups are either torsion-
free or primary groups. As some arguments can be unified, in the following elements of
infinite order will be said elements of order 0 and torsion-free groups will be called 0-groups.

Lemma 2. Let G be a p-group where p is a prime or 0. If the cyclicizer Cyc(G) of G is not trivial,
then it coincides with the centre Z(G) of G.

Proof. Assume for a contradiction that Cyc(G) is a proper subgroup of Z(G). Then, we
may find an element x of G and an element y ∈ Z(G) such that 〈x, y〉 = 〈x〉 × 〈y〉. Let now
c be a non-trivial element of Cyc(G). As the subgroups 〈x, c〉 and 〈y, c〉 are cyclic, there is a
power of c which belongs to 〈x〉 ∩ 〈y〉 = {1}. It follows that Cyc(G) is periodic, so that also
G is periodic and hence the subgroups 〈x, c〉 and 〈y, c〉 have a unique subgroup of order p
for a prime p dividing the order of, say, 〈x, c〉. In particular, the intersection 〈x〉 ∩ 〈y〉 is not
trivial. This contradiction completes the proof.

The consideration of the direct product of a group of order 3 and a dihedral group
of order 8 shows that there exists a (finite) group G whose order is divided by only two
primes and such that {1} 6= Cyc(G) < Z(G).

Let A = 〈a〉 be a cyclic group of order 4, let B be a group of type 2∞ and let b be
an element of order 4 of B. Consider the semidirect product H = A n B where a acts as
the inversion on B. Take K = 〈a2b2〉 and put G = H/K. Clearly, every finite non-abelian
subgroup of G is a generalized quaternion group. Therefore, in analogy with the locally
dihedral 2-group D2∞ , we call G a locally generalized quaternion group and we denote it
with Q2∞ .

Here we give a first extension of Theorem 8 in [5].

Lemma 3. Let G be a locally finite p-group for some prime p. Then, the cyclicizer of G is not trivial
if and only if

(1) G is locally cyclic or
(2) G is isomorphic with a subgroup of Q2∞ .

In particular, if G is finite and non-abelian, then G is a generalized quaternion group.

Proof. Assume that the cyclicizer C of G contains a non-trivial element c of order p. If G is
abelian, then Lemma 2 yields that G coincides with its cyclicizer and then G is locally cyclic.
Assume thus that there exists a finite non-abelian subgroup H of G and let x be an element
of 〈H, c〉 of order p. As 〈x, c〉 is cyclic, one has that x is a power of c, namely 〈H, c〉 contains
a unique subgroup of order p. By a well-known characterization (see, for instance, [9],
5.3.6) we have that 〈H, c〉 is a generalized quaternion group. As this property holds for
every finite subgroup of G containing 〈H, c〉 and the set of finite subgroups of G containing
〈H, c〉 is a direct system of G, we can clearly assume that G is infinite. Therefore, it is
possible to find in G a subgroup Q which is isomorphic with Q2∞ . Let g be any element
of G, let P be the Prüfer 2-subgroup of Q and let y be an element of order n > 4 of P.
As 〈g, y〉 = 〈g, y, c〉 is either a cyclic or a generalized quaternion group, we have in any
case that 〈y〉 is normalized by g and hence the whole P is normalized by g. Moreover, 〈g〉
has non-trivial intersection with P, as both must contain c. Then, g has to be contained
in Q, otherwise 〈g, Q〉 would contain a direct product of two cyclic subgroups of order 2.
From this it immediately follows that G is isomorphic with Q2∞ .

Let us prove the converse. If G is locally cyclic the result is clear. On the other hand,
take G to be a subgroup of Q2∞ which is not locally cyclic. Then, G is not abelian, so that it
is either the whole Q2∞ or a generalized quaternion group. In both cases Z(G) is the only
subgroup of G of order 2 and therefore it coincides with the cyclicizer of G, which is then
non-trivial.
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This result gives a generalization to the locally finite case of the already quoted result
about finite p-groups [9], 5.3.6.

Corollary 4. Let p be a prime. A locally finite p-group G contains exactly one subgroup of order p
if and only if it satisfies one of the following conditions:

(1) G is locally cyclic;
(2) G is isomorphic with a generalized quaternion group;
(3) G is isomorphic with Q2∞ .

In [7], it is proved that if G is a torsion-free group such that cyclicizer Cyc(G) is
not trivial, then Cyc(G) = Z(G) and if Z(G) is divisible, then G is locally cyclic. One
may ask whether a torsion-free or a p-group with non-trivial cyclicizer is locally cyclic.
In general, these questions can be answered in the negative because of two results by
Olšanskiĭ (see in [14], Theorem 31.4 and Theorem 31.5). On the other hand, our next result
shows that for a wide class of generalized soluble groups the statement is true.

A group G is said to be weakly radical if it contains an ascending (normal) series all of
whose factors are either locally soluble or locally finite.

Theorem 2. Let G be a locally weakly radical group such that |π(G)| ≤ 1. Then, G has non-trivial
cyclicizer if and only if

(1) G is locally cyclic or
(2) G is isomorphic with a subgroup of Q2∞ .

Proof. Let C be the cyclicizer of G. If C 6= {1}, it follows from Lemma 2 that C = Z(G).
Moreover, as already pointed out, G is either torsion-free or periodic. By Lemma 3, we may
also suppose that G is torsion-free. Let c be a non-trivial element of C. If x is an element of
G, then the subgroup E = 〈x, c〉 of G is cyclic and hence there exists a positive integer n
such that xn belongs to 〈c〉. Thus the factor group G/C is periodic and so even locally finite
since G is locally weakly radical. Now an easy application of a famous theorem by Schur
(see, for instance, Corollary to Theorem 4.12 in [10]) shows that the commutator subgroup
of G is locally finite and hence G is abelian. In particular, G is locally cyclic.

The converse is an immediate consequence of Lemma 3.

Corollary 5. Let G be a locally weakly radical group such that |π(G)| ≤ 1. If G has non-trivial
cyclicizer, then it is an FW-group.

A straightforward application of Theorem 2 and of [9], 12.1.1 is the following.

Corollary 6. Let G be a locally nilpotent group. Then G has non-trivial cyclicizer if and only if
either it is locally cyclic or G is periodic and there is a prime number p such that the p-component
Gp of G either is locally cyclic or is isomorphic with a subgroup of Q2∞ .

A well-known result of Baer (see, for instance, in [10], Theorem 4.16) states that a group
is central-by-finite if and only if it has a finite covering consisting of abelian subgroups.
Furthermore, we have already quoted the theorem by Schur that ensures that a central-
by-finite group is finite-by-abelian. In the following we rephrase these results replacing
the centre Z(G) of G by the cyclicizer Cyc(G). Recall that a collection Σ of subgroups of a
group G is said to be a covering of G if each element of G belongs to at least one subset in Σ.

Theorem 3. Let G be a group and let C be the cyclicizer of G. Then, the following hold:

(1) If C has finite index in G, then G is finite-by-(locally cyclic);
(2) The factor group G/C is finite if and only if G has a finite covering consisting of locally

cyclic subgroups.
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Proof. (1) As C ≤ Z(G), then G is central-by-finite and hence the commutator subgroup
G′ of G is finite. Clearly, we may assume that G is infinite, so that C too is infinite and,
by replacing G with G/G′, we may suppose that G is abelian. Moreover, as C is non-
trivial, then G is either torsion-free or periodic. In the former case, G is locally cyclic by
Proposition 2. Assume hence that G is periodic. In this case, as we aim to show that G is
locally cyclic, we may also suppose that G is a p-group for a prime p. However, C is locally
cyclic and hence of type p∞. It follows that G can be decomposed as G = C× H where H
is a subgroup of G. If c and h are elements of order p of C and H, respectively, then the
subgroup 〈c, h〉 is not cyclic. This contradiction shows that H is trivial and hence G = C is
locally cyclic.

(2) First assume that the factor group G/C is finite. Choose a (left) transversal to C
in G, say {x1, . . . , xn}. Then, for any element g of G, we can write g = xic where c is an
element of C. Therefore, g belongs to 〈xi, C〉, which is locally cyclic, and G is covered by
the subgroups 〈xi, C〉 with i = 1, . . . , n.

Conversely, assume that G is covered by finitely many locally cyclic subgroups. Then
by a result of Neumann (see in [10], Lemma 4.17) G is covered by finitely many locally
cyclic subgroups of finite index. Let L be their intersection. Clearly, L is contained in C and
|G : L| is finite. It follows that G/C is finite.

We remark that the cyclicizer of the direct product of Z2 ×Q is trivial, so that the
converse of point (1) of Theorem 3 is not true.
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