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Abstract: Belyi pairs constitute an important element of the program developed by Alexander
Grothendieck in 1972–1984. This program related seemingly distant domains of mathematics; in the
case of Belyi pairs, such domains are two-dimensional combinatorial topology and one-dimensional
arithmetic geometry. The paper contains an account of some computer-assisted calculations of Belyi
pairs with fixed discrete invariants. We present three complete lists of polynomial-like Belyi pairs:
(1) of genus 2 and (minimal possible) degree 5; (2) clean ones of genus 1 and degree 8; and (3) clean
ones of genus 2 and degree 8. The explanation of some phenomena we encounter in these calculations
will hopefully stimulate further development of the dessins d’enfants theory.
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1. Introduction

By definition, a Belyi pair is a pair (X, β), where X is a complete smooth irreducible
curve over an algebraically closed field k and β is a rational non-constant function on
X with only three critical values. This short definition covers some enigmatic relations
between several domains of mathematics. In the present paper, we mention just one of
such relations that motivate the thorough investigation of Belyi pairs.

We identify the rational functions f ∈ k(X) and the branched covers of the projective
line f : X→ P1(k). For a non-constant f ∈ k(X) \ k, denote the set of its critical values by

CritVal( f ) := {c ∈ P1(k) | # f−1◦(c) < deg( f )}.

According to these notations, a Belyi pair is a pair (X, β) with such β ∈ k(X) \ k that

#CritVal(β) ≤ 3.

The cases with #CritVal(β) < 3 are of little interest:

• #CritVal(β) = 0 implies X = P1(k) and β(z) = (az + b)/(cz + d);
• #CritVal(β) = 1 is impossible;
• #CritVal(β) = 2 implies X = P1(k) and β is equivalent to z→ zn with n ∈ N, n≥2.

Hence, we will consider only the case

#CritVal(β) = 3.

Moreover, by post-composing β with an appropriate fractional-linear transformation,
we can assume that

CritVal(β) = {0, 1, ∞}

and in most cases, we stick to this assumption.
A Belyi pair (X, β) is called clean if all the ramifications of β over 1 are 2-fold; in other

words, for P ∈ X [
β(P) = 1

]
=⇒

[
β− 1 ∈

〈
m2

P

〉
\
〈
m3

P

〉]
,
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where mP /OP is the maximal ideal in the local ring of a point P, and for a set S ⊂ OP, we
denote by 〈S〉 the ideal generated by S.

From now on, assume
char(k) 6= 2.

Then, the assumption of cleanness is not really restrictive since, for any Belyi pair, (X, β)
the pair

(
X, 4β(1− β)

)
is clean.

Over the ground field k = C, the relation of Belyi pairs with combinatorial topology
is rather direct. If (X, β) is a clean Belyi pair over C, then the pre-image of the segment
X1 := β−1◦[0, 1] is such a graph

X1 ⊂ X

that
the complement X \ X1 is homeomorphic to a disjoint union of 2 cells. (1)

The embeddings X1 ↪→ X of graphs into compact oriented surfaces enjoying this
property were studied for some time—see, e.g., [1]. From the combinatorial point of view,
it looks like a natural partner of the classical theory of graph enumeration (see [2]). However,
the theory of graph embeddings satisfying (1) turned out to be much more related to other
domains of mathematics and physics. An example of relations with gauge theories can be
found in [3]; relations with computer science and neural networks are discussed in [4].

From now on, we return to algebraic geometry.
Alexander Grothendieck, one of the central figures of algebraic geometry in 20th

century, became interested in the embeddings satisfying (1) in rather peculiar circumstances.
In the beginning of the 1970s, he abandoned the mathematical community for certain non-
mathematical reasons (see mathematicians’ explanations in [5]) and returned to his mother
university in Montpellier. There, he had to supervise the research of students with a very
modest background, so Grothendieck’s native domains turned out to be inappropriate.
Having to choose some elementary one, he started to study (assisted a bit by his students)
the graphs on surfaces with the property (1). He called them dessins d’enfants due to their
apparent simplicity, and in some time, this term became more popular than the previous
ones—maps, orgraphs, etc.

The Montpellier period of Grothendieck’s active mathematical life is covered ap-
proximately by the years 1972–1984. During the first half of this period, he worked as
a combinatorial topologist and rediscovered a beautiful group-theoretical method of de-
scribing dessins d’enfants. However, the most important event happened in the middle of
this period: in 1978, he became aware (thanks to their former student Pierre Deligne with
whom he still kept in contact) of the result of the Soviet mathematician Gennady Belyi [6].
According to Belyi’s theorem, the (appropriately defined) category of dessins d’enfants is
equivalent not only to the category of Belyi pairs over C (which is more or less clear from
the above explanations) but to such a category over the field Q of algebraic numbers!

Grothendieck was emotionally struck with this result and saw it as a fantastic one.
From a personal point of view, it meant that his attempt to abandon algebraic geometry in
favor of more elementary objects failed: the two turned out to be firmly related. From the
general mathematical perspective, putting together the mentioned results provide the action
of the absolute Galois group Aut

(
Q
)

on the isotopy classes of dessins d’enfants! It was realized
soon (see [7]) that this action is faithful.

Thus, the theory of dessins d’enfants provides the unique opportunity of the visualiza-
tion of the absolute Galois group. Of course, this is just one of the many consequences of
the above category equivalence, but it is one of the main motivations of the calculations
presented below.

In more general terms, we have two very different categories of objects: C1 and C2 (in
our case, dessins d’enfants and Belyi pairs over Q). The categories are essentially small (the
term suggested by P. Deligne instead of the existence of a small subcategory containing object
of all the classes of isomorphism), i.e., the classes of their isomorphic objects constitute sets.
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Denote these sets |C1| and |C2|. Each object of both categories is defined by a finite amount
of information, and there is a theory establishing the one-to-one correspondence

|C1|
∼=←→ |C2| (2)

The true nature of this correspondence for the time being is understood poorly; oth-
erwise, its existence would not be so surprising. In the hope of its better understanding,
the authors participate for several decades in the calculation of particular cases. (It is a
rather active international activity, see, e.g., [8].) In the present paper, we demonstrate
some results obtained on the PC’s using MAPLE and avoiding any advanced techniques
of calculation. Our strategy is to analyze (2) as detailed as possible within the objects of
bounded complexity (the number of edges and the genus of the surface on the one hand
and the degree of Belyi map and the genus on the other).

The dissemination of the dessins d’enfants theory was initiated by the famous informal
text [9]. The rigorous basic definitions of this theory, and the main theorems together with the
first examples were published in [10]; the monographic expositions can be found in [11,12].
The papers [13,14] contain more recent overviews, including some computer calculations.

The previously known calculations of Belyi pairs of positive genus are mostly related
to the special (highly symmetrical) curves; they were investigated actively since 18th–19th
century by Bring, Hurwitz, Klein, Wiman, etc. For the general dessins of positive genus, the
known results are somewhat fragmentary. The ongoing project of compiling the database
of Belyi pairs (see the recent report [8]) covers the complete lists up to degree 6 and some
fragmentary results up to degree 9 and genus ≤ 3. The complete list of the clean Belyi
pairs with ≤ 4 edges (and hence degree ≤ 8), containing 134 cases, was published in
the catalog [15] without calculations. In the present paper, the details of the calculations
of all four cases of genus 2 are given, two of them rather hard and requiring computer
calculations. These results are presumably new.

The authors are indebted to the participants of the Moscow State University seminar
“Graphs on surfaces and curves over number fields”, A. D. Mednykh and A. K. Zvonkin,
for their interest. The most difficult results of this paper could not be obtained without
the contribution of S. Yu. Orevkov, who performed some computer calculations several
years ago.

2. Belyi Pairs of Genera 0 and 1

2.1. On Plane Trees

In the genus-0 case, the most complete results are known when there is only one cell in
the above condition (1), i.e., when the complement S2 \X1 in the 2-sphere is homeomorphic
to the disk. It happens if X1 is a tree; the corresponding Belyi functions are called Shabat
polynomials. The general self-contained introduction to the theory can be found in [16].

The first complete list of plane trees and their Shabat polynomials was presented
in [17]; it covered the trees with ≤ eight edges. The trees with nine edges were covered in
[18] and with ten edges in [19]. The length of the answers in the last paper shows that the
complete lists of Shabat trees with 11 edges are out of reach—not because the calculations
are unfeasible but because the answers become too long and complicated. However, there
are some extremely interesting trees with 11 edges (see [20]).

In the remaining part of the paper, we concentrate on the Belyi functions that are the
most natural generalizations of polynomials: the rational functions with the unique pole;
they correspond to unicellular dessins.

2.2. Unicellular Toric Dessins

We give a complete list of the four-edged of them. The corresponding Belyi maps
(without calculations) were collected in the catalog [15] and the details of calculations
explained in [21], from which we borrow the central points.
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All the toric dessins are drawn by graphs either inside the square or inside the hexagon;
in both cases, the identification of the opposite sides are assumed.

The dessins are labeled by the tuples a1a2a3|8 or a1a2a3|8n; they are defined by the
0-valencies a1, a2, a3, while the number 8 indicates the common (for all of them) 2-valency,
i.e., the order of the only pole of the Belyi function. In the cases when the tuples of valencies
have several realizations, their names have the form a1a2a3|8n or a1a2a3|8n±; the first type
is used for the real (i.e., isomorphic to their mirror reflections) dessins; the names a1a2a3|8n+

and a1a2a3|8n− are used for the pairs of mirror-symmetric dessins. The letters n, as well as
the signs + and −, are chosen arbitrarily.

We suppress the notations of the support of a dessin but denote its affine model by the
equation y2 = f , where the cubic polynomial f ∈ C[x] has no multiple roots. The pole C is
supposed to lie in the infinite point; therefore, the Belyi function β is regular on the affine
part of the curve and has the form

β = U + Vy,

where U ∈ C[x], V ∈ C[x], deg U = 4, deg V = 2.
The vertices are denoted by A1, A2 and A3 and are numbered according to valencies

non-decreasing, while “edge midpoints” are denoted by B1, B2, B3 and B4.
The divisorial relations have the form

div(β) = a1 A1 + a2 A2 + a3 A3 − 8C,

div(β− 1) = 2(B1 + B2 + B3 + B4)− 8C,

with five possibilities for the tuples of valencies:

a1a2a3 ∈ {332, 422, 431, 521, 611}.

All unicellular four-edged toric dessins are shown in Figure 1. The completeness of this
list (as well as the other lists in [15]) was checked by N. Amburg and V. Nasretdinova using
computer calculations based on matrix models. Furthermore, it is possible to enumerate
dessins with a prescribed passport (the set of valencies of vertices and faces of the dessin;
see [12] for the definition) either using character theory of symmetric groups and GAP or
applying the wonderful explicit formula for unicellular dessins by Goupil–Schaeffer [22].

332|8 422|8a 422|8b

431|8a 431|8b

521|8a 521|8b+ 521|8b−

611|8a 611|8b 611|8c

Figure 1. Unicellular dessins of genus 1 with 4 edges.
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2.2.1. Some Theory

The calculations of the corresponding Belyi functions are not totally automatic: the
two lemmas (Lemmas 1 and 2) are used.

Lemma 1 (The central symmetry criterion). A toric dessin is centrally symmetric if and only if it
can be realized by a Belyi pair with an even Belyi function (i.e., β(P) = −β(P) for all points P on the
elliptic curve). In other words, if and only if the corresponding curve can be defined by an equation

y2 = f (x),

where f is a polynomial of degree 3 or 4 in such a way that the Belyi function depends only on x.

Proof. Suppose the dessin is centrally symmetric. Then, the underlying elliptic curve has
an automorphism ι of order 2 with fixed points such that the β = β ◦ ι. One can choose a
model y2 = f (x) such that this automorphism has the form ι : (x, y)→ (x,−y). The Belyi
function β = U + Vy is invariant under ι iff V ≡ 0.

The inverse is trivial: if β depends only on x, then it is obviously invariant under
ι : (x, y)→ (x,−y), so the dessin is centrally symmetric.

Lemma 2 ((1− β)-lemma (formulated and proved in [23])). Let β be a clean Belyi function
corresponding to some dessin. The function 1− β is a square if and only if the graph of the dessin
admits a bicolored structure.

Proof. Start with the particular case of the half of the lemma: if the graph of the square
contains a loop, then 1− β is not a square.

Parametrize a loop by a real-analytic segment, whose map to the Riemann surface
identifies only extremities (in the vertex of the loop). The function 1− β becomes a real-
analytic function on the segment, which equals 1 on its extremities and has the only zero
in the inner point, and has multiplicity two. If the function 1− β were the square of a
meromorphic function on a whole surface, then on our segment would turn into a square
of a function with the only simple zero in the inner point. However, in this case, this
(new) function should take the values of the opposite signs in the extremities, and it would
contradict the assumption, which the segment maps to a loop.

(We will use the other half). It is kind of obvious: the analytic continuation of the germ
of a function

√
1− β considered in the small neighborhoods of any vertex is well-defined:

choose the value±1 in this vertex and check that the function admits the continuation along
all the edges. It will take the same value in the vertices of the same color and the opposite
one in the vertices of the other color. The possibility of the meromorphic continuation of
this function inside the cells follows from the definition of dessin d’enfant.

2.2.2. Centrally Symmetric Dessins

There are four centrally symmetric cases in the list. The calculations are relatively easy,
but computer algebra simplifies them considerably.

Dessin 332|8. Divisorial relations take the form

div(β) = 3A1 + 3A2 + 2A3 − 8C,

div(β− 1) = 2(B1 + B2 + B3 + B4)− 8C.

It is seen from the picture in Figure 1 that the set of nontrivial points of second order
consists of one vertex (of valency 2) and two “edge midpoints”. Besides that, x(A1) = x(A2).

One can suppose that

f =
(
x− x(A3)

)(
x− x(B1)

)(
x− x(B2)

)
;
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then (taking into account that β = U and x(B3) = x(B4)) we have

U = k
(
x− x(A1)

)3(x− x(A3)
)
,

U − 1 = k
(

x− x(B3)
)2(x− x(B1)

)(
x− x(B2)

)
.

Using the affine ambiguity in the definition of x, choose the gauge, in which

x(A1) = x(A2) = 0,

x(B3) = x(B4) = 1.

Denoting (
x− x(B1)

)(
x− x(B2)

)
=: x2 + px + q

and
x(A3) =: r,

rewrite our equations in the form
f = (x− r)(x2 + px + q)
U = kx3(x− r)
U − 1 = k(x− 1)2(x2 + px + q).

Easy MAPLE calculations result (after replacing y by 3y) in the curve equation

y2 = (3 x− 4)
(

3 x2 + 2 x + 1
)

with j-invariant

j332 = −219488
729

= −25193

36 = −301.080932 . . .

The desired Belyi function has the form

β = −x3(3x− 4),

which can be checked by the equality

β− 1 = −
(

3 x2 + 2 x + 1
)
(x− 1)2.

Dessin 422|8a. Divisorial relations take the form

div(β) = 4A1 + 2A2 + 2A3 − 8C,

div(β− 1) = 2(B1 + B2 + B3 + B4)− 8C.

It is immediately seen from the picture in Figure 1 that all the points of 2nd order are
the vertices. Hence

f =
(
x− x(A1)

)(
x− x(A2)

)(
x− x(A3)

)
and, taking into account β = U, x(B1) = x(B2) and x(B3) = x(B4), we have

U = k
(
x− x(A1)

)2(x− x(A2)
)(

x− x(A3)
)
,

U − 1 = k
(
x− x(B1)

)2(x− x(B3)
)2.

Using the affine ambiguity in the definition of x, choose the gauge, in which

x(A1) = 0,
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x(A2) = 1.

Denoting (
x− x(B1)

)(
x− x(B2)

)
=: x2 + px + q

and
x(A3) =: t,

rewrite our equations as 
f = x(x− 1)(x− t)
U = kx2(x− 1)(x− t)
U − 1 = k(x2 + px + q)2.

Easy MAPLE calculations result in the curve equation

y2 = x(x− 1)(x + 1),

which turns out to be famous with j-invariant

j422a = 1728 = 2633.

The desired Belyi function has the form

β = −4x2(x− 1)(x + 1),

which can be checked by the equality

β− 1 = −(2x2 − 1)2.

Dessin 422|8b. Divisorial relations take the form

div(β) = 4A1 + 2A2 + 2A3 − 8C,

div(β− 1) = 2(B1 + B2 + B3 + B4)− 8C.

It is immediately clear from the picture in Figure 1 that the set of points of second
order consists of one vertex and two “edge midpoints”. Besides that, x(A2) = x(A3).

One can assume that

f =
(
x− x(A1)

)(
x− x(B1)

)(
x− x(B2)

)
;

taking into account β = U and x(B3) = x(B4), one has

U = k
(
x− x(A1)

)2(x− x(A2)
)2,

U − 1 = k
(

x− x(B3)
)2(x− x(B1)

)(
x− x(B2)

)
.

Using the affine ambiguity in the definition of x, choose the gauge, in which

x(A1) = 0,

x(B3) = x(B4) = 1.

Denoting (
x− x(B1)

)(
x− x(B2)

)
=: x2 + px + q

and
x(A3) =: r,



Mathematics 2022, 10, 258 8 of 25

rewrite our equations as 
f = x(x2 + px + q)
U = kx2(x− r)2

U − 1 = k(x− 1)2(x2 + px + q).

Easy MAPLE calculations result in the curve equation

y2 = x(x2 − 2x− 1)

with j-invariant
j422b = 10976 = 2573.

The desired Belyi function has the form

β = x2(x− 2)2,

which can be checked by the equality

β− 1 = (x− 1)2(x2 − 2x− 1).

Dessin 611|8a. Divisorial relations take the form

div(β) = 6A1 + A2 + A3 − 8C,

div(β− 1) = 2(B1 + B2 + B3 + B4)− 8C.

The corresponding picture in Figure 1 demonstrates the points of second order:
the vertex of the valency 6, i.e., A1, and two “edge midpoints”. Besides that, x(A2) =
x(A3), x(B1) = x(B3) and x(B2) = x(B4).

We have
f =

(
x− x(A1)

)
f1,

U = k
(
x− x(A1)

)3(x− x(A2)
)
,

U − 1 = k
(

x− x(B1)
)2 f1.

Using the affine ambiguity in the definition of x, choose the gauge, in which

x(A1) = 0,

x(A2) = 1.

Denoting
f1 =: x2 + px + q,

rewrite our equations as 
f = x(x2 + px + q)
U = kx3(x− 1)
U − 1 = k(x− r)2(x2 + px + q).

Easy MAPLE calculations result in the curve equation

y2 = x
(

x2 +
1
2

x +
3

16

)
with j-invariant

j611a =
4000

9
=

2553

32 = 444.444444 . . . .



Mathematics 2022, 10, 258 9 of 25

The desired Belyi function has the form

β = −256
27

x3(x− 1),

which can be checked by the equality

β− 1 = (4x− 3)2
(

x2 +
1
2

x +
3

16

)
.

2.2.3. The Bicolored Dessin

There remains the only bicolored non-centrally symmetric dessin. The complexity of
the calculations is approximately the same as for the centrally symmetric ones.

Dessin 431|8a. Divisorial relations take the form

div(β) = 4A1 + 3A2 + A3 − 8C,

div(β− 1) = 2(B1 + B2 + B3 + B4)− 8C.

By the 1− β-lemma, it is possible to introduce the function α by the relation

1− β = α2.

Taking into account the bicolored structure, we obtain the curve equation

y2 = ax3 + bx2 + cx + 1

with the relations
div(β) = 4A1 + 3A2 + A3 − 8C;

x(C) = ∞;

x(A1) = 0;

y(A1) = 1;

β = 1− α2;

div(1− α) = 4A1 − 4C;

div(1 + α) = 3A2 + A3 − 4C;

α = p0 + p1x + p2x2 + qy.

The MAPLE calculations provide the curve equation

y2 =
1

32
(x + 2)

(
9 x2 + 16 + 8 x

)
with j-invariant

j431a =
207646

6561
=

2 · 473

38 = 31.648529 . . . .

The desired Belyi function is

β = − 9
64

x4 − x3 − 77
36

x2 − 20
9

x +

(
x2 +

16
9

x +
8
9

)
y− 8

9
.

2.2.4. General Dessins

The level of calculations of the Belyi pairs for the remaining dessins is of a totally
different class. They are definitely out of reach without computers, and the answers them-
selves are so cumbersome that they cannot even be fixed by the traditional technologies.
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Such a claim might not seem completely sound since one can suppose that in some different
parameters, the answers are shorter. However, when the j-invariant of a curve hardly fits a
screen, it guarantees that the curve has an incredibly high complexity.

We perform the calculations in several steps.

(a) Completing 1− β to a square. By the (1− β)-lemma, for all the remaining dessins,
the function 1− β is not a square. However, the divisor

div(1− β) = 2(B1 + B2 + B3 + B4)− 8C (3)

is principal, and its “half” B1 + B2 + B3 + B4 − 4C has order 2; hence, the curve contains
such a point D of second order that

B1 + B2 + B3 + B4 − 4C ≡ D− C

(as usual, we have assumed that C is the neutral element on the elliptic curves on which
we are going to find the desired Belyi functions). According to (1− β)-lemma, point D is
one of the three non-trivial points of the second order on the curve.

Adding D− C to both sides of the last equality, we find such a function ψ that

B1 + B2 + B3 + B4 − 4C + (D− C) = div(ψ). (4)

We have distinguished one of the non-trivial points of second order; therefore, we can
write the curve equation in the form

y2 = f =: (x− 1)(ax2 + bx− 1)

and assume
x(D) = 1, y(D) = 0.

Then
div(x− 1) = 2(D− C). (5)

Doubling (4) and using (3) and (5), we obtain (having multiplied ψ by a suitable
non-zero constant)

(x− 1)(β− 1) = ψ2. (6)

(b) The important simplification. Since ψ ∈ L(4C), there exist such polynomials
P, Q ∈ C[x] satisfying deg P ≤ 2, deg Q ≤ 1 that

ψ = P + Qy. (7)

According to (6),
(x− 1)(β− 1) = (P + Qy)2.

Expanding and using β = U + Vy, we obtain{
(x− 1)(U − 1) = P2 + Q2 f
(x− 1)V = 2PQ.

Since the polynomial f is divisible by x− 1, the first equation of the system tells us
that P is divisible by x− 1 as well. Thus, we can introduce

P =: (x− 1)P1, (8)

where P1 ∈ C[x], deg P1 ≤ 1. After dividing by x− 1, the last system takes the form{
U − 1 = (x− 1)P2

1 + Q2(ax2 + bx− 1)
V = 2P1Q.
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(c) The common parametrization. The maximal 0-valency of all the remaining dessins
(according to our conventions, the corresponding vertex is denoted A1) is at least 4.
More precisely,

div(β) = a1 A1 + a2 A2 + a3 A3 − 8C,

where (a1a2a3) ∈ {(611), (521), (431)}.

The condition β ∈ L(8C− 4A1) gives the possibility of eliminating the coefficients of
(degree 1) polynomials P1 and Q. The answer is:

P1 =
1
2

p1x + p0

S
, Q =

1
2

q1x + q0

S
, (9)

where
p1 = 4a + 16a2 − 8ab + 3b2 − 2b3 − b4, (10)

p0 = −8a + 32a2 + 32ab− 6b2 + 8b3 − 2b4, (11)

q1 = 8a + b− 12ab + 2b2 − 3b3, (12)

q0 = 2 + 24a− 8b + 6b2, (13)

S = −1− 16a + 4b + 16a2 + 16ab− 6b2 + 4b3 − b4. (14)

In other words, all the remaining curves are defined by the equations

y2 = (x− 1)(ax2 + bx− 1),

while the Belyi functions on them are defined with the appropriate values of the parameters
a, b by the relations (3), (7)–(14).

(d) Dessin 431|8b. In terms of the introduced parameters, it can be found by a direct
calculation: the curve is defined by the equation

y2 = −(x− 1)
(

448
81

x2 +
208

9
x + 1

)
with j-invariant

j431b =
10647696795116000

1853320108689
=

2553138593

38710 = 5745.201137 . . . .

The Belyi function on it has the form

β = − 4096
250047

x4 +
137216

1750329
x3 +

7414528
12252303

x2 +
2086912
9529569

x +
10240

1058841
−

−
(

8192
194481

x2 +
152576

1361367
x +

10240
1058841

)
y.

This Belyi pair corresponds to parameter values (a = − 448
81 , b = − 208

9 ).

(e) Discriminant curve. It consists of such pairs (a, b) that the polynomial

U2 −V2 f
x4

has a multiple root. The curve contains a component DI of genus 1, defined by the equation

0 = 36864 a7 +
(

331776 b2 − 344064 b + 94208
)

a6+

+
(
−233984 b2 + 95232 b + 158976 b4 − 2304 + 27648 b3

)
a5+



Mathematics 2022, 10, 258 12 of 25

+
(
−222976 b4 − 768 b + 182016 b5 + 32256 b3 + 22272 b2

)
a4+

+
(

20512 b4 + 72576 b7 − 21888 b5 − 9936 b8 − 60608 b6 + 1408 b3 − 64 b2
)

a3+

+
(

1856 b5 − 1296 b10 − 10560 b7 + 4560 b6 − 16 b4 − 5200 b8 + 10656 b9
)

a2+

+
(

95 b8 + 540 b11 + 424 b7 + 20 b6 − 9 b12 − 1020 b9 − 50 b10
)

a+

+30 b11 − 15 b12 + 15 b9 − 3 b8 + 3 b13 − 30 b10.

(f) Dessins 521|8a, b±. There are three points on the curve DI corresponding to the
dessins under consideration; they constitute the cubic Galois orbit (the only one among the
unicellular four-edged toric dessins). The corresponding parameters are the roots of the
cubic equations

65536 a3 − 238080 a2 + 216425 a + 14000

and
64 b3 − 272 b2 + 1427 b− 344.

The approximate values indicate the coupling of these parameters:

(a = −0.060582 . . . , b = 0.252495 . . .)

correspond to the real dessin 521|8a, while

(a = 1.846697 . . .± .340363 . . . i, b = 1.998752 . . .± 4.158426 . . . i)

to the pair of complex-conjugate dessins 521|8b±. The irreducible cubic polynomial, the
roots of which are the j-invariants of all the three curves, has the form

I521 := 56495049800000000000000 j3 − 315629560922285350000000000 j2 +

+ 748295885321347996073297265625 j− 564055135320668135938721399828128.

Its leading coefficient is the product of small primes:

56495049800000000000000 = 215514710.

(g) Dessins 611|8a, b. This quadratic Galois orbit correspond to the parameters(
a = − 3

64
± 3

32

√
2, b =

1
4
∓ 1

4

√
2
)

.

The j-invariants of the curves are

j =
1211356467233

847425747
± 5287472423321

20338217928

√
2

that are the roots of the quadratic polynomial

I611 := 413643108486820613184 j2 − 1182567927315693367354752 j +

+ 789298737392595284292204382.

Its leading coefficient is again the product of small primes:

413643108486820613184 = 2634720.
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2.2.5. Tables

In Tables 1 and 2, we summarize some results of our calculations that can be expressed
in terms of the rational numbers. None of them depend on the methods of calculations and
on the (rather arbitrary) choices of normalizations.

Table 1. Prime divisors of the discriminants and j-invariants of the underlying curves.

Dessin “Bad” Primes j-Invariant of the Curve

332|8 3 − 219488
729 = − 25193

36 = −301.080932 . . .
422|8a none 1728 = 2633

422|8b none 10976 = 2573

431|8a 3 207646
6561 = 2·473

38 = 31.648529 . . .
431|8b 3, 7 10647696795116000

1853320108689 = 2553138593

38710 = 5745.201137 . . .
521|8a 2, 5, 7 The real root of I521, see below
521|8b+ 2, 5, 7 One of the non-real roots of I521, see below
521|8b− 2, 5, 7 One of the non-real roots of I521, see below
611|8a 3 4000

9 = 2553

32 = 444.444444 . . .
611|8b 2, 3, 7 One of the roots of I611, see below
611|8c 2, 3, 7 One of the roots of I611, see below

Table 2. Norms of irrational j-invariants.

Galois Orbit Norm of j-Invariants

{521|8a, 521|8b+, 521|8b−} 4333893919316933

210514710

{611|8b, 611|8c} 11692393

2534710

Irrational j-invariants in Table 1 are the roots of the polynomials written down in the
Section 2.2.4:

I521 = 56495049800000000000000 j3 − 315629560922285350000000000 j2 +

+ 748295885321347996073297265625 j− 564055135320668135938721399828128,

I611 = 413643108486820613184 j2 − 1182567927315693367354752 j +

+ 789298737392595284292204382.

The norms of these j-invariants are presented in Table 2.

3. Belyi Pairs of Genus 2
3.1. Overview

The difficulty of calculations of Belyi pairs grows rapidly with the genus; genus 2
is already very hard. There are several effective approximate methods; the subject is very
interesting, but we do not discuss it in the present paper.

One of the difficulties in the exact calculations of Belyi pairs genus 2 is the absence
of something as clear, easily calculable and totally accepted by the community as the
j-invariant in genus 1. Sure there exists an analog, namely the tuple of Igusa invariants (see
[24]) j1, j2, j3, j4, satisfying some polynomial relations, but there exist several normalizations
of them, their annihilation and prime factors do not have the comprehensible (at least
well-known) interpretation, etc. Thus, unlike the genus-one case, the result of a successful
calculation of a Belyi pair cannot be summarized by an algebraic number.

In the table of computed Belyi pairs [8] on p. 376, the complete computations of Belyi
pairs of genus 2 are performed only for the Belyi functions of degrees 5 (two pairs, see
below) and 6 (seven pairs). It is, perhaps, just the matter of organization of computations
since, among the pairs of degree 8, the two are very simple (see below).
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In the present paper, we consider only the smallest possible degrees: 5 for the general
pairs and 8 for the clean ones.

3.2. Belyi Pairs of Degree 5

The answers become shorter if we do not insist on the normalization CritVal(β) =
{0, 1, ∞}.

The Fermat case. The answer

y2 = 1− x5, β = y

is related to the particular case of the well-known Fermat family

xm + yn = 1, β = xm = 1− yn,

so we skip the details.
The Birch case. The computation was performed by Brian Birch long ago (in the

pre-Grothendieck era) and published in [25].
We outline obtaining Birch’s answer by the method similar to the one used in the

difficult cases of genus 1 calculations.
The only possible passport in the (d, g) = (5, 2) case is (5 5 5). In the obvious notations,

it means that
div(β) = 5A− 5C (15)

and
div(β− 1) = 5B− 5C (16)

The straightforward computations show that the pairs (X, f ) satisfying (15) are parametrized
by the (a, h)-family of curves

w2 = z6 + az5 +

(
1
2

a2 − h2 − 2 a + 9
)

z4 +

+

(
1
16

a3 +
1
8

a2h− 1
4

ah2 − 1
2

h3 − 1
8

a2 − 3
2

ah− 1
2

h2 +
3
4

a +
9
2

h +
13
2

)
z3 +

+

(
1
2

a2 − h2 − 2 a + 9
)

z2 + az + 1

with the function (defined up to the proportionality factor k)

f
k
=
(
4 z2 + (a− 2 h + 2)z

)
w + 4 z5 + (3 a− 2 h + 2)z4 +

(
a2 − ah− 2 h2 − 3 a + 22

)
z3 +

+
(

a2 − ah− 2 h2 − 3 a + 22
)

z2 + (3 a− 2 h + 2)z + 4.

Then, one finds that over the point(
a = 3, h =

1
2

)
the (16) is also satisfied with k = 1

4 . It yields Birch’s dessin from [25] in different coordinates:

w2 = z6 + 3 z5 +
29
4

z4 +
19
2

z3 +
29
4

z2 + 3 z + 1

β =
(

z2 + z + 1
)

w + z5 +
5
2

z4 + 5 z3 + 5 z2 +
5
2

z + 1
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The other beautiful formulas for this curve were obtained by N. Elkies (see [25]) and
Y. Fuertes and A. Mednykh [26].

3.3. Clean Belyi Pairs of Degree 8

The results of calculations of all the four clean Belyi pairs of degree 8 and genus 2 were
published in [27] and included into the catalog [15]; the calculations themselves (rather
cumbersome) were never published.

In this section, we mostly work over an arbitrary algebraically closed field k of charac-
teristic 6= 2. When we draw something, we assume k = C.

3.3.1. Passport

If (X, β) is a clean Belyi pair of genus 2 and degree 8, then

div(β) = a1 A1 + . . . + aα Aα − (c1C1 + . . . + cγCγ)

div(β− 1) = 2(B1 + . . . + B4)− (c1C1 + . . . + cγCγ)

div(dβ) = (a1 − 1)A1 + . . . + (aα − 1)Aα + B1 + . . . + B4 − (c1 + 1)C1 + . . .− (cγ + 1)Cγ

with A1, . . . , Aα, B1, . . . , B4, C1, . . . , Cγ ∈ X and a1, . . . , aα, c1, . . . , cγ ∈ N.
They all should satisfy

a1 + . . . + aα = c1 + . . . + cγ = 8

and
2 = deg(dβ) = 8− α + 4− (8 + γ) = 4− α− γ,

so α = γ = 1. We conclude
div(β) = 8A− 8C

div(β− 1) = 2(B1 + . . . + B4)− 8C

div(dβ) = 7A + B1 + . . . + B4 − 9C

for some A; B1, . . . , B4; C ∈ X. In the traditional language, it means that we work with
the passport 

8 8 2
2
2
2

.

3.3.2. Divisors of Finite Order

Let (X, β) be any of the considered Belyi pairs. Then, the above passport tells us that
there exist such A, C ∈ X (it is always clear from the context whether A means a dessin or a
point on a curve) that

div(β) = 8A− 8C,

hence
A− C ∈ tors8(Jac X).

Of course, the difference A− C can actually have the smaller order in Jac X, i.e., 2 and
4, and it turns out that all the possibilities realize—see the claim in [27].

At this point, we shall call a Belyi pair (X, β) easy, if A − C ∈ tors`(Jac X) with
` ∈ {2, 4}, and difficult, if A− C ∈ tors8(Jac X) \ tors4(Jac X). This classification will be
specified soon.

Obviously, in the easy cases, β = α4 or β = α2 for some α ∈ k(X)2 or α ∈ k(X)4,
respectively.
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3.3.3. Easy Cases

First, we point out the general properties of the easy Belyi pairs; the precise calculations
will follow (Theorem 1).

Theorem 1. (i) If A− C ∈ tors2(Jac X), then Aut(X) contains the cyclic group C8 and the Belyi
map is the factorization over this group:

β : X −→ X
C8

.

(ii) If A− C ∈ tors4(Jac X) \ tors2(Jac X), then A and C are non-Weierstrass, and they are in
hyperelliptic involution.

Proof. (i) Fix α ∈ k(X)2, satisfying β = α4. Since div(α) = 2A− 2C, both A and C are the
Weierstrass points. There are four remaining Weierstrass points, W1, W2, W3, W4, and the
critical points of α are

{A, C, W1, W2, W3, W4}.

Now since
CritVal(β) = {0, ∞}

⋃
{a4 | a ∈ CritVal(α)}

and since α(A) = 0, α(C) = ∞, we have

1 = α(W1)
4 = α(W2)

4 = α(W3)
4 = α(W4)

4.

It follows from our assumption char(k) 6= 2 that there is a primitive root of unity of
degree 4, denoted as usual by i, and

{α(W1), α(W1), α(W1), α(W1)} = {±1,±i}.

Hence, X can be defined by the equation

y2 = x5 − x

with α = x, and then the desired cyclic group is generated by (x, y) 7→ (ix,
√

iy), and we
are finished. It follows that

β = x4.

(ii) Introduce α ∈ k(X)4, satisfying β = α2, then α is not a square and

div(α) = 4A− 4C.

Suppose C is Weierstrass. Then, there exists γ ∈ L(2C) \ k, and it can be normalized
in such a way that α− γ2 has no pole in C and hence nowhere, so it is a (non-zero) constant.
Taking differentials, we obtain dα = 2γdγ. Since dα|A = 0 and α(A) = 0, then γ(A) 6= 0
and hence dγ|A = 0. Taking into account that deg γ = 2, one can conclude that A is
Weierstrass. Then α is a square, a contradiction.

In the same way, we check that A is non-Weierstrass; it suffices to replace β by 1
β and

hence α by 1
α .

3.3.4. Number of Realizations

As we already know from [27], over C, there are precisely four realizations of the above
passport corresponding to the four possible ways of pasting the octagon (see Figure 2). The
corresponding Gaussian words and the automorphism groups are presented in Table 3.
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A

a

a

b

b

cc

d

d

B

a

a

b

b
c

c

d

d

C1

a

a

b

b
c

c

d

d

C2

a

a

b

b c

c

d

d

Figure 2. Octagon pastings of genus 2.

Table 3. Gaussian words and automorphism groups.

Pasting Gaussian Word Aut

A abcdabcd cyclic of order 8
B ababcdcd cyclic of order 2
C1 abacbdcd trivial
C2 abacdbcd trivial

The completeness of our list can be checked by the Harer–Zagier numbers: introduce,
following [28], the numbers

εg(n) := #{pastings of 2n-gons with a marked edge of genus g}.

It is known that ε2(4) = 21, and, indeed

21 = 8 · ∑
D∈{A,B,C1,C2}

1
#Aut(D)

= 8
(

1
8
+

1
2
+ 1 + 1

)
.

3.3.5. Some Qualitative Results

In this subsection, we denote the Belyi pairs corresponding to pastings by the Gaussian
words defining pastings.

The certain properties of Belyi pairs follow immediately from the easy considerations
in the category of dessins (Theorem 2).

Theorem 2. (i) The Belyi pairs (X, β)abcdabcd and (X, β)ababcdcd are defined over Q;
(ii) The remaining two, (X, β)abacbdcd and (X, β)abacdbcd, are Galois-conjugated over some

Q(
√

D) with D > 0;
(iii) All the four Belyi pairs are self-dual, i.e., satisfy (X, β) ∼= (X, 1

β ).

Proof. (i) Both pairs (X, β)abcdabcd and (X, β)ababcdcd are defined uniquely by the triple
invariants(degree, genus, Aut), so they are defined over Q.

Before the actual calculations, the statement (ii) is partially conjectural: from the
known Galois-invariants, it follows that either (X, β)abacbdcd and (X, β)abacdbcd are also both
defined over Q (separated by some finer Galois-invariants), or they constitute the two-
element Galois orbit. The direct calculation will show below that the latter case holds,
but we can already claim that the corresponding quadratic field of definition is real since
(X, β)abacbdcd and (X, β)abacdbcd are not mutually mirror-symmetric.

The statement (iii) follows from the self-duality of all the four pastings, which can be
established by the direct pictorial analysis.

As we have promised, we specify the terminology: from now on, we call the Belyi pairs
(X, β)abcdabcd and (X, β)ababcdcd easy and (X, β)abacbdcd and (X, β)abacdbcd difficult (Remark 1).

Remark 1. As we shall see, the difficult pairs are defined over Q(
√

2). It would be interesting to
be able to determine the discriminant of the field of definition of a dessin without the calculation of
the corresponding Belyi pair.
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Restore some notations. Let (X, β) be any of our four Belyi pairs. Then, according to
the dessins d’enfants theory, since all our dessins have only one vertex and only one face,
there exist such A, C ∈ X that

div(β) = 8A− 8C,

hence
A− C ∈ tors8(Jac X).

Of course, the difference A− C can actually have the smaller order in Jac X, and it
turns out that all the possibilities realize—see the claim in [27].

Our terminology is reformulated in the following (Theorem 3)

Theorem 3. In the above notations, the differences satisfy

(i) A− C ∈ tors2(Jac Xabcdabcd);
(ii) A− C ∈ tors4(Jac Xababcdcd) \ tors2(Jac Xababcdcd);
(iii) in the difficult cases A− C ∈ tors8(Jac X) \ tors4(Jac X).

Proof. Follows from the results below. The direct proofs in terms of dessins are also
possible.

3.3.6. Calculations

The easiest case Xabcdabcd has been covered before; the answer is

y2 = x5 − x, β = x4

The easy case Xababcdcd. It follows from the symmetry considerations that there exists
a degree-2 morphism of Belyi pairs

p : Xababcdcd −→ Yabab,

where Yabab is the toric dessin that is represented by a square with the opposite sides
identified—see Figure 3 in which the vertices are marked in a way that will become clear in
a while.

a

b

a

b

∞+ ∞+

∞+∞+

∞−

Figure 3. The dessin Yabab.

The Belyi pair (Yabab, β1), corresponding to this dessin, is determined immediately.
There is only the elliptic curve with the symmetry of the 4th order; it has the j-invariant
1728. We take the doubly-dotted curve for its affine model

Ÿ : v2 = u4 − 1

and understand it as
Ÿ = Yabab \ {∞±},

where around the points ∞±, the asymptotic v ≈ ±u2 holds.
Now recall the notations div(β) = 8A− 8C and deduce from the geometry that

β = p∗β1,
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hence, assuming that the branching points of p are p(A) = ∞+ and p(C) = ∞−, we
conclude that

div(β1) = 4∞+ − 4∞−.

Such a function turns out to be the square

β1 = 1− 2u4 + 2u2v = −(u2 − v)2.

Due to the identity (u2 − v)(u2 + v) ≡ 1, the polynomials u2 ± v are non-constant units
of the polynomial ring of an affine curve. The subject is classical: N.-H. Abel was interested in
such polynomials since they provide the pseudo-elliptic integrals (see [29]).

To provide the appropriate branching, introduce the correspondences (two-valued “functions”)

x =
√

u + 1 , y =
v√

u + 1

which means introducing the affine model of Xababcdcd by the equation

x2y2 = (x2 − 1)4 − 1

together with the covering p : Xababcdcd −→ Yabab defined by the pullbacks

p∗u = x2 − 1, p∗v = xy.

The Belyi function is defined by β = p∗β1, i.e.,

β = −
(
(x2 − 1)2 − xy

)2

as we have asserted above, it is a square.

The boxed formulas are easily transformed to the answers of [27]:

y2 = x6 − 4x4 + 6x2 − 4, β = −2x8 + 8x6 − 12x4 + 8x2 − 1 + (2x5 − 4x3 + 2x)y

However, the special properties of the considered dessin are not so easily seen in this
standard form as in the above formulas.

The difficult cases Xabacbdcd and Xabacbdcd. (The results are based on the computer
calculation performed with the aid of S.Yu. Orevkov.) Due to the mentioned above self-
duality, the desired Belyi pair is defined by the three recurrent polynomials. Namely, we
consider the family of pairs (X, Ψ), where X is a curve over an algebraically closed field
and Ψ ∈ k(X) \ k. These pairs can be considered as the points of Hurwitz spaces. The affine
model of where X is defined by the equation

y2 = ax6 + bx5 + cx4 + dx3 + cx2 + bx + a (17)

and the function Ψ has the form

Ψ = Ax8 + Bx7 + Cx6 + Dx5 + Ex4 + Dx3 + Cx2 + Bx + A+

+ (Fx5 + Gx4 + Hx3 + Hx2 + Gx + F)y (18)

Here, the parameters (a : b : c : d) ∈ P3(k), (A : B : C : D : E) ∈ P4(k) and
(F : G : H) ∈ P2(k) are defined up to proportionality and satisfy

aAF 6= 0,
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so we could normalize the coefficients of the pair (X, Ψ) by a = A = F = 1 and look for the
desired points (recall that there are two of them defined over the yet unknown quadratic
extension of Q) in the affine space A9(k). However, then the arithmetical issues occur,
so we prefer to keep our 12 unknown parameters a, . . . , H free. The resulting family of
curves over P3(k) with rational functions parametrized by the points of P4(k)× P2(k) is
interesting for its own reason; we are looking for the two very special fibers in this family.
See the general discussion in [30].

The points O± ∈ X and ∞± ∈ X are defined by(
x(O±) = 0, y(O±) = ±

√
a
)

and
(

x(∞±) = 0, y ≈ ±
√

ax3) as x → ∞.

(The choice of signs motivated by arithmetics). We are looking for the pairs (X, Ψ) satisfying

div(Ψ) = 8O− 8∞. (19)

after the appropriate choices O ∈ {O±}, ∞ ∈ {∞±}. (They are opposite by the geometric
reasons; we do not discuss them here.)

After solving Equation (18) in y and plugging the result in (17), we obtain the condition
for a recurrent polynomial

Z = z0x16 + z1x15 + . . . + z7x9 + z8x8 + z7x7 + . . . z1x + z0 ∈ k[x, Ψ], (20)

for which Equation (19) is equivalent to

Z
∣∣∣
Ψ=0
∈ k×[a, . . . , H]x8,

or to the system of polynomial equations

z0 = z1 = . . . = 0

that we rewrite in the polynomial form

(2F2c + 2FGa + 2FGb + 2FGd + 2FHa + 2FHb + 2FHc + G2b + 2G2c + 2GHa +

+ 2GHb + 2GHc + 2GHd + H2b + 2H2c + H2d− 2AB− 2BC− 2CD− 2DE) x7 +

+ (F2a + 2F2b + 2FGa + 2FGb + 2FGc + 2FHc + 2FHd + 2G2b + G2c + 2GHa +

+ 2GHc + 2GHd + H2a + 2H2b + H2c− 2AC− 2BD− 2CE− D2) x6 +

+ (2F2a + F2b + 2FGb + 2FGc + 2FHc + 2FHd + 2G2a + G2d +

+ 2GHb + 2GHc + 2H2a + H2b− 2AD− 2BE− 2CD) x5 +

+ (F2c + 2FGa + 2FGd + 2FHb + 2FHc + G2c +

+ 2GHa + 2GHb + H2a− 2AE− 2BD− C2) x4 +

+ (F2d + 2FGc + 2FHa + 2FHb + G2b + 2GHa− 2AD− 2BC) x3 +

+ (F2c + 2FGb + 2FHa + G2a− 2AC− B2) x2 +

+ (F2b + 2FGa− 2AB) x +

+ F2a− A2 ≡ 0. (21)
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The coefficients of the equation of the curve are eliminated straightforwardly

a =
A2

F2 , b = −2A(AG− BF)
F3 ,

c = −2A2FH − 3A2G2 + 4ABFG− 2ACF2 − B2F2

F4 ,

d = − 2
F5

(
A2F2H − 3A2FGH + 2A2G3 + 2ABF2H − 3ABFG2 +

+ 2ACF2G− ADF3 + B2F2G− BCF3) (22)

leaving us with the system of four equations in polynomial form

(
2A2F4G− 2A2F4H + 2A2F3G2 − 6A2F3GH − 4A2F3H2 − 2A2F2G3 +

+ 10A2F2G2H − 10A2F2GH2 − 6A2F2H3 − 2A2FG4 + 6A2FG3H +

+ 18A2FG2H2 + 6A2FGH3 − 8A2G4H − 4A2G3H2 − 2ABF5 −

− 4ABF4G + 4ABF4H + 2ABF3G2 − 12ABF3GH + 2ABF3H2 +

+ 4ABF2G3 − 8ABF2G2H − 16ABF2GH2 − 4ABF2H3 +

+ 12ABFG3H + 6ABFG2H2 + 4ACF5 + 4ACF4H − 4ACF3G2 +

+ 4ACF3GH + 4ACF3H2 − 8ACF2G2H − 4ACF2GH2 +

+ 4ADF4G + 4ADF3GH + 2ADF3H2 + 2B2F5 + 2B2F4H − 2B2F3G2 +

+ 2B2F3GH + 2B2F3H2 − 4B2F2G2H − 2B2F2GH2 − 2BCF5 +

+ 4BCF4G + 4BCF3GH + 2BCF3H2 − 2CDF5 − 2DEF5) x7 +

+
(

A2F5 − 2A2F4G− 4A2F3G2 − 2A2F3GH − 7A2F3H2 + 2A2F2G3 +

+ 4A2F2G2H − 2A2F2H3 + 3A2FG4 − 2A2FG3H + 15A2FG2H2 −

− 8A2G4H + 4ABF5 + 4ABF4G− 4ABF3G2 − 8ABF3GH −

− 4ABF3H2 − 4ABF2G3 + 4ABF2G2H − 12ABF2GH2 + 12ABFG3H −

− 2ACF5 + 4ACF4G + 4ACF4H + 2ACF3G2 − 4ACF3GH +

+ 2ACF3H2 − 8ACF2G2H + 4ADF4H + 4ADF3GH + 2B2F4G +

+ 2B2F4H + B2F3G2 − 2B2F3GH + B2F3H2 − 4B2F2G2H +

+ 4BCF4H + 4BCF3GH − 2BDF5 − 2CEF5 − D2F5) x6 +

+
(
2A2F5 − 2A2F4G− 2A2F3G2 − 4A2F3GH − 6A2F3H2 +

+ 6A2F2G3 + 6A2F2GH2 + 4A2FG3H − 4A2G5 + 2ABF5 +

+ 4ABF4G− 8ABF3G2 − 4ABF3GH − 6ABF3H2 + 6ABFG4 +

+ 4ACF4G + 4ACF4H − 4ACF3GH − 4ACF2G3 − 2ADF5 +

+ 4ADF4H + 2ADF3G2 + 2B2F4G + 2B2F4H − 2B2F3GH −

− 2B2F2G3 + 4BCF4H + 2BCF3G2 − 2BEF5 − 2CDF5) x5 +

+
(
2A2F4G− 2A2F4H + 3A2F3G2 − 6A2F3GH − 3A2F3H2 +

+ 12A2F2G2H − 5A2FG4 − 4ABF4G + 4ABF4H − 12ABF3GH +
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+ 8ABF2G3 + 2ACF5 + 4ACF4H − 6ACF3G2 + 4ADF4G−

− 2AEF5 + B2F5 + 2B2F4H − 3B2F3G2 + 4BCF4G−

− 2BDF5 − C2F5) x4 ≡ 0. (23)

These equations admit the straightforward elimination of D and E and then become
really terrible. However, they imply the quadratic equation in A:

(20F4 + 48F3G− 16F3H − 4F2G2 − 8F2GH + 4F2H2 − 40FG3 + 40FG2H − 8G4)A2 +

+ (−30BF4 − 2BF3G + 4BF3H + 54BF2G2 − 52BF2GH + 10BFG3)A +

+ 5B2F4 − 18B2F3G + 16B2F3H − 3B2F2G2,

fortunately, with the nice discriminant

4(5F2 + 2FG− 4FH + G2)3B2F2.

In order to make this discriminant a square, we introduce the new variable ∆ by the relation

∆2 = 5F2 + 2FG− 4FH + G2 (24)

and eliminate two unknowns:

H = −1
4

∆2 − 5F2 − 2FG− G2

F
(25)

and

B =
A
2
· ∆2 − 2∆F− 6∆G + 5F2 + 14FG− 3G2

(5F− G− 2∆)F
(26)

Introducing the new variable

δ := −5F + G + 2∆ (27)

yields the family of curves over the projective space P3(k) = {(∆ : δ : A : F)}, among
which the desired two are:

a =
A2

F2 , b = −
A2(∆2 + 2∆δ− 6Fδ− δ2)

F3δ
,

c =
1
4

A2∆4 + 8∆3δ− 16∆2Fδ− 2∆2δ2 − 32∆Fδ2 − 4∆δ3 + 60F2δ2 + 16Fδ3 + δ4

F4δ2 ,

d =
A2

F5δ2

(
∆5 − ∆4F− 8∆3Fδ− ∆3δ2 + 12∆2F2δ + 2∆2Fδ2 +

+ 24∆F2δ2 + 4∆Fδ3 − 40F3δ2 − 12F2δ3 − Fδ4). (28)

The desired behavior of Ψ defines a highly reducible surface in P3(k), from which we
select the needed component

F =
1
2

∆. (29)

Equation (17) over this component factorizes:

∆4δ2y2

4A2 =
(

δx2 − (∆− δ)x + ∆
)(

∆x2 − (∆− δ)x + δ
)(

∆δx2 − (∆2 − 2∆δ− δ2)x + ∆δ
)

(30)

Choose the scaling factor in such a way that the equation
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y2 =
(

δx2 − (∆− δ)x + ∆
)(

∆x2 − (∆− δ)x + δ
)(

∆δx2 − (∆2 − 2∆δ− δ2)x + ∆δ
)

(31)

holds.
The appropriate behavior of the critical values of Ψ takes place over the hyperbola

∆δ = 7 (32)

over which Equation (31) takes the form (note that the curve is terribly degenerate over F7;
for the time being, the authors have no complete explanation).

y2 = (δ2x2 + δ2x− 7x + 7)
(

7x2 + (δ2 − 7)x + δ2
)(

7δ2x2 + (δ4 + 14δ2 − 49)x + 7δ2
)

(33)

The right-hand side of (33) depends only on δ2, and the values we look for are over
the conjugated quadratic irrationalities

δ2 = −7± 7
√

2 (34)

Over these points, finally, our two curves are defined by the equation

y2 =
(

x2 − (2±
√

2)x∓
√

2− 1
)
(x2 ±

√
2x + 1∓

√
2)(x2 + 1) (35)

The Belyi functions are not so nice. We present them in the form

−4(1±
√

2)β = M + Ny

with the two recurrent polynomials

M = x8 − (2± 2
√

2)x7 + 2x6 + (6± 2
√

2)x5 − (2± 4
√

2)x4 +

+ (6± 2
√

2)x3 + 2x2 − (2± 2
√

2)x + 1

and
N = x5 − (1± 2

√
2)x4 + 2x3 + 2x2 − (1± 2

√
2)x + 1.

The alternative form:

N =
(

x2 − (2±
√

2)x + 1
)
(x2 ∓

√
2x− 1)(x + 1)

The abscissas of the points in which β = 1 are defined by the equation

(x2 + 1)(x + 1)2(x2 ∓
√

2x + 1)2 = 0.

4. Conclusions

It is not immediately clear that the intensive computer calculation of Belyi pairs with the
incredibly complicated answers really provides a better understanding of the relation between
combinatorial topology and arithmetic geometry. For example, though we can see some Galois
orbits now, the inverse Galois problem is as out of reach as it was forty years ago.

However, some motivation for these calculations can be drawn from the historic
perspectives. For example, our understanding of the polynomial equations was preceded
by the period, when finding roots meant their explicit expression in terms of the coefficients.
A similar attitude to the relations between the dessins and Belyi pairs is dominating now:
seeing a dessin, the experts usually want to calculate the corresponding Belyi pair; the
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ability to understand the underlying arithmetic without such a calculation is in its infancy.
Similar parallels can be drawn in calculus, differential equations, etc.

However, living today, we can only dream about the future understanding of the
phenomena attracting us—as, maybe, Cardano could dream about knowing the number of
roots of any univariate polynomials. Our modest goal is not only to leave some ideas and
problems to future generations but also to provide some systematized material. Happily,
the computers around us empower the interested mathematicians to reach the results
totally impossible by hand calculations.

Complete lists of Belyi pairs of the bounded complexity constitute examples of such
material. The results of the present paper correspond to a very low bound (basically ≤ four
edges). However, they contain some evidence crying out for a conceptual explanation—e.g.,
lots of enigmatic coincidences and unpredictable simplifications. The authors hope to
improve the current understanding and to present the same results in a clearer form.
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