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Abstract: The Gierer-Meinhardt system is one of the prototypical pattern formation models. The
bifurcation and pattern dynamics of a spatiotemporal discrete Gierer-Meinhardt system are investi-
gated via the couple map lattice model (CML) method in this paper. The linear stability of the fixed
points to such spatiotemporal discrete system is analyzed by stability theory. By using the bifurcation
theory, the center manifold theory and the Turing instability theory, the Turing instability conditions
in flip bifurcation and Neimark–Sacker bifurcation are considered, respectively. To illustrate the above
theoretical results, numerical simulations are carried out, such as bifurcation diagram, maximum
Lyapunov exponents, phase orbits, and pattern formations.
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1. Introduction
In Turing’s pioneering work, the diffusion terms on pattern formation for reaction

diffusion systems are the main factor [1]. In recent decades, Turing instability has been
investigated in biology, physics, chemistry, embryogenesis, and others [2–5].

Many biological, chemical and physical phenomena in nature can be described by
the reaction diffusion equation, such as patterns and wave speeds. To describe the spatial
patterns formation for the tissue structures in embryology and regeneration, Gierer and
Meinhardt proposed several reaction diffusion equations–molecular models in 1972 [6].
The Gierer-Meinhardt system is expressed as the following form{

∂a(t,x,y)
∂t = ρ0ρ + cρ

ar(t,x,y)
hs − µa(t, x, y) + d1∆a(t, x, y),

∂h(t,x,y)
∂t = c′ρ′ a

T(t,x,y)
hu − vh(t, x, y) + d2∆h(t, x, y),

(1)

where a(t, x, y) and h(t, x, y) are the density of the activator and inhibitor at time t > 0 and
spatial location (x, y) respectively. d1 and d2 are the constant diffusion parameters to the
activator and inhibitor, respectively; ρρ0 is the source concentration for the activator, here
ρ and ρ′ are constants; ρ′ is the one for the inhibitor; the activator and the inhibitor are
removed by the first order kinetics µa and vh, respectively.

Lots of works on the stability and bifurcation problems of stationary solutions and simula-
tion research have been performed to study the dynamical behaviors of these systems [7–15],
references therein. Ward and Wei [7] studied the stability and oscillatory instability of
symmetric k-spike equilibrium solutions to the Gierer-Meinhardt reaction-diffusion system
in a one-dimensional spatial domain for various ranges of the reaction-time constant and
the diffusivity of the inhibitor field dynamics. Wei and Winter [8] constructed solutions
with a single interior condensation point for the two-dimensional Gierer-Meinhardt system
with strong coupling. Ruan [9] investigated the instability of equilibrium points and the
periodic solutions under diffusive effects, which were stable without diffusion via the
perturbation method for such model with common sources. When r = 2, s = 2, T = 1 and
u = 0, Wang et al. [10] studied Hopf bifurcation and Turing instability to such a system.
Turing instability to the semi-discrete Gierer-Meinhardt model was considered in [11],
and Turing bifurcation and chaos for the spatiotemporal discrete Gierer-Meinhardt were
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studied in [12]. Wu et al. [15] studied Turing instability and Hopf bifurcation to such a
system, when r = 2, s = 1, T = 2 and u = 0. The influence of gene expression time delay on
the patterns to Gierer-Meinhardt system was explored [16], and the influence of fractional
Laplacian on the multi-bump solutions to Gierer-Meinhardt system was explored [17].
Moreover, some properties of the development of retinotectal projections in amphibians
and fish can be described by using the Gierer-Meinhardt system [18]. Most applications of
Gierer-Meinhardt system can be seen in Refs. [19–21].

Noticed that the coupled map lattices (CMLs) method can illustrate the complex dy-
namics of competitive system [2], physics system [22], population model [18], etc. Due to
the efficiency of its numerical experiments, it is becoming an important branch of nonlinear
dynamics. Some existing methods and theoretical results can be applied to study the dy-
namics of the CMLs model [23–28]. In addition, the Neimark–Sacker bifurcation and Turing
bifurcation analysis were investigated to spatiotemporal discrete nutrient-phytoplankton
model with time delay in Ref. [29] by using such methods. We will investigate the model the-
oretically to determine the conditions for such bifurcations to a modified Gierer-Meinhardt
system based on CMLs. Then, the influence of parameters on the patterns formation can
be illustrated quantitatively. Hence, the CMLs model can give a better description and
prediction of pattern formation, which has been applied to the phytoplankton–zooplankton
model [27,28] and predator–prey model [30] for pattern formation.

In order to obtain the spatiotemporal discrete Gierer-Meinhardt system, the CMLs
method apply to a modified Gierer-Meinhardt model in this paper. By stability and
bifurcation analysis, there are many interesting dynamical behaviors which cannot be
generalized by the corresponding continuous Gierer-Meinhardt system for the classical
bifurcation analysis, such as defect patterns. In this paper, we find other mechanisms
(for example, flip-Turing bifurcation, Neimark–Sacker–Turing bifurcation), except Turing
instability mechanism. Based on the analysis of these mechanisms, the circle, spiral of
spatial patterns are found.

The remainder of this paper is organized as follows. The Gierer-Meinhardt system with
CMLs model and its stability analysis are developed in Section 2 . The detailed theoretical
analysis of flip, Neimark–Sacker, Turing bifurcation and co-dimensional 2 bifurcation (such
as Neimark–Sacker–Turing bifurcation) are carried out for the spatiotemporal discrete
Gierer-Meinhardt system in Section 3. Numerical simulations are provided to illustrate
the theoretical results in Section 3 and show the dynamical behaviors and spatial patterns
in Section 4.

2. Stability Analysis
In [15], the authors studied the continuous modified Gierer-Meinhardt system which

has the following form{
∂a(t,x,y)

∂t = c + a2(t,x,y)
h − µa(t, x, y) + d1∆a(t, x, y),

∂h(t,x,y)
∂t = a2(t, x, y)− h(t, x, y) + d2∆h(t, x, y),

(2)

where ∆ = ∂2/∂x2 + ∂2/∂y2 in this paper. (x, y) is the spatial vector in two-dimensional
space, which shows the position of a(t, x, y) or h(t, x, y). By discretizing the model (2), the
CMLs model is developed as follows. One considers n× n lattices in a two-dimensional
square domain. Each lattice is a site (i, j), i, j = 1, 2, ..., n includes two numbers which are
the density of activator a(i, j, t) and the density of inhibitor h(i, j, t) at time t = Tt + T0,
where T0 is initial time. Due to interactions and migration between two species, the density
of two will vary with time. When discrete step increases from t to t + 1, the CMLs dynamics
of the activator and inhibitor consists of two stages; one is the “reaction" stage and the other
is “dispersal” stage . The dispersal stage can be obtained by the spatiotemporal discrete
of (2) {

a
′
(i,j,t) = a(i,j,t) +

τ
δ2 d1∆da(i,j,t),

h
′
(i,j,t) = h(i,j,t) +

τ
δ2 d1∆dh(i,j,t),

(3)
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where δ and τ are the space interval and time interval for discretizing Equation (2), respec-
tively. The discrete forms of the Laplacian operator ∆d which can be shown in the following

∆da(i,j,t) = a(i+1,j,t) + a(i−1,j,t) + a(i,j+1,t) + a(i,j−1,t) − 4a(i,j,t),
∆dh(i,j,t) = h(i+1,j,t) + h(i−1,j,t) + h(i,j+1,t) + h(i,j−1,t) − 4h(i,j,t).

(4)

According to [31], the reaction terms can be obtained by discretizing the time terms of
Equation (3)

a(i,j,t) = f1(a(i,j,t), h(i,j,t)),
h(i,j,t) = g1(a(i,j,t), h(i,j,t)),

(5)

where

f1(a, h) = a + τ(c + a2

h − µa),
g1(a, h) = h + τ(a2 − h).

(6)

Assume that all the parameters are non-negative and a(i,j,t) and h(i,j,t) are non-negative.
The periodic boundary conditions to the CMLs models are considered in this paper.

a(i,0,t) = a(i,n,t), a(i,1,t) = a(i,n+1,t), a(0,j,t) = a(n,j,t), a(1,j,t) = a(n+1,j,t),
h(i,0,t) = h(i,n,t), h(i,1,t) = h(i,n+1,t), h(0,j,t) = h(n,j,t), h(1,j,t) = h(n+1,j,t).

(7)

For all i, j, t satisfy

∆da(i,j,t) = 0, ∆dh(i,j,t) = 0.

Based on the above analysis, the homogeneous dynamics can be determined by

at+1 = at + τ(c + a2
t

ht
− µat),

ht+1 = ht + τ(a2
t − ht).

(8)

Then, the Equation (8) can be rewritten into the form of maps equation(
a
h

)
7→
(

a + τ(c + a2

h − µa)
h + τ(a2 − h)

)
. (9)

Hence, the homogeneous dynamics of equations can be directly analyzed by maps
Equation (9).

The fixed points of maps Equation (9) are the solutions of the following system{
a = a + τ(c + a2

h − µa),
h = h + τ(a2 − h).

(10)

Clearly, system (10) has a unique fixed point (a∗, h∗) = ( c+1
µ , (c+1)2

µ2 )(0 < c < 1). The
Jacobian matrix associated to point (a∗, h∗) is defined by

J|(a∗ ,h∗) =

 1 + τµ 1−c
1+c − τµ2

(1+c)2

2(1+c)
µ τ 1− τ

. (11)

According to [32], the fixed point is stable, if the two eigenvalues of J|(a∗ ,h∗) satisfy
|λ1| < 1 and |λ2| < 1. However, if the two eigenvalues satisfy |λ1| > 1 or |λ2| > 1, the fixed
point is unstable. The two eigenvalues of J|(a∗ ,h∗) are λ1,2 = 1

2

(
−p(τ)±

√
p2(τ)− 4q(τ)

)
,

where p(τ) = τ(1 − 1−c
1+c µ) − 2 and q(τ) = µτ2 + ( 1−c

1+c µ − 1)τ + 1. If q(τ) < 1 and
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|p(τ)| < 1 + q(τ), the fixed point (a∗, h∗) is stable. By solving the above inequalities, we
have the following result.

Proposition 1. The fixed point (a∗, h∗) is stable, if one of the following conditions is satisfied.

(H1) :
{

0 < µ ≤ 3− 2
√

2,
0 < τ < τf .

(H2) :


3− 2

√
2 < µ < 1

4 ,
4µ
√

µ+4µ+µ2−1

(µ−1)2 < c < 1,

0 < τ < τf .

(H3) :


3− 2

√
2 < µ < 1

4 ,

0 < c ≤ 4µ
√

µ+4µ+µ2−1

(µ−1)2 ,

0 < τ < τN .

(H4) :
{ 1

4 ≤ µ ≤ 1,
0 < τ < τN .

(H5) :


µ > 1,
µ−1
1+µ < c < 1,
0 < τ < τN .

(12)

In addition, if (H1) or (H2) holds, the fixed point (a∗, h∗) is a stable node. If one of the condi-

tions (H3)–(H5) holds, it is a stable focus. Here, τN = 1+c−µ+cµ
(1+c)µ and τf = τN −

√
τ2

N − 4/µ.

3. Bifurcation Analysis
In this section, taking τ as the critical bifurcation parameter, we will investigate flip,

Naimark–Sacker, Turing bifurcation of system (3).

3.1. Flip Bifurcation
As known, if the fixed point (a∗, h∗) loses its stability and undergoes a flip bifurcation,

then the period-2 points are bifurcated from the fixed point. At the critical value of
flip bifurcation, the two eigenvalues of J are λ1(τ) = −1 and |λ2(τ)| 6= 1. Hence, the
bifurcation τ satisfies the following conditions:

τ = τf , τf (1−
1− c
1 + c

µ) 6= 2, 4. (13)

The center manifold reduction can be applied to determine the stability of the bifur-
cated periodic-2 points. Taking τ as an independent, the center manifold reduction should
be applied variable into the maps (9), and let w = a− a∗, z = h− h∗ and τ̄ = τ − τf ; hence,
the maps (9) is turned into the following form w

z
τ̄

 7→
 a100 a010 0

b100 b010 0
0 0 1

 w
z
τ̄

+

 f1(w, z, τ̄)
g1(w, z, τ̄)

0

 (14)

where

f1(w, z, τ̄) = a200w2 + a110wz + a101wτ̄ + a011zτ̄ + a300w3 + a210w2z + a201w2τ̄ + a111wzτ̄ +O(4),
g1(w, z, τ̄) = b200w2 + b110wz + b101wτ̄ + b011zτ̄ + b300w3 + b210w2z + b201w2τ̄ + b111wzτ̄ +O(4).

Moreover, O(4) represents high order (≥4) in the variables (w, z, τ), and

a200 = 2τ
µ2

(c + 1)2 , a110 = −2τ
µ3

(c + 1)3 , a101 =
µ(1− c)

c + 1
, a011 =

−µ2

(c + 1)2 ,

a300 = 0, a210 =
−τµ2

(c + 1)2 , a201 =
2µ2

(c + 1)2 , a111 =
−2µ

c + 1
, b200 = 2τ,

b110 =
2τµ

c + 1
, b011 = −1, b101 =

2µ

c + 1
, b201 = 2, b210 = b300 = b111 = 0.
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Let  w
z
τ̄

 =

 a100 a010 0
−1− a100 λ2 − a100 0

0 0 1

 ã
h̃
τ̃

, (15)

where λ2 = 1− p(τf ), and the maps (15) can be transformed into ã
h̃
τ̃

 =

 −1 0 0
0 λ2 0
0 0 1

 ã
h̃
τ̃

+
1

a010(1 + λ2)

 F1(ã, h̃, τ̃)
F2(ã, h̃, τ̃)

0

, (16)

where

F1(ã, h̃, τ̃) = a010[(λ2 − a100)a101 − a010b101](ã + h̃)τ̃ + a2
010[(λ2 − a100)a200 − a010b200](ã + h̃)2

+a2
010[(λ2 − a100)a201 − a010b201](ã + h̃)2τ̃ + a3

010[(λ2 − a100)a300 − a010b300](ã + h̃)2

+a010[(λ2 − a100)a110 − a010b110][ã(−1− a100) + h̃(λ2 − a100)](ã + h̃)τ̃
+a2

010[(λ2 − a100)a111 − a010b111][ã(−1− a100) + h̃(λ2 − a100)](ã + h̃)τ̃
+a2

010[(λ2 − a100)a210 − a010b210][ã(−1− a100) + h̃(λ2 − a100)](ã + h̃)2

+[(λ2 − a100a011][ã(−1− a100) + h̃(λ2 − a100)]τ̃,
F2(ã, h̃, τ̃) = a010[(1 + a100)a101 + a010b101](ã + h̃)τ̃ + a2

010[(1 + a100)a200 + a010b200](ã + h̃)2

+a2
010[(1 + a100)a201 + a010b201](ã + h̃)2τ̃ + a3

010[(1 + a100)a300 + a010b300](ã + h̃)2

+a010[(1 + a100)a110 + a010b110][ã(−1− a100) + h̃(λ2 − a100)](ã + h̃)τ̃
+a2

010[(1 + a100)a111 + a010b111][ã(−1− a100) + h̃(λ2 − a100)](ã + h̃)τ̃
+a2

010[(1 + a100)a210 + a010b210][ã(−1− a100) + h̃(λ2 − a100)](ã + h̃)2

+[(1 + a100)a011][ã(−1− a100) + h̃(λ2 − a100)]τ̃.

The center manifold

Wc(0, 0, 0) = {(ã, h̃, τ̃) ∈ R3|h̃ = H(ã, τ̃), H(0, 0) = 0, DH(0, 0) = 0},

where H(ã, τ̃) = e1 p̃2 + e2 p̃τ̃ + e3τ̃2 +O(3). Using the invariance of the center manifold,
taking h̃ = H(ã, τ̃) into the maps, and completing the coefficients of ej, j = 1, 2, 3, then

e1 =
(1 + a100)

2a110 − (1 + a100)(a200 − b110)a010 − a2
010b200

λ2
2 − 1

,

e2 =
(1 + a100)

2a011 − a010(1 + a100)a101 + a010b101

a010(λ
2
2 + 1)

,

e3 = 0.

The maps (16) reduced to the central manifold Wc(0, 0, 0) are the following form.

F : ã 7→ −ã + c20 ã2 + c11 ãτ̃ + c21 ã2τ̃ + c12 ãτ̃2 + c30 ã3 +O(4), (17)

here,
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c20 =
1

1 + λ2
{(1 + a100)a010b110 − a2

010b200 − 2(1 + a100)a110 + 2a010a200},

c11 =
1

a010(1 + λ2)
{2a010a101 − 2a011(1 + a100)− a2

010b101},

c12 =
e2

a110(1 + λ2)
(4a011 + 2a010a101 − a2

010b101),

c21 =
1

a010(1 + λ2)

 2a010(2a010a200 − a010b110 + 2a110 − a2
010b200)e2

+a010(1 + a100)(a010b111 − 2a111) + a2
010(2a201 − a010b201)

+(4a011 + 2a010a101 − a2
010b101)e1 + (1 + a100)(a010b110 − 2a110)a010e2

,

c30 =
1

1 + λ2

(
a010(1 + a010)(a010b201 − 2a201) + a2

001(2a300 − a010b300)
+2(2a101 + 2a010a200 − a2

010b200)e1 + (1 + a100)(a010b110 − 2a101)e1

)
.

The occurrence of flip bifurcation for maps (17) also requires the flip bifurcation
theorem in [33].

η1 = (
∂2F

∂ã∂τ̃
+

1
2

∂F
∂τ̃

∂2F
∂ã2 )

∣∣∣∣
(ã,h̃)=(0,0)

= c11 6= 0, (18)

η2 = (
1
6

∂3F
∂ã3 + (

1
2

∂2F
∂ã2 )

2)

∣∣∣∣
(ã,h̃)=(0,0)

= c30 + c2
20 6= 0. (19)

Theorem 1. Assume the (H1) or (H2) holds, and τf (1− 1−c
1+c µ) 6= 2, 4, η1 6= 0, η2 6= 0, then the

maps (9) undergo a flip bifurcation at (a∗, h∗). Moreover, if η2 > 0(< 0) is satisfied, the stable
(unstable) periodic-2 points bifurcate from (a∗, h∗).

3.2. Neimark–Sacker Bifurcation
The Neimark–Sacker bifurcation occurs at the fixed point (a∗, h∗) of maps (9); there

exists a pair of conjugate complex eigenvalues of the maps (9); in addition, the modules of
two eigenvalues are both 1, which means p(τ)− 4q(τ) < 0 and q(τ) = 1. Hence

τ = τN , 0 < τ2 <
4
µ

. (20)

In addition, the Neimark–Sacker bifurcation theorem [32,33] requires the tranversality
condition to be non-zero; in fact

d =
d|λ(τN)|

dτ
= 1− 1− c

1 + c
µ > 0. (21)

Moreover, λ(τN)
m 6= 1, m = 1, 2, 3, 4, i.e., p(τN) 6= −2, 0, 1, 2.

Let w = a− a∗ and z = h− h∗, the map (9) becomes(
w
z

)
7→
(

a10 a01
b10 b01

)(
w
z

)
+

(
a20w2 + a11wz + a21w2z + a30w3 +O(4)
b20w2 + b11wz + b21w2z + b30w3 +O(4)

)
, (22)

where

a10 =
µ(1− c)τN

c + 1
, a01 =

−µ2τN

(c + 1)2 , a20 = 2τN
µ2

(c + 1)2 , a11 = −2τN
µ3

(c + 1)3 , a21 =
−τNµ2

(c + 1)2 ,

a30 = 0, b01 = −τN , b10 =
2µτN
c + 1

, b20 = 2τN , b11 =
2τNµ

c + 1
, b21 = 0, b30 = 0.

The corresponding two eigenvalues are

λ±(τN) =
−p(τN)

2
± I

2

√
4q(τN)− p2(τN) := α± Iβ, (23)
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where I2 = −1.
Assume (

w
z

)
=

(
a01 0

α− a10 −β

)(
ã
h̃

)
, (24)

then (
ã
h̃

)
=

(
α − β
β α

)(
ã
h̃

)
+

1
a01β

(
G1(ã, h̃)
G1(ã, h̃)

)
, (25)

here,

G1(ã, h̃) =(a20a01 − (α− a10)a11)a01βã2 − a11a01β2 ãh̃

+ (a30a01 − (α− a10)a21)a2
01βã3 − ba21a2

01βã2h̃ +O(4),
G1(ã, h̃) =[(a11(α− a10) + a01(a20 − b11))(α− a10)− b20a2

01]a01 ã2

+ [(a21(α− a10) + a01(a30 − b21))(α− a10)− b30a2
01]a

2
01 ã3

− a01(a11(α− a10)− b11a01)βãh̃− a2
01(a21(α− a10)− b21a01)βã2h̃ +O(4).

In addition, the Neimark–Sacker bifurcation [33] requires the discriminatory quantity
σ satisfy

σ = −Re(
(1− 2λ)λ̄2

1− λ
ξ11ξ20)−

1
2
|ξ11|2 − |ξ02|2 + Re( ¯λξ21) 6= 0, (26)

where

ξ20 =
1

8a01β
[(G1ãã − G1h̃h̃ + 2G2ãh̃) + I(G2ãã − G2h̃h̃ − 2G1ãh̃)],

ξ11 =
1

4a01β
[G1ãã + G1h̃h̃ + I(G2ãã + G2h̃h̃)],

ξ02 =
1

8a01β
[(G1ãã − G1h̃h̃ − 2G2ãh̃) + I(G2ãã + G2h̃h̃ − 2G1ãh̃)],

ξ21 =
1

16a01β
[G1ããã + G1ãh̃h̃ + G2ããh̃ + G2h̃h̃h̃ + I(G2ããã + G2ãh̃h̃ − G1ããh̃ − G1h̃h̃h̃)].

with

G1ãã = β(2(α− a01)a01a11 + 2a2
01a20), G1ãh̃ = −β2a01a11, G1h̃h̃ = 0, G1ãh̃h̃ = 0,

G1h̃h̃h̃ = 0, G1h̃h̃h̃ = β(6(α− a01)a2
01a11 + 6a3

01a30), G1ããh̃ = −2β2a2
01a11,

G2ãã = 2a01((α− a01)
2a11 − a01((α− a01)(b11 − a20) + a01b20)), G2h̃h̃ = 0, G2ãh̃h̃ = 0,

G2h̃h̃h̃ = 0, G2ãh̃ = βa01((a01 − α)a11 + a01b11), G2ããh̃ = 2βa2
01((a01 − α)a11 + a01b11),

G2h̃h̃h̃ = 6a2
01((α− a01)a21 − a01((α− a01)(b21 − a30) + a01b30)),

which are the second and third order partial derivatives of G1(a∗, h∗) and G2(a∗, h∗) at (0, 0).

Theorem 2. Assume one of the conditions (H3)–(H5) holds. If σ 6= 0, then map (9) undergoes
Neimark–Sacker bifurcation at the fixed point (a∗, h∗) when τ = τN . In addition, if σ < 0 (>0),
then an attracting (a repelling) invariant circle will occur when τ > τN(0 < τ < τN).
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3.3. Turing Bifurcation
Assume that one of (H1)–(H2) holds. For Turing bifurcation, the eigenvalues for the

discrete Laplacian operator ∆d should be studied in this part. Hence, the characteristic
equation for ∆d is defined by

∆dXi,j + λXi,j = 0, (27)

with periodic boundary conditions

Xi,0 = Xi,n, Xi,1 = Xi,n+1, X0,j = Xn,j, X1,j = Xn+1,j, i, j ∈ 1, 2, · · · , n.

In [31], one knows that the discrete Laplacian operator ∆d has the following forms
eigenvalues

λkl = 4(sin2φk + sin2φl),

where φk =
(k−1)π

n , φl =
(l−1)π

n and k, l ∈ {1, 2, 3, · · · , n}.
Let ã(i, j, t) = a(i, j, t)− a∗ and h̃(i, j, t) = h(i, j, t)− h∗, and notice that ∆d ã(i, j, t) =

∆da(i, j, t) and ∆d h̃(i, j, t) = ∆dh(i, j, t), and taking this transformation into Equations (4)–(7),
one has(

ãi,j,t+1
h̃i,j,t+1

)
=

(
a10 a01
b10 b01

)(
ãi,j,t
h̃i,j,t

)
+

(
a10

τ
δ2 d1∆d ãi,j,t + a01

τ
δ2 d2∆d h̃i,j,t +O(2)

b10
τ
δ2 d1∆d ãi,j,t + b01

τ
δ2 d2∆d h̃i,j,t +O(2)

)
, (28)

where a10, a01, b10, b01 are defined in above analysis. If the perturbations are small, the
higher order terms can be omitted.

Assume that Xij
kl as the eigenfunction of the eigenvalues λkl , and multiplying the both

sides of Equation (28) by Xij
kl , one gets(

Xij
kl ãi,j,t+1

Xij
kl h̃i,j,t+1

)
=

(
a10 a01
b10 b01

)(
Xij

kl ãi,j,t

Xij
kl h̃i,j,t

)
+

(
a10

τ
δ2 Xij

kld1∆d ãi,j,t + a01
τ
δ2 Xij

kld2∆d h̃i,j,t

b10
τ
δ2 Xij

kld1∆d ãi,j,t + b01
τ
δ2 Xij

kld2∆d h̃i,j,t

)
. (29)

Summing Equation (29) for all of i and j, one obtains that(
∑ Xij

kl ãi,j,t+1

∑ Xij
kl h̃i,j,t+1

)
=

(
a10 a01
b10 b01

)(
∑ Xij

kl ãi,j,t

∑ Xij
kl h̃i,j,t

)

+

(
a10

τ
δ2 ∑ Xij

kld1∆d ãi,j,t + a01
τ
δ2 ∑ Xij

kld2∆d h̃i,j,t +O(2)
b10

τ
δ2 ∑ Xij

kld1∆d ãi,j,t + b01
τ
δ2 ∑ Xij

kld2∆d h̃i,j,t +O(2)

)
. (30)

Let āt+1 = ∑ Xij
kl ãi,j,t+1, h̄t+1 = ∑ Xij

kl h̃i,j,t+1, hence, (30) becomes(
āt+1
h̄t

)
=

(
a10 a01
b10 b01

)(
āt
h̄t

)
+

(
a10(− τ

δ2 d1λkl)āt + a01(− τ
δ2 d2λkl)h̄t +O(2)

b10(− τ
δ2 d1λkl)āt + b01(− τ

δ2 d2λkl)h̄t +O(2)

)
. (31)

Hence, the eigenvalues of the Jacobian of equations of system (31) are

λ±(k, l, τ) =
1
2

PT(k, l, τ)± 1
2

√
PT(k, l, τ)2 − 4QT(k, l, τ), (32)

where

PT(k, l, τ) = −p(τ)− τ

δ2 (a10(τ)d1 + b01(τ)d2)λkl ,

QT(k, l, τ) = q(τ)(1− τ

δ2 d1λkl)(1−
τ

δ2 d2λkl).
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In addition, one defines

ZT(k, l, τ) = max(|λ+(k, l, τ)|, |λ−(k, l, τ)|), (33)

Zm(τ) =
n

max
k=1,l=1

ZT(k, l, τ), ((k, l) 6= (1, 1)). (34)

Zm(τ) = 1 is the threshold condition for the occurrence of Turing bifurcation. In addition,
if PT(k, l, τ)2 − 4QT(k, l, τ) > 0 holds, the critical value τT satisfies

n
max

k=1,l=1
(|PT(k, l, τ)| −QT(k, l, τ)) = 1; (35)

if PT(k, l, τ)2 − 4QT(k, l, τ) ≤ 0 holds, the critical value τT satisfies

n
max

k=1,l=1
QT(k, l, τ) = 1. (36)

Theorem 3. Assume that one of (H1)–(H5) holds, and τ is close to τT . If Zm(τ) > 1, the
homogeneous steady state of model (3) with periodic conditions undergo Turing instability, and
Turing patterns will occur. If Zm(τ) < 1, the homogeneous steady state is still stable; no Turing
patterns will occur.

4. Numerical Simulations
In this section, we will give some examples to illustrate the results in Section 3. We

can find the bifurcations and chaos, as well as many different Turing patterns in this part
by numerical simulations.

4.1. The Dynamics Behaviors for Spatially Homogeneous State
In this sunsection, we show the temporal dynamics of flip bifurcation and Neimark–

Sacker bifurcation. Let c = 0.5, µ = 0.2015, then the positive equilibrium is (a∗, h∗) =
(7.4442, 55.4156) and critical value for flip bifurcation is τf = 3.37221. c = 0.5, µ = 0.2156,
then the positive equilibrium is (a∗, h∗) = (6.9573, 48.4044), and the critical value for
Neimark–Sacker bifurcation is τN = 4.304889.

Moreover, the flip bifurcation diagram, Neimark–Sacker bifurcation diagram and the
corresponding maximum Lyapunov exponents are shown in Figures 1 and 2, respectively.
Besides, the phase orbits for flip bifurcation and Neimark–Sacker bifurcation are shown in
Figures 3 and 4, respectively.

From Figure 3, we can see that there exists stable periodic—2, 4, 8, 10 points as τ great
than τf sightly, as shown in Figure 3a–c,e, respectively. We can also find chaos (Figure 3d,f)
as τ increases furthermore.

From Figure 4, we can see that there exists a stable limit cycle as τ great than τN
sightly, as shown in Figure 4a. We can also find chaos (Figure 4c) as τ increases furthermore.
During the route to chaos, we find that there exists periodic-11 windows, as shown in
Figure 4b.

(a) (b)

Figure 1. (a) Flip bifurcation diagram; (b) Maximum Lyapunov exponents.
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(a) (b)

Figure 2. (a) Neimark-Sacker bifurcation diagram; (b) Maximum Lyapunov exponents.

(a) (b) (c)

(d) (e) (f)

Figure 3. Phase portraits for different values of τ corresponding to Figure 1a. (a) τ = 3.6; (b) τ = 3.8;
(c) τ = 3.96; (d) τ = 4.02; (e) τ = 4.12; (f) τ = 4.18.

(a) (b) (c)

Figure 4. Phase portraits for different values of τ corresponding to Figure 3a. (a) τ = 4.311;
(b) τ = 4.3223; (c) τ = 4.328.

4.2. The Dynamics Behaviors for Spatially Heterogenous State
In this part, we show the spatiotemporally dynamics of Turing instability for flip

bifurcation and Neimark–Sacker bifurcation. In order to ensure that a and h are non-
negative, we need di∆t( 1

(∆x)2 +
1

(∆x)2 ) < 0.5, i = 1, 2. Let d1 = 0.2 and n = 256; the Zm − τ
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diagrams are shown in Figure 5. We find that Turing bifurcation curve τ = τT and the flip
bifurcation curve τ = τf (or Neimark–Sacker bifurcation curve τ = τN) divide parametric
space, (d2, τ), into three regions, as shown in Figure 3a (or Figure 3b). Moreover, Let
d2 = 0.5; we can observe that the critical value for Turing instability in flip bifurcation and
Neimark–Sacker bifurcation are τT = 3.37221 and τT = 4.304886, respectively.

(a) (b)

Figure 5. (a) Zm − τ diagram for Turing instability in flip bifurcation; (b) Zm − τ diagram for Turing
instability in Neimark–Sacker bifurcation.

In this sequel, we show the patterns for flip-Turing instability. Let τ = 3.6; the
pattern induced by periodic-2 points [27,31] is shown in Figure 6a, which is formed by two
alteration states. Similarly, taking τ = 3.8 and τ = 3.96, the patterns induced by periodic-
4 and -8 points are shown in Figure 6b,c, respectively. Besides, on the paths to chaos,
there exists a pattern induced by periodic-10 points, which is shown in Figure 6e. Taking
τ = 4.02 and τ = 4.18, the patterns induced by chaotic attractors are shown in Figure 6d,f,
respectively. It is clear to observe that the pattern in Figure 6f is more fragmented than that
one in Figure 6d, which means that the self-organized symmetric patterns are broken and
spatial chaotic characteristics are shown.

(a) (b) (c)

(d) (e) (f)

Figure 6. The patterns for flip-Turing instability. (a) τ = 3.6; (b) τ = 3.8; (c) τ = 3.96; (d) τ = 4.02;
(e) τ = 4.12; (f) τ = 4.18.
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In this sequel, we show the patterns for Neimark–Sacker Turing instability. Let
τ = 4.11, the pattern induced by invariant circles, be shown in Figure 7(a1–a3) for t = 1000,
t=5000, and t = 10,000, respectively. As τ increases to 4.3223 continuously, the circular
pattern induced by periodic-11 orbit is shown in Figure 7(b1–b3) for t = 1000, t = 5000,
and t = 10,000, respectively, which is more twisted than the top patterns of Figure 7. As τ
reaches to 4.328 eventually, the pattern induced by the homogeneous chaotic oscillating
states [27,31] are more twisted than the former two, as shown in Figure 7(c1–c3) for t = 1000,
t = 5000, and t = 10,000, respectively,

(a1) τ = 4.311 (t = 1000) (a2) τ = 4.311 (t = 5000) (a3) τ = 4.311 (t = 10,000)

(b1) τ = 4.3223 (t = 1000) (b2) τ = 4.3223 (t = 5000) (b3) τ = 4.3223 (t = 10,000)

(c1) τ = 4.328 (t = 1000) (c2) τ = 4.328 (t = 5000) (c3) τ = 4.328 (t = 10,000)

Figure 7. The patterns for Neimark-Sacker Turing instability.

5. Conclusions and Future Direction
The flip, Neimark–Sacker and Turing bifurcations of a spatiotemporal discrete Gierer-

Meinhardt system are investigated in this paper. In addition, we illustrate the patterns
induced by the flip-Turing and Neimark–Sacker Turing instability. Compared to the pre-
vious works [3,34], we found that the flip-Turing patterns and Neimark–Sacker–Turing
patterns are similar with the patterns induced by the real Ginzburg–Landau equation
which emerges as the amplitude equation near a Hopf instability to a continuous reaction–
diffusion system, such as the defect turbulence. In fact, the coupled map lattice system is a
dynamic system that discretizes time and space but its state variables still remain continu-
ous. Hence, what is the relationship between the patterns of a continuous reaction–diffusion
system and a spatiotemporal discrete one? It is worth investigating this phenomenon in
further work.
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