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Abstract: In this paper, we study a semilinear integro-differential inclusion in Banach spaces, under
the action of infinitely many impulses. We provide the existence of mild solutions on a half-line
by means of the so-called extension-with-memory technique, which consists of breaking down the
problem in an iterate sequence of non-impulsive Cauchy problems, each of them originated by a
solution of the previous one. The key that allows us to employ this method is the definition of suitable
auxiliary set-valued functions that imitate the original set-valued nonlinearity at any step of the
problem’s iteration. As an example of application, we deduce the controllability of a population
dynamics process with distributed delay and impulses. That is, we ensure the existence of a pair
trajectory-control, meaning a possible evolution of a population and of a feedback control for a
system that undergoes sudden changes caused by external forces and depends on its past with
fading memory.

Keywords: semilinear differential inclusions; impulsive problems; feedback controls; distributed
delay; population dynamics
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1. Introduction

In this paper, we study the existence of solutions to the semilinear integro-differential
inclusion

y′(t) ∈ A(t)y(t) + F
(

t, y(t),
∫ t

t0

k(t, s)y(s)ds
)

, t ≥ t0, (1)

with the initial condition y(t0) = v ∈ E, where E is a real Banach space. Here, {A(t)}t≥0 is
a family of linear operators acting on the Banach space, F : [t0,+∞[×E× E ( E is a given
set-valued map, and k is a nonnegative real function.

Currently, many researchers around the world are investigating the semilinear integro-
differential equations or inclusions, as witnessed, for example, by the recent articles [1–8].
One of the main reasons for this research is that these equations are well suited to serve
as a model for real phenomena such as heat transfer or the spread of epidemics or
population dynamics, in which it is significant to take into account the spatial diffusion of
the phenomenon or the past of the phenomenon itself (e.g., [9,10]).

The need to introduce delays in models describing real phenomena has appeared clear
since the beginning of the last century, due to the fact that some of the processes involved in
the dynamics may depend on the past status of the population. Think, for example, of the
study of a phenomenon in which only individuals of childbearing age are to be considered.
Clearly, in this case, the time between birth and the moment when the individual is involved
in the reproductive process is not irrelevant, leading to a non-negligible maturation delay
influencing the evolution of the population over time. Among all the pioneers’ works on
delay equations, we wish to recall that of Volterra, from which a whole class of differential
equations will take his name (see [11] for a historical review). In the decades following
the 1950s, the delay equations have been studied either in the case of concentrated delay,
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distributed delay, or functional delay. We refer to the papers [12,13] for the first studies
concerning semilinear differential equations with delay, to the monographs [14–16] for a
more in depth treatment on delay differential equations, and to [17] for the use of delays in
population models.

Along this line, we will apply the results of the investigation on the semilinear integro-
differential inclusion (1) to the study of a population dynamics model described by the
parametric integro-differential equation involving a distributed delay

∂u
∂t

(t, x) = −b(t, x)u(t, x) + g

(
t, u(t, x),

∫ t

t0

e−(t−s)/T

T
u(s, x) ds

)
+ ω(t, x) , (2)

subject to feedback controls given by

ω(t, ·) ∈W(u(t, ·)) .

Here, u, b, ω : [t0,+∞[×[0, 1] → R and g : [t0,+∞[×R×R→ R are given functions,
while W : L2([0, 1]) ( L2([0, 1]) is a multimap.

The real value u(t, x) represents the population density at time t and place x, the
removal coefficient −b(t, x) the death rate and displacement of the population, and the
nonlinearity g : [t0,+∞[×R×R→ R the population development law.

The function g includes a Volterra integral, and this is what formalizes the distributed
delay in the model, providing a spanning effect by means of the memory kernel

k(t, s) =
e−(t−s)/T

T
.

This kernel is given by the exponential distribution of probability k (τ) = e−τ/T

T . Since
k is decreasing, the two-variable function k assigns a greater weight to the most recent
events, increasingly fading the influence of those further away in time. Note that this
happens in a maximum range indicated by T. In fact, the positive number T provides the
width of the action of the kernel: the larger T is, the more the system’s memory is extended
to past events affecting its present state. Thus, we can say that the value T shows the range
of significance of the delay. We point out that, inasmuch as the process is set on the whole
half-line, the number T can be chosen arbitrarily large. In other words, the relevance of
the delay on the status of the solution trajectory can be chosen arbitrarily, thus making the
model particularly versatile.

The set-valued function W provides the sets where the feedback controls can be taken.
Feedback controls often appear in models from the life Sciences, especially in systems
biology. For a detailed description of the topic see [18].

Further, we consider the presence of infinitely many impulses on the system. These are
represented by given functions acting in correspondence to times tm, where {tm}m≥1 is an
increasing diverging sequence of positive numbers, and leading to jumps on the solutions’
functions according to relations for all m ≥ 1

lim
h→0+

y(tm + h) = y(tm) + Im(y(tm)),

or
lim

h→0+
u(tm + h, x) = u(tm, x) + Im(u(tm, x)),

in case we deal with the general integro-differential inclusion (1) or the model’s parametric
differential Equation (2), respectively.

Problems involving instantaneous impulses have been extensively studied in the
literature and are still a topic of considerable interest, as can be seen in
recent articles [19–25]. For a first approach to the subject, we refer to the now classic
monographs [26,27]. The reason lies in that impulse functions are needed in the modeling
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of a wide range of real phenomena whenever an external factor that extends for a very
short period of time—to the point of being considered instantaneous—intervenes to disturb
the system, causing sudden changes in the evolution of the trajectories that describe the
evolutionary dynamics of the process. For example, but not limited to them, impulse
functions can represent the administration of antibiotics on a bacterial population in the
treatment of a disease, or abrupt changes of prices in economics, or the use of pesticides in
pre-established times to keep a pest in a crop below a certain threshold (in biology, these
functions are called “regulation functions”).

This paper is organized as follows:
The most important notions necessary to place the topics covered in the manuscript

are shortly collected in Section 2.
Then, in Section 3, the Cauchy problem driven by the semilinear integro-differential

inclusion (1) is formally stated, and the existence of mild solutions is provided, both in
and out of the presence of impulses. We achieve our main existence result by means
of an “extension-with-memory” process, which generates an impulsive mild solution
starting from the mild solutions of an ordered iterative sequence of non-impulsive Cauchy
problems. As far as we know, this method was first used in [28] and in [29] without memory
and with functional delay, respectively, but on a compact interval in both cases. More
recently, it has been firstly used on the half-line in [25] to provide the existence of mild
solutions of an impulsive Cauchy problem driven by the semilinear differential equation
with functional delay

y′(t) = A(t)y(t) + f (t, y(t), yt), t ≥ t0,

where yt(θ) := y(t + θ), θ ∈ [−τ, 0], t ∈ [t0,+∞[. Contrary to what one might think at first
glance, the analogous problem governed by the semilinear integro-differential equation

y′(t) = A(t)y(t) + f
(

t, y(t),
∫ t

t0

k(t, s)y(s)ds
)

, t ≥ t0,

was still open, even on a compact interval. Indeed, the different nature between function
t 7→ yt and function t 7→

∫ t
t0

k(t, s)y(s)ds does not allow the same demonstration arguments
to be used. In the present work, we provide an answer to this open problem, even in the
multivalued case. The key of our procedure is given by the introduction of suitable auxiliary
set-valued functions, which “imitate”, satisfying its own properties (cf. next Lemma 1), the
original set-valued nonlinearity F at any step of the problems’ iteration. Furthermore, we
would like to point out that the extension-with-memory method enables the existence of
solutions with no hypothesis on the impulse functions, unlike other approaches adopted in
the literature, for which those functions are supposed to be at least continuous.

In Section 4, we consider the system governed by the parametric integro-differential
equation with distributed delay (2) under the action of feedback controls and impulses.
We solve the feedback control problem by rewriting the model as an impulsive Cauchy
problem driven by a semilinear integro-differential inclusion in the space E = L2([0, 1]). In
this way, we can apply the general result obtained in Section 3 and lead to the existence of
a pair, trajectory-control, providing the controllability of the population dynamics process.

2. Essential Preliminary Notions

We recall some basic notations and definitions.
Let X and Y be two topological spaces. A set-valued function (or “multivalued map”,

or, shortly, “multimap”) F : X ( Y is upper semicontinuous at x0 ∈ X if, for every open
V ⊂ Y such that F (x0) ⊂ V, there exists a neighborhood U of x0 such that F (x) ⊂ V for
every x ∈ U. A multimap F is upper semicontinuous if it is upper semicontinuous at every
x0 ∈ X.

Let E be a real Banach space endowed with the norm ‖ · ‖. By the symbol C(J, E), we
denote the space of E-valued continuous functions on a closed, bounded interval J ⊂ R,
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while by Lp(J, E) we denote the space of all functions v : J → E such that their p-power is

Bochner integrable endowed with the norm ‖v‖Lp(J,E) =
[∫

J ‖v(z)‖
p dz

] 1
p (shortly, Lp(J)

and ‖v‖Lp , respectively, if E = R), p ≥ 1. Moreover, for any a ∈ R, by the symbol
L1

loc([a,+∞[, E), we mean the space of all functions v : [a,+∞[→ E such that v ∈ L1(J, E)
for every compact J ⊂ [a,+∞[ (shortly, L1

loc([a,+∞[) if E = R). Then, throughout the paper
for a given function y : [a,+∞[→ E and a fixed t ∈ [a,+∞[, we will use the symbol

y(t+) := lim
h→0+

y(t + h),

whenever the limit exists.
A family {T(t, s)}t≥s≥0 of bounded linear operators on E is said to be a (strongly

continuous) evolution system on the half-line (see, e.g., [30]) if

(T1) T(s, s) = I, T(t, r)T(r, s) = T(t, s) for t ≥ s ≥ 0; and

(T2) for every x ∈ E, the map ξx : (t, s) 7→ T(t, s)x is continuous.

Further, a family of linear operators {A(t)}t≥0 generates an evolution system on the
half-line {T(t, s)}t≥s≥0 (see, e.g., [31]) if

(T3)
∂T(t, s)

∂t
= A(t)T(t, s) and

∂T(t, s)
∂s

= −T(t, s)A(s), t ≥ s ≥ 0.

We conclude this section recalling that the Hausdorff measure of noncompactness in E
is the function χ on the family of nonempty subsets of E taking nonnegative real values
defined by

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net} , for all bounded Ω ⊂ E.

The symbol χL2 will denote the Hausdorff MNC in E = L2([0, 1]). For the properties
of the Hausdorff measure of noncompactness, we refer to [32].

3. Existence of Impulsive Mild Solutions on the Half-Line

Let E be a real Banach space, and {tm}m∈N a set of fixed real numbers such that
0 ≤ t0 < t1 < t2 < ... and limm→∞ tm = +∞. By the symbol PC([t0,+∞[, E), we denote
the set of functions

PC([t0,+∞[, E) :=

{
y : [t0,+∞[→ E : y| ]tm−1,tm ] is continuous, for all m ∈ N+;

∃ lim
h→0+

y(tm + h) ≡ y
(
t+m
)
∈ E, for all m ∈ N.

}

Let v ∈ E be fixed, and consider the corresponding initial value problem driven by
a semilinear integro-differential inclusion subject to impulses Im : E → E, m ∈ N+ at the
given times {tm}m∈N+

(P)



y′(t) ∈ A(t)y(t) + F
(

t, y(t),
∫ t

t0
k(t, s)y(s)ds

)
, t ≥ t0 , t 6= tm , m ∈ N+,

y(t0) = v,

y(t+m) = y(tm) + Im(y(tm)) , m ∈ N+.

In this Section we suppose that:

(A) A := {A(t)}t≥0 is a family of linear operators, A(t) : D(A) ⊂ E → E, D(A) dense
subset of E not depending on t, generating an evolution system on the half-line
{T(t, s)}t≥s≥0;

(F) F : [t0,+∞[×E× E ( E is a multimap satisfying the properties:

(F0) F takes compact and convex values;
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(F1) for every v, w ∈ E, the multimap F(·, v, w) admits a strongly measurable
selection;

(F2) for a.e. t ∈ [t0,+∞[, the multimap F(t, ·, ·) is upper semicontinuous;
(F3) there exists a nonnegative function α ∈ L1

loc([t0,+∞[) such that, for a.e. t ≥ t0
and all v, w ∈ E,

‖F(t, v, w)‖ ≤ α(t)(1 + ‖v‖+ ‖w‖) , (3)

where ‖F(t, v, w)‖ := sup{‖w‖ : w ∈ F(t, v, w)}; and
(F4) there exists a nonnegative function h ∈ L1

loc([t0,+∞[) such that

χ(F(t, Ω1, Ω2)) ≤ h(t)[χ(Ω1) + χ(Ω2)] , (4)

for a.e. t ≥ t0 and every bounded Ω1, Ω2 ⊂ E;

(k) k : ∆∞ → R+, ∆∞ = {(t, s) ∈ R2 : t ≥ s ≥ t0}, is a continuous function.

We study the existence of mild solutions to (P), according to the following definition:

Definition 1. A function y ∈ PC([t0,+∞[, E) is said to be a mild solution to (P) if

y(t) = T(t, t0)v + ∑
t0<tm<t

T(t, tm)Im(y(tm)) +
∫ t

t0

T(t, s) f (s) ds, t ≥ t0, (5)

where f : [t0,+∞[→ E is a L1
loc-function on [t0,+∞[ such that

f (s) ∈ F
(

s, y(s),
∫ s

t0

k(s, τ)y(τ)dτ

)
for a.e. s ≥ t0,

with the agreement that ∑t0<tm<t T(t, tm)Im(y(tm)) = 0 if t ∈ [t0, t1].

Note that every mild solution also satisfies the conditions.

y(t0) = v;

y(t+m) = y(tm) + Im(y(tm)) , m ∈ N+.

Before stating the main theorem of this section, we provide a preliminary result.
It will be a strategic and decisive tool in applications. Indeed, thanks to the property
stated by Lemma 1, we can apply the extension-with-memory technique (later shown)
to integro-differential equations or inclusions having a two-variables kernel inside the
Volterra integral, which is new in the literature, as far as we know. As a consequence,
our existence theorem will be allowed to operate in a much wider class of models than is
possible with the current results, to our knowledge.

Lemma 1. Let E be a real Banach space, and {tm}m∈N a sequence of real numbers such that
0 ≤ t0 < t1 < t2 < ... and limm→+∞ tm = +∞.
Assume that F : [t0,+∞[×E× E ( E and k : ∆∞ → R+, respectively, satisfy (F) and (k).
Then, for every m ∈ N+ and every set of functions {yi ∈ C([ti, ti+1], E) : i = 0, . . . , m− 1}, the
multimap Fm : [tm, tm+1]× E× E ( E defined by

Fm(t, v, w) := F

(
t, v, w +

m−1

∑
i=0

∫ ti+1

ti

k(t, τ)yi(τ)dτ

)
, t ∈ [tm, tm+1], v, w ∈ E (6)

satisfies (F) in its [tm, tm+1]-restricted version.

Proof. Let m > 0 and {yi ∈ C([ti, ti+1], E) : i = 0, . . . , m − 1} be fixed. For the sake of
simplicity, we denote the properties on [tm, tm+1] by (F0), ..., (F4) , as the corresponding on
[t0,+∞[. Clearly, property (F0) trivially holds.
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Then, let us fix v, w ∈ E and consider the multimap on [tm, tm+1] (see (6))

Fm(·, v, w) = F

(
·, v, w +

m−1

∑
i=0

∫ ti+1

ti

k(·, τ)yi(τ)dτ

)
.

We notice that it can be seen as the Nemytskii superposition operator N : [tm, tm+1]→
E of the function Fv : [tm, tm+1]× E ( E,

Fv(t, η) := F(t, v, η), t ∈ [tm, tm+1], η ∈ E

by the function qw : [tm, tm+1]→ E,

qw(t) := w +
m−1

∑
i=0

∫ ti+1

ti

k(t, τ)yi(τ)dτ, t ∈ [tm, tm+1].

In fact, we get

N(t) := Fv(t, qw(t)) = F(t, v, qw(t)) = Fm(t, v, w), t ∈ [tm, tm+1].

Obviously, by (F0) of F we have that Fv takes compact values, by (F1) that Fv(·, η)
has a strongly measurable selector for every η ∈ E, and by (F2) that Fv(t, ·) is upper
semicontinuous for a.e. t ∈ [tm, tm+1].

Moreover, qw is strongly measurable; indeed, the functions fi : [tm, tm+1]× [ti, ti+1]→
E, i = 0, . . . , m− 1, defined by

fi(t, τ) = k(t, τ)yi(τ), (t, τ) ∈ [tm, tm+1]× [ti, ti+1]

are continuous on [tm, tm+1]× [ti, ti+1] as product of continuous functions (cf. (k)). Thus,
qw is in turn continuous on [tm, tm+1] and hence strongly measurable.
It is therefore possible to apply Theorem 1.3.5 of [33] and claim that N has a strongly
measurable selector. Thus Fm satisfies (F1).

Now, let us fix t ∈ [tm, tm+1] such that F(t, ·, ·) is upper semicontinuous, and consider
the multimap on E× E (see (6) again)

Fm(t, ·, ·) = F

(
t, ·, ·+

m−1

∑
i=0

∫ ti+1

ti

k(t, τ)yi(τ)dτ

)
.

Since the vector

w0 :=
m−1

∑
i=0

∫ ti+1

ti

k(t, τ)yi(τ)dτ

is a fixed element in E, the map w 7→ w + w0 is just a translation function, thus Fm(t, ·, ·)
is the composition of a continuous single-valued function and an upper semicontinuous
multimap. Thus, it is upper semicontinuous as well. Hence, property (F2) is satisfied by Fm.

In order to prove that Fm satisfies (F3), let us fix v, w ∈ E, and t ∈ [tm, tm+1] such that
F satisfies inequality (3). Then, according to (6), we have

‖Fm(t, v, w)‖ ≤ α(t)

(
1 + ‖v‖+

∥∥∥∥∥w +
m−1

∑
i=0

∫ ti+1

ti

k(t, τ)yi(τ)dτ

∥∥∥∥∥
)

≤ α(t)(1 + ‖v‖+ ‖w‖) + α(t)
m−1

∑
i=0

∫ ti+1

ti

‖k(t, τ)yi(τ)‖dτ.

Recalling that k is a positive continuous function (see (k)), for every i = 0, . . . , m− 1
there exist

km,i := max
(t,τ)∈[tm ,tm+1]×[ti ,ti+1]

k(t, τ).
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Hence, we get

‖Fm(t, v, w)‖ ≤ α(t)(1 + ‖v‖+ ‖w‖) + α(t)
m−1

∑
i=0

∫ ti+1

ti

km,i‖yi‖L1([ti ,ti+1],E)︸ ︷︷ ︸
:=βm(t)

≤ α(t)(1 + ‖v‖+ ‖w‖) + βm(t)(1 + ‖v‖+ ‖w‖)
= αm(t)(1 + ‖v‖+ ‖w‖),

being αm := α + βm ∈ L1
+([tm, tm+1]).

Finally, concerning (F4), let us fix two bounded sets Ω1, Ω2 ⊂ E, and t ∈ [tm, tm+1]
such that F satisfies inequality (4). By (6) and the properties of algebraic sub-additivity and
nonsingularity of the Hausdorff measure of noncompactness, we have

χ(Fm(t, Ω1, Ω2)) ≤ h(t)

[
χ(Ω1) + χ

(
Ω2 +

m−1

∑
i=0

∫ ti+1

ti

k(t, τ)yi(τ)dτ

)]

≤ h(t)

[
χ(Ω1) + χ(Ω2) +

m−1

∑
i=0

χ

({∫ ti+1

ti

k(t, τ)yi(τ)dτ

})]
= h(t)[χ(Ω1) + χ(Ω2)],

showing the property.

To obtain the existence of mild solutions to our impulsive Cauchy problem (P), we
consider an ordered iterative sequence of non-impulsive Cauchy problems, whose mild
solutions generate the solutions of the impulsive problem by means of an extension-with-
memory process.

Theorem 1. Let E be a real Banach space, v ∈ E, {tm}m∈N with 0 ≤ t0 < t1 < t2 < ... and
limm→+∞ tm = +∞, and Im : E→ E for m ∈ N+ be given. Suppose thatA, F and k, respectively,
satisfy hypotheses (A), (F), and (k). Then, problem (P) has at least one mild solution on [t0,+∞[.

Proof. In association to problem (P), let us consider an iterative sequence of Cauchy
problems related to the intervals given by the increasing sequence {tm}m∈N as follows.

If m = 0, we consider the problem

(P0)

{
y′(t) ∈ A(t)y(t) + F

(
t, y(t),

∫ t
t0

k(t, s)y(s)ds
)

, t ∈ [t0, t1],

y(t0) = v.

If m > 0, we define a multimap Fm : [tm, tm+1]× E× E ( E as

Fm(t, v, w) := Fm−1

(
t, v, w +

∫ tm

tm−1

k(t, τ)ȳm−1(τ)dτ

)
, t ∈ [tm, tm+1], v, w ∈ E (7)

(of course, here we mean F0 = F) and a vector in E as

vm := ȳm−1(tm) + Im(ȳm−1(tm)), (8)

and consider the problem

(Pm)

{
y′(t) ∈ A(t)y(t) + Fm

(
t, y(t),

∫ t
tm

k(t, s)y(s)ds
)

, t ∈ [tm, tm+1],

y(tm) = vm,

where ȳm−1 ∈ C([tm−1, tm], E) is a mild solution of problem (Pm−1).
We prove that these mild solutions really exist, by extension.
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First, we consider m = 0. It is easy to check that, when restricted to [t0, t1], the
hypotheses on the family A and on the maps F and k come down to the hypotheses of
Theorem 5.1 in [34]; actually, that theorem acts on an interval [0, b], but it still holds in
[t0, t1] ⊂ [0, t1] (recall that t0 is fixed greater or equal to 0). Thus we can claim that (P0)
has at least one mild solution ȳ0 ∈ C([t0, t1], E), i.e., a continuous function on the interval
[t0, t1] such that

ȳ0(t) = T(t, t0)v +
∫ t

t0

T(t, s) f0(s) ds, for every t ∈ [t0, t1], (9)

f0 ∈ L1([t0, t1], E), f0(s) ∈ F
(

s, ȳ0(s),
∫ s

t0

k(s, τ)ȳ0(τ)dτ

)
, for a.a. s ∈ [t0, t1]. (10)

Let us now fix m > 0. It is clear that in the interval [tm, tm+1] we have for A and k the
same situation as in [t0, t1]. Concerning Fm, notice that it can be rewritten as

Fm(t, v, w) = F

(
t, v, w +

m−1

∑
i=0

∫ ti+1

ti

k(t, τ)ȳi(τ)dτ

)
, t ∈ [tm, tm+1], v, w ∈ E.

That is, for Fm Equation (6) holds. Hence, by Lemma 1 we can claim that Fm satisfies (F).
Therefore, we can use [34] [Theorem 5.1] again and achieve the existence of a mild solution
ȳm to (Pm), i.e., a continuous function on the interval [tm, tm+1] having the following
representation:

ȳm(t) = T(t, tm)vm +
∫ t

tm
T(t, s) fm(s) ds, t ∈ [tm, tm+1], (11)

fm ∈ L1([tm, tm+1], E),

fm(s) ∈ Fm

(
s, ȳm(s),

∫ s

tm
k(s, τ)ȳm(τ)dτ

)
, a.a. s ∈ [tm, tm+1]. (12)

We wish to prove that the function ȳ : [t0,+∞[→ E defined by

ȳ(t) :=

{
ȳ0(t), t ∈ [t0, t1]

ȳm(t), t ∈]tm, tm+1], m > 0,
(13)

is a mild solution to (P).
To this aim, we firstly put (see (10), (12))

f̄ (t) :=

{
f0(t), t ∈ [t0, t1]

fm(t), t ∈]tm, tm+1], m > 0.
(14)

Thus, naturally, f̄ ∈ L1
loc([t0,+∞[, E). Further, we show that it is a selector of the

multimap F
(
·, ȳ(·),

∫ (·)
t0

k(·, τ)ȳ(τ)dτ
)

almost everywhere in [t0,+∞]. Indeed, note that by
(10) we have

f̄| [t0,t1]
(s) = f0(s) ∈ F

(
s, ȳ0(s),

∫ s

t0

k(s, τ)ȳ0(τ)dτ

)
, for a.a. s ∈ [t0, t1].

Thus, by recalling (13) we obtain

f̄ (s) ∈ F
(

s, ȳ(s),
∫ s

t0

k(s, τ)ȳ(τ)dτ

)
, for a.a. s ∈ [t0, t1].
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Let us now consider any m > 0. By (12), we get

f̄| ]tm ,tm+1]
(s) = fm(s) ∈ Fm

(
s, ȳm(s),

∫ s

tm
k(s, τ)ȳm(τ)dτ

)
, for a.a. s ∈]tm, tm+1].

By using the expression of Fm (see (7)) and the definition of ȳ (see (13)), we can
therefore write

f̄ (s) ∈ F

(
s, ȳm(s),

∫ s

tm
k(s, τ)ȳm(τ)dτ +

m−1

∑
i=0

∫ ti+1

ti

k(s, τ)ȳi(τ)dτ

)

= F
(

s, ȳ(s),
∫ s

t0

k(s, τ)ȳ(τ)dτ

)
, for a.a. s ∈]tm, tm+1].

Now, we can prove that ȳ satisfies condition (5) (cf. Definition 1).

If t ∈ [t0, t1], then by (13), (9), (14) we have

ȳ(t) = T(t, t0)v +
∫ t

t0

T(t, s) f0(s) ds = T(t, t0)v +
∫ t

t0

T(t, s) f̄ (s) ds.

If t ∈]t1, t2], then by (13), (11), (8), we get

ȳ(t) = T(t, t1)v1 +
∫ t

t1

T(t, s) f1(s) ds

= T(t, t1)[ȳ0(t1) + I1(ȳ0(t1))] +
∫ t

t1

T(t, s) f1(s) ds.

By (9), (T1), (14), (13) we obtain

ȳ(t) = T(t, t1)

[
T(t1, t0)v +

∫ t1

t0

T(t1, s) f0(s) ds
]
+ T(t, t1)I1(ȳ0(t1)) +

∫ t

t1

T(t, s) f1(s) ds

= T(t, t0)v +
∫ t1

t0

T(t, s) f0(s) ds + T(t, t1)I1(ȳ0(t1)) +
∫ t

t1

T(t, s) f1(s) ds

= T(t, t0)v + T(t, t1)I1(ȳ(t1)) +
∫ t

t0

T(t, s) f̄ (s) ds.

Thus, by the same arguments, we can say that if t ∈]tm, tm+1] for any m > 0 it
holds that

ȳ(t) = T(t, tm)vm +
∫ t

tm
T(t, s) fm(s) ds

= T(t, t0)v +
m

∑
i=1

T(t, ti)Ii(ȳ(ti)) +
∫ t

t0

T(t, s) f̄ (s) ds

and this concludes the proof.

From careful reading of the proof, it appears that no hypotheses are needed on the
impulse functions. Hence, they can be chosen arbitrarily. Thus, if we pick Im(v) = 0 for
every v ∈ E and m ∈ N+, we immediately have the following existence result.

Corollary 1. Let E be a real Banach space and v ∈ E be given. Suppose that A, F, and k,
respectively satisfy hypotheses (A), (F), and (k). Then, there exists at least one mild solution on
[t0,+∞] to the Cauchy problem{

y′(t) ∈ A(t)y(t) + F
(

t, y(t),
∫ t

t0
k(t, s)y(s)ds

)
, t ≥ t0 ,

y(t0) = v.
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Of course, in this case, a mild solution is a function y ∈ C([t0,+∞[, E) such that

y(t) = T(t, t0)v +
∫ t

t0

T(t, s) f (s) ds, t ≥ t0,

with f : [t0,+∞[→ E a L1
loc-function on [t0,+∞[ and f (s) ∈ F

(
s, y(s),

∫ s
t0

k(s, τ)y(τ)dτ
)

for a.e. s ≥ t0.

4. Example of Application: The Controllability of a Population Dynamics Process with
Distributed Delay and Impulses

In this section, we apply Theorem 1 to the study of the following process with feedback
controls described by a parametric integro-differential equation with distributed delay and
subject to impulses.

Fixed 0 ≤ t0 < t1 < t2 < . . . , with limm→+∞ tm = +∞, and u0 ∈ L2([0, 1]), we
consider the system

(FCP)



∂u
∂t

(t, x) = −b(t, x)u(t, x) + g

(
t, u(t, x),

∫ t

t0

e−(t−s)/T

T
u(s, x) ds

)
+ ω(t, x) ,

t ≥ t0 , t 6= tm , m ∈ N+ , a.e. x ∈ [0, 1],
ω(t, ·) ∈W(u(t, ·)) , t ≥ t0,

u(t0, x) = u0(x) , a.e. x ∈ [0, 1],

u(t+m , x) = u(tm, x) + Im(u(tm, x)) , m ∈ N+ , a.e. x ∈ [0, 1].

In this model, the real value u(t, x) represents the density of a population depending
on time t and place x, considering the spatial range normalized to interval [0, 1], while the
nonlinearity g : [t0,+∞[×R×R→ R represents the population development law.

The dependence from the past state of the system is provided by the Volterra integral∫ t
t0

e−(t−s)/T

T u(s, x) ds. Indeed, the positive number T gives the width of the action of the

kernel, here given by the exponential distribution of probability k (τ) = e−τ/T

T . The larger
T is, the more the system’s memory is extended to past events affecting its present state.
Hence, T establishes the width of the range of significance of the delay. Notice that, being
the above problem set on the whole half-line, the value of T can be chosen arbitrarily large.
This means that the relevance of the delay on the status of the solution trajectory can be
chosen arbitrarily, leading to a particularly versatile model.

Moreover, the multimap W : L2([0, 1]) ( L2([0, 1]) gives the sets of controls, and the
impulse functions Im : R→ R and m ∈ N+ represent instantaneous external forces acting
on the system.

Finally, the death rate and displacement of the population is given by the removal
coefficient −b(t, x).

We assume that the function b : [0,+∞[×[0, 1]→ R+ satisfies the following conditions:

(b1) b is measurable;

(b2) there exists s ∈ L1
loc([0,+∞[) such that

0 < b(t, x) ≤ s(t) ,

for every t ≥ 0, a.e. x ∈ [0, 1]; and

(b3) for every x ∈ [0, 1], the function b(·, x) : [0,+∞[→ R+ is continuous.

Consider the family of linear functions A(t) : L2([0, 1])→ L2([0, 1]), t ≥ 0, defined by

A(t)v(x) = −b(t, x)v(x), v ∈ L2([0, 1]), x ∈ [0, 1]. (15)
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By [35] [Section 3.1] and [4] [Proposition 3.2 and Remark 3.1], we know that properties
(b1)–(b3) imply that the family {A(t)}t≥0 defined by (15) generates the noncompact
evolution system

[T(t, s)v](x) = e
∫ t

s −b(σ,x)dσv(x), t ≥ s ≥ 0, v ∈ L2([0, 1]), x ∈ [0, 1]. (16)

Hence, the next proposition holds.

Proposition 1. Under assumptions (b.1)-(b.3), the family {A(t)}t≥0 defined by (15) satisfies
property (A).

On the other functions appearing in the model, we assume the next hypotheses.
The function g : [t0,+∞[×R×R→ R is such that

(g0) g(t, v(·), w(·)) ∈ L2([0, 1]), for every t ≥ t0, v, w ∈ L2([0, 1]);

(g1) for every p, q ∈ R, the function g(·, p, q) is (strongly) measurable;

(g2) for a.e. t ≥ t0, the function g(t, ·, ·) is continuous;

(g3) there exists a nonnegative function ϕ ∈ L1
loc([t0,+∞[) such that

|g(t, p, q)| ≤ ϕ(t),

for a.e. t ≥ t0 and every p, q ∈ R; and

(g4) there exists a nonnegative function m ∈ L1
loc([t0,+∞[) such that

χL2(g(t, Ω1(·), Ω2(·))) ≤ m(t)[χL2(Ω1) + χL2(Ω2)] ,

for a.e. t ≥ t0 and every bounded Ω1, Ω2 ⊂ L2([0, 1]).

The multimap W : L2([0, 1]) ( L2([0, 1]) satisfies the properties

(W0) W takes compact convex values;

(W1) W is upper semicontinuous;

(W2) there exists R > 0 such that, for every v ∈ L2([0, 1]),

‖W(v)‖L2 ≤ R(1 + ‖v‖L2),

where ‖W(v)‖L2 := sup{‖η‖L2 : η ∈W(v)}; and

(W3) there exists Q > 0 such that

χL2(W(Ω)) ≤ QχL2(Ω),

for every bounded Ω ⊂ L2([0, 1]).

Now, we put:

v, w : [t0,+∞[→ L2([0, 1]) as

v(t)(x) = u(t, x) and w(t)(x) = ω(t, x), t ≥ t0, x ∈ [0, 1]; (17)

f : [t0,+∞[×L2([0, 1])× L2([0, 1])→ L2([0, 1]) as

f (t, v, w)(x) = g(t, v(x), w(x)), t ≥ t0, v, w ∈ L2([0, 1]), x ∈ [0, 1]; (18)

Im : L2([0, 1])→ L2([0, 1]), m ∈ N+, as

Im(v)(x) = Im(v(x)), v ∈ L2([0, 1]), x ∈ [0, 1]. (19)
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It is easy to check that by these positions we can write the feedback control problem
(FCP) as the impulsive Cauchy problem with feedback controls driven by a semilinear
integro-differential equation in L2([0, 1]).

v′(t) = A(t)v(t) + f
(

t, v(t),
∫ t

t0
e−(t−s)/T

T v(s) ds
)
+ w(t) , t ≥ t0 , t 6= tm , m ∈ N+,

w(t) ∈W(v(t)) , t ≥ t0,

v(t0) = v0,

v(t+m) = v(tm) + Im(v(tm)) , m ∈ N+.

Finally, let us put:

k : ∆∞ → R+ as

k(t, s) =
e−(t−s)/T

T
, t ≥ s ≥ t0; (20)

F : [t0,+∞[×L2([0, 1])× L2([0, 1]) ( L2([0, 1]) as

F(t, v, w) = f (t, v, w) + W(v) , t ≥ t0, v, w ∈ L2([0, 1]). (21)

Then, (FCP) can be further rewritten as

v′(t) ∈ A(t)v(t) + F
(

t, v(t),
∫ t

t0
k(t, s) v(s) ds

)
, t ≥ t0 , t 6= tm , m ∈ N+,

v(t0) = v0,

v(t+m) = v(tm) + Im(v(tm)) , m ∈ N+,

(22)

which is nothing more than a problem of the type (P) in the space E = L2([0, 1]).
In order to give the controllability of problem (FCP) we need the next result.

Proposition 2. Under assumptions (g0)–(g4) and (W0)–(W3), the multimap F defined in (21)
satisfies (F).

Proof. First of all, we observe that by (g0), and recalling (18), one gets f (t, v, w) ∈ L2([0, 1])
for every t ≥ t0, v, w ∈ L2([0, 1]), so that F is well-defined. Moreover, hypothesis (W0)
ensures that F satisfies (F0).

With regard to property (F1), it immediately follows from (g1). Indeed, fixed v, w ∈
L2([0, 1]), the function t 7→ f (t, v, w) = g(t, v(·), w(·)) is (strongly) measurable. Hence, its
translation given by t 7→ f (t, v, w) + ω, where ω is an arbitrary element of W(v), is again
measurable and represents a measurable selector of F(·, v, w).

Now, fixed t ≥ t0 for which (g2) and (g3) hold, the map (v, w) 7→ f (t, v, w) is
continuous. In fact, for arbitrarily fixed (v0, w0) ∈ L2([0, 1]) × L2([0, 1]), consider a
sequence (vn, wn)→ (v0, w0) in L2([0, 1])× L2([0, 1]). Then, by (g2) we can write

|g(t, vn(x), wn(x))− g(t, v0(x), w0(x))|2 → 0, for a.e. x ∈ [0, 1].

By (g3), we obtain the following estimate:

|g(t, vn(x), wn(x))− g(t, v0(x), w0(x))|2 ≤
[
|g(t, vn(x), wn(x))|+ |g(t, v0(x), w0(x))|

]2
≤ 4ϕ2(t), for a.e. x ∈ [0, 1].
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We can therefore apply the Lebesgue dominated convergence theorem obtaining∫ 1

0
|g(t, vn(x), wn(x))− g(t, v0(x), w0(x))|2dx → 0,

and hence

‖ f (t, vn, wn)− f (t, v0, w0)‖L2 =

√∫ 1

0
|g(t, vn(x), wn(x))− g(t, v0(x), w0(x))|2dx → 0.

The arbitrariness of (v0, w0) leads to the continuity of f (t, ·, ·). As a consequence,
the multimap F(t, ·, ·) is the sum of a continuous single-valued function and an upper
semicontinuous multimap (see (21) and (W1)), so it is upper semicontinuous as well, i.e., F
satisfies (F2).

Let us prove that F satisfies (F3). To this aim, we fix t ≥ t0 for which (g3) holds and
any v, w ∈ L2([0, 1]). We clearly have

‖ f (t, v, w)‖2
L2 =

∫ 1

0
[g(t, v(x), w(x))]2dx ≤ ϕ2(t),

so that
‖ f (t, v, w)‖L2 ≤ ϕ(t)(1 + ‖v‖L2 + ‖w‖L2).

Therefore, by using also (W2), we get

‖F(t, v, w)‖L2 ≤ ‖ f (t, v, w)‖L2 + ‖W(v)‖L2

≤ α(t)(1 + ‖v‖L2 + ‖w‖L2),

where α(t) := ϕ(t) + R. The function α belongs to L1
loc([t0,+∞[) since ϕ does.

Finally, let us fix t ≥ t0 for which (g4) holds and any bounded Ω1, Ω2 ⊂ L2([0, 1]).
Then, by (21), (18), and (W3), we have

χL2(F(t, Ω1, Ω2)) ≤ χL2(g(t, Ω1(·), Ω2(·))) + χL2(W(Ω1))

≤ m(t)[χL2(Ω1) + χL2(Ω2)] + QχL2(Ω1)

≤ h(t)[χL2(Ω1) + χL2(Ω2)],

where h(t) := m(t) + Q. As above, m ∈ L1
loc([t0,+∞[) implies h ∈ L1

loc([t0,+∞[), so that F
satisfies (F4).

We can now state the main result of this section. In this regard, we should bear in
mind that problem (FCP) is controllable if there exists at least one admissible pair for (FCP),
that is, a couple (u, ω) of functions u, ω : [t0,+∞[×[0, 1]→ R such that: u(t, ·) ∈ L2([0, 1])
for every t ≥ t0; u(·, x) ∈ PC([t0,+∞[,R), for all x ∈ [0, 1]; u satisfies the identity

u(t, x) = e
∫ t

t0
−b(σ,x)dσu0(x) + ∑

t0<tm<t
e
∫ t

tm −b(σ,x)dσIm(u(tm, x)) +

+
∫ t

t0

e
∫ t

s −b(σ,x)dσ

[
g

(
s, u(s, x),

∫ s

t0

e−(s−τ)/T

T
u(τ, x) dτ

)
+ ω(s, x)

]
ds,

for every t ∈ [t0,+∞[, x ∈ [0, 1], where ω(s, ·) ∈W(u(s, ·)), a.e. s ∈ [t0,+∞[.

Theorem 2. Under assumptions (b1)–(b3), (g0)–(g4), and (W0)–(W3), the problem (FCP)
is controllable.

Proof. The hypotheses of the theorem ensure that we can use Proposition 1 and then
deduce that the family of linear operators {A(t)}t≥0 defined in (15) satisfies property (A).
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On the other hand, we can also use Proposition 2 and thus infer that the multimap F defined
in (21) satisfies property (F). Therefore, we can apply Theorem 1 to problem (22) and obtain
the existence of a function v ∈ PC

(
[t0,+∞[, L2([0, 1])

)
such that

v(t) = T(t, t0)v0 + ∑
t0<tm<t

T(t, tm)Im(v(tm)) +
∫ t

t0

T(t, s) f (s) ds, t ≥ t0, (23)

where f : [t0,+∞[→ L2([0, 1]) is a locally summable selector of F
(
·, v(·),

∫ (·)
t0

k(·, τ)v(τ)dτ
)

on [t0,+∞[.
Recalling now conditions (16)–(21), we can rewrite (23) as

u(t, x) = e
∫ t

t0
−b(σ,x)dσu0(x) + ∑

t0<tm<t
e
∫ t

tm −b(σ,x)dσIm(u(tm, x))

+
∫ t

t0

e
∫ t

s −b(σ,x)dσ f (s)(x) ds, t ≥ t0, x ∈ [0, 1]

where f (s) = g
(

s, u(s, x),
∫ s

t0
e−(s−τ)/T

T u(τ, x)dτ
)
+ ω(s, x) and ω(s, ·) ∈ W(u(s, ·)), for

x ∈ [0, 1] and a.e. s ≥ t0, concluding the proof.

We conclude the section providing an example of nonlinearity g which satisfies
properties (g0)–(g4).

Example 1. Let us consider the function g : [t0,+∞[×R×R→ R defined by

g(t, p, q) =
t

1 + |q| , t ≥ 0, p, q ∈ R. (24)

It is easy to check that (g0)-(g3) are satisfied by g. As for (g4), we recall that in the space
L2([0, 1]) the Hausdorff measure of noncompactness is equivalent to the measure of noncompactness

χ∗L2(Ω) = lim
h→0

sup
θ∈Ω

√∫ 1

0
[θ(x + h)− θ(x)]2dx (25)

for every bounded Ω ⊂ L2([0, 1]), according to the relation

χL2(Ω) ≤ χ∗L2(Ω) ≤ 2χL2(Ω) (26)

(see, e.g., [36]).
Then, let us fix t ≥ t0 and Ω1, Ω2 bounded subsets of L2([0, 1]). We have that

sup
θ∈g(t,Ω1,Ω2)

√∫ 1

0
[θ(x + h)− θ(x)]2dx = sup

w∈Ω2

√∫ 1

0

[
t

1 + |w(x + h)| −
t

1 + |w(x)|

]2
dx

= t sup
w∈Ω2

√∫ 1

0

[
|w(x)| − |w(x + h)|

(1 + |w(x + h)|)(1 + |w(x)|)

]2

dx ≤ t sup
w∈Ω2

√∫ 1

0

[
|w(x)| − |w(x + h)|

]2dx

≤ t sup
w∈Ω2

√∫ 1

0
2
[
w(x)− w(x + h)

]2dx =
√

2 t sup
w∈Ω2

√∫ 1

0

[
w(x)− w(x + h)

]2dx.
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Thus, bearing in mind (25) and (26), we deduce the next estimate

χL2(g(t, Ω1, Ω2)) ≤ χ∗L2(g(t, Ω1, Ω2)) = lim
h→0

sup
θ∈g(t,Ω1,Ω2)

√∫ 1

0
[θ(x + h)− θ(x)]2dx

≤
√

2 t lim
h→0

sup
w∈Ω2

√∫ 1

0

[
w(x)− w(x + h)

]2dx

=
√

2 t χ∗L2(Ω2) ≤ 2
√

2 t χL2(Ω2)

≤ 2
√

2 t [χL2(Ω1) + χL2(Ω2)].

Hence, (g4) is fulfilled by taking m(t) = 2
√

2 t, t ≥ 0.

Lastly, we observe that Example 1 can be easily generalized to a function

g(t, p, q) =
ψ(t)

1 + |q| , t ≥ 0, p, q ∈ R

where ψ is any L1
loc-function.

5. Conclusions

This study reveals the existence of mild solutions on the half-line to the impulsive
problem (P) under upper-Carathèodory assumptions on the multivalued nonlinearity (cf.
properties (F1), (F2)). The extension-with-memory technique here adopted allows impulse
functions to be used with no hypotheses, unlike other methods used in the literature, for
which those functions are supposed to be at least continuous. Moreover, by means of
positions (15)–(21), it is possible to deduce the controllability of the system (FCP) (see
Section 4), which is a model for a population dynamics process and that can serve for a
wide variety of real phenomena involving a distributed delay.

The methods and some of the results obtained in this paper are expected to be used to
analyze problem (P) when the nonlinearity presents a lower semicontinuity type property,
and to study the topological properties of the solution set on the half-line under upper
or lower semicontinuity type assumptions, alongside all the consequences that results
in abstract spaces reflect on models of spread of diseases as well as heat transfer or
population dynamics.
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