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Abstract: We study the inverse scattering problem for a Schrödinger operator related to a static wave
operator with variable velocity, using the GLM (Gelfand–Levitan–Marchenko) integral equation. We
assume to have noisy scattering data, and we derive a stability estimate for the error of the solution
of the GLM integral equation by showing the invertibility of the GLM operator between suitable
function spaces. To regularise the problem, we formulate a variational total least squares problem,
and we show that, under certain regularity assumptions, the optimisation problem admits minimisers.
Finally, we compute numerically the regularised solution of the GLM equation using the total least
squares method in a discrete sense.

Keywords: inverse scattering; Gelfand–Levithan–Marchenko equation; total least squares

1. Introduction

In many scientific, medical and industrial problems, one has to retrieve unknown
coefficients of a governing differential equation (PDE) from (partial) measurements of its
solution. This way, properties of materials can be studied in a medium that we do not have
direct physical access to. In geophysics, for example, a well-known problem is estimating
the elastic parameters of the subsurface from surface measurements. The governing PDE is
a wave equation, and the measurements consist of a trace of its solution on the boundary
of the domain. See, for example, [1] for an overview.

In particular, we focus on the inverse problem for the 1D static wave/Helmholtz
equation

− d
dy

{
c2(y)

d
dy

v(k, y)
}
= k2v(k, y), y ∈ R, (1)

with v = vi + vs and (asymptotic) boundary conditions

lim
y→±∞

{dvs(k, y)
dx

± ikvs(k, y)
}
= 0 (2)

We let vi(k, y) = e−ıky, which corresponds to an incoming plane wave from the left.
The measurements at y = 0 are given by

K(t) =
∫
R

vs(k, 0)e2ıktdk,

for t ∈ [0, T]. The goal is now to retrieve c from these measurements.
Various methods for solving the inverse coefficient problem for the wave equation have

been developed. A well-known method is full waveform inversion, which poses the inverse
problem as a PDE-constrained optimisation problem [2,3]. Other variational formulations
for the inverse problem have been proposed as well; see, for example, [4,5]. We refer to
such methods as indirect, as they are based on an implicit non-linear relation between
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data and coefficients that need to be solved iteratively. On the other hand, the inverse
problem can be solved using a direct method. Here, an explicit formula leads to the exact
solution of the inverse problem (for noiseless data). A classical direct method is given by
the Gelfand–Levitan–Marchenko (GLM) integral equation [6–8]. This method has its roots
in inverse scattering theory, and has recently attracted renewed attention [9–12]. In [13], for
example, a GLM-like approach for wavefield redatuming was proposed. Here, boundary
measurements are used to estimate the wavefield in the entire domain. Subsequently, such a
wavefield can be used to estimate medium parameters by solving the Lippmann–Schwinger
integral equation [14].

One advantage of the indirect (variational) methods over the direct ones is that they
can handle better situations where there is noise in the data. In direct methods, noise in the
data likely gets amplified. To counter such instabilities, one typically adds regularisation. In
particular, the GLM approach with noisy data requires a total least squares (TLS) approach,
and was studied numerically by [15]. Other regularised approaches for similar integral
equations in seismic imaging are discussed in [16].

In this paper, we revisit the classical GLM approach for the 1D inverse medium
problem and consider in particular the infinite dimensional case with noisy measurements.
To regularise the problem, we formulate a regularised (TLS) approach for it. To solve the
resulting variational problem, we use an alternating iterative method [17]. Some numerical
examples complete the paper.

Our main contributions are as follows:

• We extend the stability estimates that can be found in [18] to the classical GLM
integral equation.

• We show that the variational TLS formulation of the GLM method admits minimisers.

This paper is organised as follows. In Section 2, we state the forward scattering
problem and we review some classical results from scattering theory. We also review basic
properties of the GLM integral operator. In Section 3, we include our new findings, namely
the stability estimate for the GLM inversion assuming having access to noisy scattering data.
We then continue studying the variational total least squares problem of reconstructing the
solution of the inverse problem from noisy scattering data, and we show the well-posedness
of it. We also discuss its analytical limitations. In Section 4 we implement numerically
the proposed total least squares regularisation method. In Section 5 we show a number of
numerical examples and conclude the paper with a discussion section.

2. Preliminaries

This section summarises mostly known and well-established results in 1D scattering
theory. In Section 2.1, we use the travel time coordinate transform to derive the equivalence
of the static wave equation with variable velocity to the Schrödinger equation and we
formulate the forward scattering problem. In Section 2.2, we repeat the classical procedure
of using the Jost solutions to construct the solution of the forward scattering problem. In
Section 2.3, we briefly discuss the derivation of the GLM integral equation and we review
some basic properties of the GLM integral operator.

2.1. Formulation of the Forward Problem

It has been well-established (see, for example, [7,8]) that the inverse problem for the 1D
static wave/ Helmholtz equation may equivalently be stated in terms of the 1D Schrödinger
equation {

− d2

dx2 + q(x)
}

u(k, x) = k2u(k, x), x ∈ R, (3)

with boundary conditions

lim
x→+∞

{dus(k, x)
dx

+ ıkus(k, x)
}
= 0, (4)
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lim
x→−∞

{dus(k, x)
dx

− ıkus(k, x)
}
= 0, (5)

where
u(k, ·) = ui(k, ·) + us(k, ·) (6)

with ui(k, x) = e−ıkx, x ∈ R. The quantities are related via

u(k, x) = η(x)v(k, y(x)), x ∈ R, (7)

q(x) =
1

η(x)
d2η(x)

dx2 , x ∈ R. (8)

where
η(x) = {c(y(x))}1/2, (9)

and
y(x) =

∫ x

0
η2(r)dr, x ∈ R. (10)

We assume that the velocity c > 0 is bounded and an element of C1(R). We also
assume that c′ is bounded and has a compact support and that c′′ ∈ L2(R) is a bounded
function. Therefore, q is bounded and compactly supported since η′′ is bounded and
compactly supported. We refer to the Appendix A for a discussion on the L2-validity of
the calculations that lead from the static wave equation to the Schrödinger equation. Fur-
thermore, we note that we seek for an element of H2

loc(R) as the solution of the differential
equation since the scattering potential is discontinuous in general, and thus, we cannot
necessarily obtain a solution of C2-regularity.

A key result that we will need later on is the absence of bound states.

Theorem 1. Let the Schrödinger operator

S = − d2

dx2 + q : H2(R)→ L2(R), (11)

where q is given by relation (8). Then the discrete spectrum of S is empty.

We include the proof in the Appendix A. To show Theorem 1, we use the positivity
of the static wave operator and its equivalence to the Schrödinger operator. We use this
positivity argument thanks to the conversation and the hint given to author 1 (A.T.) from
Vassilis Papanicolaou [19]. The result of the absence of bound states for this particular
Schrödinger operator can be derived using also physical arguments; see [8].

2.2. Classical Results from Scattering Theory

It is well known that the Schrödinger differential equation can be reduced to the
following Schrödinger integral equations at ±∞.

f+(k, x) = eıkx −
∫ ∞

x

sin(k(x− y))
k

q(y) f+(k, y)dy, x ∈ R,

and

f−(k, x) = e−ıkx +
∫ x

−∞

sin(k(x− y))
k

q(y) f−(k, y)dy, x ∈ R.

Such Volterra-type integral equations can be derived using the variation of constants
and we refer to [20] for a discussion about the existence and uniqueness of solutions of these
integral equations. The functions f±(±k, ·) are called the Jost solutions, and the solution of
the forward scattering problem can be decomposed as a sum of these functions as

u(k, x) = T(k) f−(k, x) = f+(−k, x) + R(k) f+(k, x), x ∈ R, (12)
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where the functions T, R are called the transmission and reflection coefficients respectively.
The transmission and reflection coefficients, as functions of the wavenumber k, satisfy the
following relations

T(k) = 1 +
1

2ık

∫
R

u(k, y)q(y)eıkydy,

R(k) =
1

2ık

∫
R

u(k, y)q(y)e−ıkydy, (13)

for k ∈ R \ {0} and the conservation of energy

|T(k)|2 + |R(k)|2 = 1, k ∈ R \ {0}. (14)

The scattering theory for the Schrödinger equation is a classical mathematical subject
that dates back to the 1960s. We refer, for example, to [20–22] and the references therein for
introduction and extensive analysis of the quantum scattering problem.

2.3. The Inverse Scattering Problem and the Gelfand–Levitan–Marchenko Inversion Method

The inverse scattering problem is now to retrieve the scattering potential, q, from
the reflection coefficient R. The GLM integral equation is the key for solving this inverse
scattering problem. In this section, we review the classical inverse scattering problem of
the determination of the scattering potential from scattering data, using the GLM integral
equation. In Section 2.3.2, we study the integral operator defined by the GLM equation in
order to derive properties that will help us to construct an inequality for the error of the
solution of the GLM equation as we show in Section 3.1.

2.3.1. Derivation of the GLM Equation

The key ingredient for deriving the GLM integral equation is the scattering iden-
tity (12). For fixed x, we get that CIm>0 3 k 7→ f+(k, x)e−ikx − 1 is an element of the
Hardy class H+

2 . Using the Paley–Wiener theorem, we obtain that f+(·, x) satisfies the
following relation

e−ıkx f+(k, x) = 1 +
∫ ∞

0
B(x, t)e2ıktdt, ∀k ∈ R \ {0}, (15)

where B(x, ·) ∈ L2(0, ∞) satisfies

− dB(x, 0)
dx

= q(x). (16)

The calculation of the Fourier transform of relation (12) gives the classical GLM
integral equation. For more details on the application of the Paley–Wiener theorem to the
Jost function f+(·, ·), we refer to [20]. Below, we give the GLM integral equation. For a
detailed proof, we refer again to [20], which gives a very detailed exposition of the quantum
scattering problem on the line using analytical methods.

Theorem 2. Let x ∈ R. Then the function B(x, ·) satisfies the GLM integral equation

K(x + t) +
∫ ∞

0
B(x, z)K(x + t + z)dz + B(x, t) = 0, a.e. for t ∈ [0, ∞), (17)

where the scattering data K = Kc + Kd are given by

Kc(t) =
1
π

∫
R

R(k)e2ıktdk, t ∈ [0, ∞), (18)

Kd(t) = 2
N

∑
n=1

ρne−2pnt, t ∈ [0, ∞), (19)
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where (−ρn)N
n=1 are the eigenvalues of the Schrödinger operator S = − d2

dx2 + q and (−pn =

− 1
‖ fn‖L2(R)

)N
n=1, fn are the eigenfunctions corresponding to the eigenvalues.

Remark 1. Due to the absence of bound states in our setting, we do not have to consider Kd and
will denote the measured scattering data by K, with the understanding that it is directly related to R
through a Fourier transform.

The inverse procedure is as follows. First, the scattering data K are collected by
measuring the response at the boundary (i.e., x = 0). Then follows the solution of the GLM
integral Equation (17). After the GLM kernel is recovered, the scattering potential, q, can be
found using relation (16).

2.3.2. Analysing the GLM Operator

In this subsection, we study the GLM integral operator and we review some of its
properties. In particular, we use these properties in Section 3.1 for deriving an upper bound
for the error of the noisy inverse problem. Since we assume that the scattering potential
q is compactly supported, we obtain that for every fixed x ∈ R, the solution of the GLM
equation B(x, ·) is compactly supported. In particular, this is justified using the following
inequality,

|B(x, t)| ≤
∫ ∞

x+t
|q(z)|dz exp

(∫ ∞

x
(z− x)|q(z)|dz

)
, (20)

for x ∈ R and t > 0, see [20]. Consequently, the domain of integration in the GLM integral
equation can be reduced to an integration over a finite interval. For a fixed potential q, we
assume that the interval of integration is (0, Tx), where Tx depends on the fixed value of
x ∈ R. In addition, since we are interested in reconstructing B(·, ·) for the values of x where
the scattering potential is supported, it is reasonable to consider the following. Since the set
{Tx : x ∈ supp(q)} is bounded from above, we denote with T its supremum. We assume
without loss of generality that (0, T)⊃supp(q). We define

Y = { f ∈ L2(R) : supp( f ) ⊂ (0, T)}. (21)

We also define the set B(Y) = {L : Y → Y : bounded and linear}. Additionally, for a
fixed x ∈ (0, T) and f ∈ Y we define

{A(K) f }(x, t) :=
∫ T

0
χ(0,T)(t)K(x + t + z) f (z)dz, t ∈ R. (22)

Since we fix K ∈ L2(R), we write for simplicity

{A(K) f }(x, ·) = Ax f . (23)

With χω(·), we denote the characteristic function which is 1 in ω and 0 in R \ω. Since
the reflection coefficient R ∈ L2(R), thus K ∈ L2(R), see [20], we find the following.

Lemma 1. For fixed x, the operator
Ax : Y → Y (24)

is compact and self-adjoint.

Lemma 2. The numbers λ = ±1 are not eigenvalues of Ax.

Considering the previous lemmas, the following result follows.

Proposition 1. The operator I + Ax ∈ B(Y) is invertible and its inverse is given by the Neumann
series expansion in B(Y).
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3. Main Results

So far, we have summarised mainly known results for the scattering problem of our
study. In the following subsection, we provide the reader with a new result regarding the
stability of the reconstruction of the GLM kernel from noisy scattering data. In Section 3.2,
we show the existence of minimisers for the variational total least squares regularisation of
the GLM inversion.

3.1. Stability Estimates

Assuming now that there is an error ε ∈ L2(R) in the measurements of the scattering
data K (due to noise, measuring errors, etc.); we are then dealing with the following problem.

Given K? = K + ε ∈ L2(R), find B?
x ∈ L2(0, T) : (25)

B?
x(t) +

∫ T

0
χ(0,T)(t)K

?(x + t + z)B?
x(z)dz + K?(x + t) = 0, a.e. for t in (0, T), (26)

where we let Bx(·) = B(x, ·) for ease of notation. We then want to bound ‖B?
x − Bx‖L2(R)

in terms of ‖ε‖L2(R). A similar upper bound for the error for a similar GLM equation is
given in [18], but not in L2(R). In addition, we refer to [23] for a discussion on a stability
estimate of the Marchenko inversion where the bounds are on the scattering potential. In
the application of recovering the scattering potential from scattering data, a pointwise
estimate for the error is sufficient in view of relation (16). We denote

∆Bx = B?
x − Bx. (27)

and
εx(t) = K?(x + t)− K(x + t), a.e for t ∈ R. (28)

Assuming further that the error e is real valued, we obtain, as before, that A?
x is a

compact and self-adjoint operator. We then find the following result.

Lemma 3. Let the previous assumptions be true. The following inequality holds,

‖A?
x − Ax‖B(Y) ≤

√
T‖εx‖L2(R). (29)

Proof. Let f ∈ Y . We obtain

|[(A?
x − Ax) f ](t)| =

∣∣∣∣∫ T

0
χ[0,T](z)

{
K?(x + z + t)− K(x + z + t)

}
f (z)dz

∣∣∣∣ ≤ (30)

‖εx+t‖L2(0,T)x‖ f ‖L2(0,T) ≤ ‖ε‖L2(R)‖ f ‖Y a.e. for t ∈ (0, T)⇒ (31)

the operator (A?
x − Ax) is well defined and

‖(A?
x − Ax) f ‖L2(0,T) ≤

√
T‖ε‖L2(R)‖ f ‖Y , (32)

∀ f ∈ Y .

With this, we are ready to present the error bound.

Theorem 3. Under the previous assumptions, we obtain the following:

‖∆Bx‖Y ≤
‖εx‖L2(R)(1 +

√
T‖B?

x‖Y )
1− ‖Ax‖B(Y)

(33)

Proof. We subtract (17)–(26) to obtain

(I + Ax + {A?
x − Ax})B?

x − (I + Ax)Bx = −εx ⇐⇒ (34)
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(I + Ax)∆Bx = −(A?
x − Ax)B?

x − εx ⇒ (35)

since 1 is not an eigenvalue of Ax

∆Bx = (I + Ax)
−1{−εx − (A?

x − Ax)B?
x} ⇒ (36)

‖∆Bx‖Y ≤ ‖(I + Ax)
−1‖B(Y){‖εx‖Y + ‖A?

x − Ax‖Y‖B?
x‖Y} ≤ (37)

‖ε‖L2(R)(1 +
√

T‖B?
x‖Y )

1− ‖Ax‖B(Y)
. (38)

The previous stability estimate gives an upper bound for the error of the solution of
the GLM equation, which is proportionate to the L2-norm of the error in the measurements
e. Though, we cannot rule out the case where the operator norm of Ax is almost 1. In
general, the operator norm of Ax is determined by K. However, what kind of potential
produces scattering data that make the operator norm be closer to 1 is still something to
investigate.

3.2. Variational Regularisation

In this section, we define and show well-posedness for the variational total least
squares regularisation problem of determining the kernel B from inexact scattering data.
Similar work on this subject was done in the finite dimensional setting by [15], where they
considered discrete scattering data and they followed a data analytic way for studying the
total least squares problem for regularizing the GLM equation. In our approach, we fill the
theoretical gap of showing well-posedness of the total least squares regularisation method
of the GLM inversion in the infinite dimensional setting.

Now, for a set Ω ⊂ RN , N = 1, 2 and a generic function space Ψ(Ω) = { f : Ω→ C},
we define the extension operator

E0 : Ψ(Ω)→ Ψ(RN), (39)

as the map that extends a function to 0 if the argument is not included in Ω. (This is
a bounded operator if, for example, Ψ(Ω) = L2(0, T).) Then, we consider the usual
Lebesgue space

L2((0, T)2) = { f : (0, T)→ L2(0, T) :
∫ T

0
‖ f (t, ·)‖2

L2(0,T)dt < ∞}.

The inner product is given by

〈 f , g〉L2((0,T)2) =
∫ T

0
〈 f (t), g(t)〉L2(0,T)dt =

∫ T

0

∫ T

0
f (x, t)g(x, t)dxdt.

We also define
Θ : L2((0, T)2)→ L2((0, T), L2(R)) (40)

with
Θ f = x 7→ E0 f (x, ·), for almost all x ∈ (0, T). (41)

Lemma 4. Θ is a bounded linear operator.

Proof. The linearity is easy to show. Now, for the boundedness, let f ∈ L2((0, T)2)

‖ f ‖2
L2((0,T)2) =

∫ T

0

∫ T

0
| f (x, t)|2dtdx =

∫ T

0

∫
R
|E0 f (x, t)|2dtdx = ‖Θ f ‖2

L2((0,T),L2(R)).
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We define G : L2((0, T)2)× L2(R)→ L2((0, T), L2(R)) as

G(B, K) = {I + A(K)}ΘB =

x 7→
{

t 7→ ΘB(x, t) +
∫ T

0
χ(0,T)(y)ΘB(x, z)K(x + t + z)dz

}
(42)

Remark 2. We need Θ in order to have a well-defined convolution type relation in G. In addition,
compare this with the setting of the previous section. By using Θ, we avoid the use of the space Y
altogether.

Proposition 2. G : L2((0, T)2)× L2(R)→ L2((0, T), L2(R)) is well defined.

Proof. Let (B, K) ∈ L2((0, T)2)× L2(R). We want to show that G(B, K) ∈ L2((0, T), L2(R)).
For almost all x ∈ (0, T), t ∈ R, we obtain that

|A(K)ΘB(x, t)| =
∣∣∣ ∫ T

0
χ(0,T)(t)ΘB(x, z)K(x + t + z)dz

∣∣∣ ≤
‖E0B(x, ·)‖L2(R)‖K‖L2(R) = ‖B(x, ·)‖L2(0,T)‖K‖L2(R) ⇒∫ T

0

{ ∫ T

0
χ(0,T)(t)ΘB(x, z)K(x + t + z)dz

}2
dt ≤ T‖B(x, ·)‖2

L2(0,T)‖K‖2
L2(R).

Therefore,∥∥∥x 7→
{

t 7→
∫ T

0
χ(0,T)(t)ΘB(x, z)K(x + t + z)dz

}∥∥∥2

L2((0,T),L2(R))
≤ T‖K‖2

L2(R)‖B‖2
L2((0,T)2).

Finally,

‖G(B, K)‖L2((0,T),L2(R)) ≤
√

T‖K‖L2(R)‖B‖L2((0,T)2) + ‖B‖L2((0,T)2).

Now, for a function g ∈ L2(R), we define for almost all x ∈ (0, T)

S(g) : x 7→ g(x + ·). (43)

Lemma 5. S : L2(R)→ L2((0, T), L2(R)) is linear and bounded.

Proof. Let g, g1, g2 ∈ L2(R).

S(ag)(x, t) = ag(x + t) = aSg(x, t), a.e. in (0, T)×R.

In addition,

S(g1 + g2)(x, t) = (g1 + g2)(x + t) = Sg1(x, t) + Sg1(x, t), a.e. in (0, T)×R.

Now, we observe that

‖Sg‖2
L2((0,T),L2(R)) =

∫ T

0
‖g(x + ·)‖2

L2(R)dx = (44)

∫ T

0
‖g‖2

L2(R)dx = T‖g‖2
L2(R) ⇒ ‖Sg‖L2((0,t),L2(R)) =

√
T‖g‖L2(R). (45)
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Let K ∈ L2(R) given. Let also α, β > 0. We define the total least squares functional
φK : H1((0, T)2)× H1

0(0, 3T)→ [0, ∞] as

φK(B, e) :=

‖G(B, K + E0e) + S(K + E0e)‖2
L2((0,T),L2(R)) + α‖B‖2

L2((0,T)2) + β‖e‖2
L2(0,3T). (46)

We assume that we have access to inexact scattering data K ∈ L2(R). We will define
the solution of the inverse problem of finding the kernel B (in a region where the potential
is supported) from K.

Definition 1. Let K ∈ L2(R) inexact scattering data. Let α, β > 0, and let that there exist
functions B̂ ∈ H1((0, T)2) and ê ∈ H1

0(0, 3T) such that

(B̂, ê) ∈ argmin
B∈U ,e∈V

φK(B, e), (47)

with U ⊂ H1((0, T)2), V ⊂ H1
0(0, 3T), both bounded convex and closed in the respective

topologies. Then, we call B̂ a regularised total least squares solution of the GLM integral equation.

Remark 3. Ideally, we would like to find a perturbation e that will almost cancel out the noise ε
which is included in K.

We state some auxiliary results needed for showing well-posedness for the variational
inverse problem (47).

Lemma 6. Let K ∈ L2(R) and let the strongly convergent sequences

Bn → B in L2((0, T)2) (48)

and
en → e in L2(0, 3T). (49)

Then
A(K + E0en)ΘBn → A(K + E0e)ΘB in L2((0, T), L2(R)). (50)

Proof. For almost all x ∈ (0, T), t ∈ R, we take∫ T

0
χ(0,T)(t)ΘBn(x, z)(K + E0en)(x + t + z)dz−

∫ T

0
χ(0,T)(t)ΘB(x, z)(K + E0e)(x + t + z)dz =

∫ T

0
χ(0,T)(t)Θ{Bn(x, z)− B(x, z)}(K + E0en)(x + t + z)dz+ (51)

∫ T

0
χ(0,T)(t)ΘB(x, z)(K + E0e)(x + t + z)dz = (52)

Using the triangular inequality and working similarly to Proposition 2, we obtain

‖A(K + E0en)ΘBn − A(K + E0e)ΘB‖L2((0,T),L2(R)) ≤ (53)

√
T‖K + E0en‖L2(R)‖Bn − B‖L2((0,T)2) +

√
T‖E0en − E0e‖L2(R)‖B‖L2((0,T)2) ≤

√
T(‖K‖L2(R)‖+ en‖L2(0,3T))‖Bn − B‖L2((0,T)2) +

√
T‖en − e‖L2(0,3T)‖B‖L2((0,T)2). (54)

As n→ ∞, ‖en‖L2(R) is bounded, so we conclude the result.
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Now, using the above auxiliary results, we find the following well-posedness result.

Theorem 4. The optimisation problem (47) admits minimisers.

Proof. Since
0 ≤ φK(B, e), ∀(B, e) ∈ U ×V, (55)

we can find a minimizing sequence ( fn, en) ⊂ U ×V with

lim
n

φK(Bn, en) = inf
(e,B)∈U×V

φK(B, e) =M. (56)

Since U ,V , are bounded in their respective spaces these two sequences are bounded.
By reflexivity, see ([24] pages 67–68), there exist weak limits f , e such that (passing to
subsequences using the same indexing)

Bn ⇀ B in σ(H1((0, T)2), H1((0, T)2)′) (57)

and
en ⇀ e in σ(H1(0, 3T), H−1(0, 3T)). (58)

Since U, V are strongly closed and convex subsets of reflexive spaces, they are also
weakly closed; see ([24] page 60). Therefore,

(B, e) ∈ U × V . (59)

Now, by the following compact embeddings,

H1
0(0, 3T)

c
↪→ L2(0, 3T)

and
H1((0, T)2)

c
↪→ L2((0, T)2)

we can conclude the strong convergence

Bn → B in L2((0, T)2) (60)

and
en → e in L2(0, 3T). (61)

Using the above lemmas, we obtain that

M = lim
n→∞

φK(Bn, en) = (62)

(continuity of the square function and the norm function)

‖ lim
n

G(Bn, K + E0en) + S(K) + lim
n

S(E0en)‖2
L2((0,T),L2(R))+

α‖ lim
n

Bn‖2
L2((0,T)2) + β‖ lim

n
en‖2

L2(0,3T) =

‖ lim
n

Bn + lim
n

A(K + E0en)Bn + S(K) + lim
n

S(E0en)‖2
L2((0,T),L2(R)+

α‖ lim
n

Bn‖2
L2((0,T)2) + β‖ lim

n
en‖2

L2(0,3T) =

‖G(B, K + E0e) + S(K) + S(E0e)‖2
L2((0,T),L2(R)) + α‖B‖2

L2((0,T)2) + β‖e‖2
L2(0,3T) ⇒ (63)

φK(B, e) =M
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Remark 4. The set (0, T)2 ⊂ R2 is a bounded Lipschitz domain. By the Rellich–Kondrachov
theorem, we conclude the following compact embedding

H1((0, T)2)
c
↪→ L2((0, T)2),

see [25].

Remark 5. Regarding the choice of H = H1((0, T)2) and the choice of H1
0(0, 3T) as the space

of the perturbations. We choose in particular these spaces for the space of the GLM kernels (in
the total least squares sense) and the perturbations since we have the above compact embedding
properties. Otherwise [working, for example, with the L2((0, T2)) and the L2(0, 3T)], we cannot
pass to some further strongly convergent subsequences in the proof of existence of minimisers of our
variational inverse problem and conclude the existence result. Similar work on this subject was done
in [26]. However, the assumptions made in this paper are too strong to require in our application. In
particular, the authors considered the existence of minimisers issue for a general class of total least
squares problems. Assuming that the inverse problem is described by a bilinear operator with the
property that weakly convergent sequences are mapped to strongly convergent sequences, they show
existence. However, without working the way we did, the weak to strong continuity property of the
forward operator is a very strong assumption to claim, and in general it does not hold. To see that,
it is sufficient to pick a weakly convergent sequence of the form (Bn, 0)n ⊂ L2((0, τ)2)× L2(R)
and then observe that (G(Bn, 0))n is not necessarily norm convergent. Keep also in mind that G is
not bilinear. In addition, the convolution type relation between K and B should be carefully studied
under the convolution and the weak convergence.

To sum up our approach, we pick the spaces of interest so that we have a compact embedding
property. This way, we do not need to make any assumptions on G.

Remark 6. Regarding the reasonability of the H1-regularity assumption for the GLM kernels.
Even though a GLM kernel naturally has an L2-regularity at least in the box of interest, we know
that it satisfies a Goursat-type hyperbolic PDE (see [20])

{∂x(∂x − ∂t)− q(x)}B(x, t) = 0, x ∈ R, t > 0 (64)

B(x, 0) =
∫ ∞

x
q(z)dz, x ∈ R (65)

lim
x→∞
‖B(x, 0)‖∞ = 0. (66)

So either we study the regularity of solutions of the above PDE, or we just view our proposed
existence of minimisers result as a relaxed version of the problem of seeking kernels with L2-regularity
(and perturbations).

Remark 7. Finally, another thing to keep in mind is that it is possible to obtain multiple minimisers
of the above optimisation problem since the TLS functional, φK, is not convex.

4. Numerical Results
4.1. Numerical Implementation

In this section, we show the discrete form of the GLM equation and its numerical
implementation. We also implement numerically the total least squares regularisation
method of the GLM equation, using noisy scattering data.

4.1.1. Discretisation of the GLM Equation

We discretise the quantities K and B on a regular grid of samples ti = i · ∆t. We then
denote the discrete scattering data by k ∈ Rn. The discrete GLM kernel is denoted by
B ∈ R(m+1)×(m+1). The discrete counterpart to GLM equation is then given by
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bij + ∆t
m

∑
l=0

bilki+j+l = −ki+j, (67)

for i, j = 0, 1, . . . m. We will assume that n = 3m to properly define these relations. The
discrete GLM equation can be more compactly expressed using the map G : R(m+1)×(m+1)×
Rn → R(m+1)2

and S : Rn → R(m+1)2
:

G(B, k) + S(k) = 0. (68)

For fixed k, this system of equations decouples in m independent systems of equations
of the form

Im+1×m+1 + ∆t


ki ki+1 · · · ki+m

ki+1 ki+2 · · · ki+m+1
...

. . .
ki+m ki+m+1 · · · ki+2m


︸ ︷︷ ︸

Ai




bi0
bi1
...

bim

 = −


ki

ki+1
...

ki+m

,

for i = 0, . . . , m. For fixed B, the system of equations takes the following form



T0 0(m+1)×m

0(m+1)×1 T1 0(m+1)×(m−1)

. . .

0(m+1)×m Tm




k0
k1
...

k3m

 = −



b00
...

b0m
b10

...
b1m

...
bm0

...
bmm



, (69)

with Ti ∈ R(m+1)×(2m+1) defined as

Ti =


1 0 . . .
0 1 0 . . .

. . .
. . . 0 1 0 . . .

+ ∆t


bi0 bi1 . . . bim
0 bi0 bi1 . . . bim

. . .
bi0 bi1 . . . bim

.

4.1.2. Numerical Regularisation

Having discretised the GLM equation, we can now define the numerical regularisation
strategies. The Tikhonov-regularised problem (LS) reads

min
B
‖G(B, k) + S(k)‖2

2 + α‖LB‖2
F, (70)

where L represents a finite-difference approximation of the second derivative. Due to the
special form of the equations for fixed k, this problem separates in m separate least-squares
problems for the columns of B. These problems can be readily solved using standard
iterative methods, such as LSQR.
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The total least-squares (TLS) functional in the discrete setting is given by

φk(B, e) = ‖G(B, k + e) + S(k + e)‖2
2 + α‖LB‖2

F + β‖e‖2
2. (71)

To find a minimiser, we apply an alternating minimisation algorithm, as proposed
by [17] we repeat for k = 0, 1, ...

B(k+1) = argmin
B

φk(B(k), e(k)) (72)

e(k+1) = argmin
e

φk(B(k+1), e(k)). (73)

As explained in the previous section, both steps involve a quadratic problem that can
easily be solved using an iterative method like LSQR. The convergence of this alternating
approach is guaranteed by the bi-convex nature of the functional φk [17].

Having solved either of the regularised problems for B and in view of relation (16),
we can compute the scattering potential from the reconstructed kernel by extracting the
first column from B and using a finite-difference approximation to compute the derivative.

4.1.3. Choice of Regularisation Parameters

Both regularised formulations (LS and TLS) include regularisation parameter(s) that
need to be estimated. In particular, for the TLS method, we need to estimate two parameters,
α, β. In practice, though we expect that β does not play a significant role, as the problem
for e is overdetermined, G(B, k + e) = −S(k + e) defines (m + 1)2 equations in 3m + 1
unknowns. Moreover, the corresponding system matrix consists of an identity matrix plus
a small perturbation (cf. (69)), so the system is unlikely to be ill-posed. Thus, we pick a
(small) reference value for β = β̂ and focus on estimating the remaining parameter, α.

Ideally, we would pick α to minimise the reconstruction error, i.e.,

α̂ = argmin
α
‖B̂α − B‖2, (74)

where B is the unregularised solution corresponding to noiseless data, k, (i.e., G(B) = −S(k)),
and B̂α denotes the optimal solution of either the LS or the TLS method corresponding
to noisy data, k = k + ε. For the sake of completeness, we mention below a number of
commonly used methods for choosing regularisation parameters and how these could
potentially be applied in the problem of estimating α.

A posteriori parameter selection methods aim to achieve this by using only knowledge
of the data and the noise level. A well-known method in this class is the discrepancy principle.
The particular nature of our problem (involving a product of B and k) makes it difficult to
apply such rules, however, as they would require an estimate of the residual at the optimal
solution. To see why, note that the residual for (LS) is given by ‖G(B, ε) + S(ε)‖2. The
discrepancy principle then finds an α such that

‖G(B̂α, k) + S(k)‖2 ≈ ‖G(B, ε) + S(ε)‖2, (75)

but this would require knowledge of the true kernel. For the total least squares approach,
we could use the estimated error êα and find α such that

‖êα‖2 ≈ ‖ε‖2. (76)

Heuristic methods such as the L-curve method could be applied. However, it is not
clear how well they would perform on problems of this nature, as even for classical ill-
posed linear inverse problems, such heuristic methods are not convergent [27]. Despite this
theoretical shortcoming, such methods are often applied in practice with success [28].
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5. Numerical Examples

In this subsection, we present a couple of numerical examples comparing the regu-
larised approaches (LS and TLS) outlined above. The least-squares (sub-) problems are
solved using LSQR. Unless stated otherwise, we use 10 iterations of the alternating method
and 10 iterations of LSQR for the sub problems. The scattering potential is obtained by
numerically differentiating the reconstructed kernel, as in (16).

We find that the TLS method is not sensitive to the choice of β (as argued in the
previous section). We therefore use a fixed value of β = 1 · 10−16 for all experiments. The
remaining regularisation parameter α for each method (LS and TLS) is obtained via (74).
Although this requires knowledge of the noiseless data in order to compute B, it allows us
to make a fair best-case comparison between the methods.

The reconstruction quality of the methods is measured by the relative L2-error between
the reconstructed kernel and the reference solution B.

The code used to produce the examples is available on https://github.com/ucsi-
consortium/1DInverseScatteringGLM/releases/tag/publication (accessed on 6 Decem-
ber 2021).

5.1. Example 1: The Plasma Wave-Equation with a Smooth Potential

In this first numerical experiment, we consider the case where the scattering data are
generated directly by the plasma wave equation. The measured scattering data and the
scattering potential are shown in Figure 1.

0.0 0.5 1.0

x

−1.0

−0.5

0.0
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1.0

q(
x

)

0 2 4 6

t

−0.02

−0.01

0.00

0.01

0.02

K
(t

)

Figure 1. Scattering potential and scattering data. The scattering potential has a relatively smooth profile.

We apply the methods described in the previous subsections, and thus, we solve the
GLM integral equation to find the GLM kernel and then the scattering potential. Figure 2
shows the solution of the GLM equation (matrix B) and the comparison between the true
and the recovered potential. For such a smooth potential, the generated scattering data
lead to a good reconstruction.

https://github.com/ucsi-consortium/1DInverseScatteringGLM/releases/tag/publication
https://github.com/ucsi-consortium/1DInverseScatteringGLM/releases/tag/publication
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Figure 2. Reconstruction using the unregularised GLM approach from noiseless data. Shown are the
kernel (left) and corresponding reconstructed scattering potential (right). The recovered scattering
potential matches well with the ground truth.

As we studied previously, the presence of noise in the scattering data is expected
to affect the reconstruction of both the GLM kernel and the potential. To test this, we
add i.i.d. normally distributed random noise to the data with mean zero and variance σ2.
Reconstructions using the unregularised, LS and TLS approach for σ = 1 · 10−3 are shown
in Figure 3. The results for various noise levels are summarised in Table 1. In all cases, the
TLS approach is superior and requires less regularisation (smaller value of α).
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Figure 3. Comparison of the unregularised (left), LS (middle) and TLS (right) approaches on noisy
data (σ = 1 · 10−3). The true potential corresponds to the blue curve.

Table 1. Table for comparing the relative errors of the regularisation methods for various noise levels.

Unregularised LS TLS

σ Rel. Error α Rel. Error α Rel. Error

1 · 10−4 9.30 · 10−2 1.99 · 10−2 9.30 · 10−2 1.68 · 10−2 6.48 · 10−2

1 · 10−3 8.35 · 10−1 1.34 4.85 · 10−1 2.79 · 10−1 2.86 · 10−1

1 · 10−2 7.62 6.27 · 102 8.89 · 10−1 2.94 · 101 7.52 · 10−1



Mathematics 2022, 10, 216 16 of 24

5.2. Example 2: Data from the Wave Equation

In this second example, we consider scattering data generated from the wave equation
with variable density,

ρvtt = {ρc2vy}y.

The coefficients of the wave equation, the corresponding scattering potential and the
measured data are shown in Figure 4. This example is more challenging than the previous
one, due to significant multiple scattering.
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Figure 4. Shown are the the elastic parameters ρ, c (left), the corresponding scattering potential
(middle) and the resulting scattering data (right). The chosen elastic parameters result in significant
multiple scattering, seen on the right.

The results of the GLM method on noise-free data are shown in Figure 5. The band
limitation of our source and the singular behaviour of the potential affects the reconstruction
of q.
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Figure 5. Results for noise-free data. Shown are the reconstructed kernel (left) and the reconstructed
scattering potential (right). The band limitation of our source clearly affects the approximation.

Reconstructions using the unregularised, LS and TLS approach for σ = 1 · 10−2 are
shown in Figure 6. The results for various noise levels are summarised in Table 2. In all
cases, the TLS approach is superior.
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Figure 6. Comparison of the unregularised (left), LS (middle) and TLS (right) approaches on noisy
data (σ = 1 · 10−2). The true potential corresponds to the blue curve.

Table 2. Table for comparing the relative errors of the regularisation methods for various noise levels.

Unregularised LS TLS

σ Rel. Error α Rel. Error α Rel. Error

1 · 10−3 3.81 · 10−2 6.56 · 10−3 3.91 · 10−2 9.52 · 10−3 3.26 · 10−2

1 · 10−2 3.87 · 10−1 3.91 · 10−1 3.27 · 10−1 1.01 · 10−1 1.76 · 10−1

1 · 10−1 3.59 · 100 1.00 · 102 8.05 · 10−1 1.68 · 101 7.03 · 10−1

6. Conclusions and Discussion

We revisited some classical results from inverse scattering to solve the 1D inverse
coefficient problem for the wave equation. In particular, we considered the GLM method
with noisy data and proposed a regularised total least squares formulation in the infinite
dimensional setting. We contributed an error bound for the unregularised GLM approach
and have shown existence of minimisers for the variational formulation of the TLS approach.
Numerical results illustrate the approach, showing that the TLS approach gives superior
results as compared to conventional Tikhonov regularisation.

The results from inverse scattering, in particular a GLM-like approach has recently
received renewed attention in the geophysical literature. Noisy data is a significant source
of error in these methods, and various discrete regularisation schemes have been proposed
to address this issue. While these methods have been shown to work well in practice,
careful analysis of the infinite dimensional problem has not been done. We believe that it
is important to study this because it will yield new insight in the behaviour of practical
approaches as they are pushed to include higher frequency data (and hence finer discretisa-
tion). Ultimately, these insights may lead to adaptive methods. Moreover, the 1D problem
analysed here serves as a model problem for many practical problems in 2D and 3D, and
the insights may inspire new approaches there as well.
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Appendix A. Absence of Bound States Auxiliary Results

In this part of the paper, we include some auxiliary results needed for the proof of
Theorem 1. We also provide the proof of Theorem 1 in the end of the Appendix A.

Lemma A1. Assume that c, c′ are bounded, c ∈ C1(R), c > 0. Then the travel time coordi-
nate transform

R 3 y 7→ x ∈ R,

with
c(y)dx(y) = dy, y ∈ R, (A1)

x(y) =
∫ y

0

1
c(r)

dr, y ∈ R, (A2)

is a 2-diffeomorphism

Proof. Since the new variable x is defined as a function of the independent variable y and
the integrand in (A2) is strictly positive, we get immediately that x is injective. In addition,
x′, x′′ are bounded functions since c, c′ are bounded. Since x is a continuous function and
since the integrand is in C2(R), we get that x ∈ C2(R). Now, let us study the inverse of x.
By the inverse function theorem the inverse of x, x−1, exists and is an element of C1(R)
with the property

dx−1(t)
dt

= c(x−1(t)), t ∈ R. (A3)

Therefore, (x−1)′ is bounded since

|c(x−1(t)| ≤ M, t ∈ R, (A4)

(M is the upper bound of c) and also

d2x−1(t)
dt2 = c′(x−1(t))(x−1)′(t) = c′(x−1(t))c(x−1(t)), t ∈ R, (A5)

which is also bounded since c′ is assumed to be bounded. Finally,

dx
dy

=
1

c(y)
, y ∈ R. (A6)

Therefore, since c is bounded from above and from below,∣∣∣∣dx(y)
dy

∣∣∣∣, y ∈ R, (A7)

is also bounded from above and below.

Corollary A1. Let f ∈ H2(R). Then y 7→ f (x(y)) ∈ H2(R).

https://github.com/ucsi-consortium/1DInverseScatteringGLM/releases/tag/publication
https://github.com/ucsi-consortium/1DInverseScatteringGLM/releases/tag/publication
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Now, since
(c(y))1/2 = η(x), x ∈ R, (A8)

we can view c(y) as a function of x as

x
bijective x(·)7→ y 7→ c(y). (A9)

Since our differential relation is

dy
dx

= c(y), (A10)

we can write
dy
dx

= η2(x). (A11)

Since also
y = 0 if x = 0, (A12)

we can have y as a function of x,

y(x) =
∫ x

0
η2(r)dr, x ∈ R. (A13)

So, similarly to [9], we have established

y 1−1 onto7→ x, (A14)

x 1−1 onto7−→ y. (A15)

Having that, we can also write

η(x) = (c(y(x)))1/2, x ∈ R. (A16)

Corollary A2. The inverse travel time coordinate transform is a 2-diffeomorphism.

Proof. We have shown that x(·) and its inverse are continuous. We have also shown that
their first and second derivatives are continuous and bounded. What is left to show is that
the derivative of the inverse is bounded from below. First, we observe that

z′(x) = η2(x), x ∈ R. (A17)

However, since η(x)2 = c(y(x)) and c(·) is bounded from below, we obtain the
result.

Remark A1. In view of the differential relations (A10) and (A11), we can express the one variable
as a function of the other.

The 2-diffeomorphisms given by the travel time coordinate transform and the inverse
define bounded linear operators from H2(R) to H2(R); see [29]. The static wave operator

W = − d
dy
{c2 d

dy
} : Ĥ → L2(R), (A18)

has domain of definition

D(W) = Ĥ = {v ∈ H1(R) : c2v′ ∈ H1(R)}. (A19)

We will now show that the relations that lead from the 1D static wave equation to the
Schrödinger equation are well defined in the L2-sense. First, using the 2-diffeomorphism
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defined by y(·), we can find the following. According to [24] (Proposition 9.6) for v ∈ Ĥ ⊂
H1(R), we get the L2(R, dx)-relation,

dv(y(x))
dx

=
dv(y(x))

dy
dy(x)

dx
=

dv(y(x))
dy

c(y(x)), x ∈ R. (A20)

Now, since the function 1/c(y(x)), x ∈ R defines a multiplication operator T :
L2(R, dx)→ L2(R, dx), we obtain

dv(y(x))
dx

1
c(y(x))

=
dv(y(x))

dy
, x ∈ R. (A21)

Assuming also that v ∈ Ĥ, we obtain the L2(R, dy)-relation defined by the static wave
Equation (1)

− {c2vy}y = λv, (A22)

with λ ∈ C. Using the inverse travel time coordinate transform, we get that

−Φ{(c2vy}y = λΦv, (A23)

with Φg = g ◦ y, with g ∈ L2(R, dy). Now, observe that c2vy ∈ H1(R, dy), therefore we
obtain again that

d(c2vy)

dy
(y(x)) =

d(c2vy)

dx
1

c(y(x))
, x ∈ R. (A24)

Therefore, combining the above relations, we find that

−Φ{c2vy}y = x 7→ −{c2(y(x))vy(y(x))}y ⇒ (A25)

−Φ{c2vy}y = x 7→ −(c(y(x))vx)x
1

c(y(x))
∈ L2(R, dx). (A26)

Therefore, the transformed wave equation has the form

− (c(y(x))vx)x
1

c(y(x))
L2(R,dx)

= λv(y(x)), x ∈ R. (A27)

Again, using the multiplication operator T, we obtain

− (c(y(x))vx)x
L2(R,dx)

= λc(y(x))v(y(x)), x ∈ R, (A28)

which becomes

− (η2(x)vx)x
L2(R,dx)

= λη2(x)v(y(x)), x ∈ R. (A29)

Previously, we defined u as

u(x) = η(x)v(y(x)), x ∈ R. (A30)

Let us view this as a L2(R, dx)-relation for the moment. It follows that since v ∈ Ĥ,
then u ∈ H2(R) (otherwise we obtain a contradiction by Corollary A3). Now, we can
consider the following L2(R, dx)- relation similarly as above (using again a multiplication
operator)

v(y(x)) = η−1(x)u(x), x ∈ R, (A31)

and since by assumption c ∈ C1(R) and y ∈ C1(R), then η ∈ C1(R), and we get pointwise

vx(y(x)) = (η−1(x)u(x))x =
η(x)ux(x)− ηx(x)u(x)

η2(x)
, x ∈ R, (A32)
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since H2(R) ⊂ C1(R). Since η−1, ηxη−1 are bounded, the relation is valid in the L2(R, dx)-
sense. Again, using a multiplication operator, we obtain the L2(R, dx) relation

η2(x)vx(y(x)) = η(x)ux(x)− ηx(x)u(x), x ∈ R. (A33)

We can weakly differentiate the above relation once more (using density arguments)
and we find

(η2(x)vx(y(x)))x = η(x)uxx(x)− ηxx(x)u(x), x ∈ R, (A34)

which is again valid in L2(R, dx). We substitute (A34) in (A29) and using once more a
multiplication operator, we find the L2(R, dx)-relation

uxx(x)− ηxx(x)
η(x)

u(x) = λu(x), x ∈ R, (A35)

which is our Schrödinger equation after rearranging. Now, for the sake of completeness we
prove the assertions that we used previously.

Lemma A2. Let u ∈ H2(R). The function

y 7→ v(y) = η−1(x(y))u(x(y))

is an element of Ĥ.

Proof. We need to show that v, vy ∈ L2(R) and (c2vy)y ∈ L2(R). First, we observe that
v ∈ L2(R). Indeed, ∫

R
|v(y)|2dy =

∫
R
|η−1(x(y))u(x(y))|2dy ≤

sup
y∈R
{|η−2(x(y))|}

∫
R
|u(x(y))|2dy < ∞, (A36)

since u ∈ H2(R), y 7→ x(y) defines a 2-diffeomorphism and η(x(y)) =
√

c(y), y ∈ R is
assumed to be bounded.

Now, we show that vy ∈ L2(R). Let φ ∈ C∞
c (R). We get

(v, φ′)L2 =
∫
R

c−1/2(y)u(x(y))φ′(y)dy =

(u(x(·)), c−1/2φ′)L2 .

Since u(x(·)) ∈ H2(R), we pick ( fn)n ⊂ C∞
c (R) with fn

H2
→ u(x(·)). Thus, since c−1/2φ

defines a bounded functional on L2(R) we obtain

(v, φ′)L2 = (u(x(·)), c−1/2φ′)L2 = lim
n
( fn, c−1/2φ′)L2 =

lim
n

∫
R

fn(y)c−1/2(y)φ′(y)dy = − lim
n

∫
R
( f ′n(y)c

−1/2(y) + fn(y)(c−1/2)′(y))φ(y)dy =

− lim
n
( f ′n, c−1/2φ)− lim

n
( fn, (c−1/2)′φ).

Since c−1/2φ, (c−1/2)′φ are in L2(R), and fn
L2
→ u(x(·)), f ′n

L2
→ u(x(·))y, we have that

(v, φ′)L2 = −
∫
R
(u(x(y))yc−1/2(y) + u(x(y))(c−1/2)′(y))φ(y)dy.

Since c−1/2, (c−1/2)′ are bounded and u(x(·)) ∈ H2(R), we obtain that v ∈ H1(R).
Similarly, (c2vλy)y ∈ L2(R). We obtain
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(c2vy, φ′)L2 =
∫
R

c2(y){c−1/2(y)u(x(y))}yφ′(y)dy =∫
R

c2(y)c−1/2(y)u(x(y))yφ′(y)dy +
∫
R

c2(y)
( 1

c1/2(y)

)′
u(x(y))φ′(y)dy (A37)

Let again ( fn)n ⊂ C∞
c (R), such that fn

H2
→ u(x(·)). We shift our attention to the first

term of (A37). Since c−1/2 is bounded and is in C1(R), thus c−1/2c2φ′ = c3/2φ′ is in L2(R),
we follow similar steps as before to calculate that

lim
n
( f ′n, c3/2φ′) = − lim

n

∫
R
((3/2)c1/2c′ f ′n + c3/2 f ′′n )φdy =

−3
2

lim
n
( f ′n, c1/2c′φ)− 3

2
lim

n
( f ′′n , c3/2φ),

and we continue as before to find∫
R

c2(y)c−1/2(y)u(x(y))yφ′(y)dy = −3
2

∫
R

u(x(y))c1/2(y)c′(y)φ(y)dy−

3
2

∫
R

c3/2(y)uyy(x(y))φ(y)dy. (A38)

Now, we look at the second term of (A37). We first observe that since c ∈ C1(R)

(c−1/2(y))′ = −(1/2)c−3/2(y)c′(y), ∀y ∈ R,

thus ∫
R

c2(y)c1/2′(y)u(x(y))φ′(y)dy = −1
2

∫
R

c1/2(y)c′(y)u(x(y))φ′(y)dy. (A39)

By assumption we have that c′, u(x(·))) ∈ H1(R). We already have that fn
H1
→ u(x(·))

and we pick gn ⊂ C∞
c (R) with gn

H1
→ c′. Similarly to [24], we obtain that

fngn
L2
→ u(x(·))c′ (A40)

and
( fngn)

′ = f ′ngn + fng′n
L2
→ u(x(·))yc′ + u(x(·))c′′. (A41)

Now, we return to (A39). Since c1/2φ′ ∈ L2(R), it defines a bounded functional and
we obtain that ∫

R
c1/2(y)c′(y)u(x(y))φ′(y)dy = lim

n

∫
R
( fngn)c1/2φ′dy. (A42)

Since c is an element of C1(R), we obtain that

lim
n

∫
R
( fngn)c1/2φ′dy = − lim

n

∫
R

{1
2

c−1/2c′( fngn) + c1/2( f ′ngn + fng′n)
}

φdy =

−1
2

lim
n
( fngn, c−1/2c′φ)− lim

n
( f ′ngn + fng′n, c1/2φ) =

−
∫
R

{1
2
(c′(y))2c−1/2(y)u(x(y)) + c′(y)c1/2(y)(u(x(y))y + c′′(y)u(x(y)))

}
φ(y)dy. (A43)

Combining relations (A38) and (A43) and under our assumptions on c, we conclude
that (c2vy)y ∈ L2(R).
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Corollary A3. Let v ∈ Ĥ. Then the function

u(x) = η(x)v(y(x)), x ∈ R (A44)

is in H2(R).

Proof. Let v ∈ Ĥ. Then let u ∈ L2(R) \ H2(R) with u, v related according to (A45). Then,
we obtain the L2-relations

u(x) = η(x)v(y(x)), x ∈ R ⇐⇒ (A45)

(we can switch variables through the 2-diffeomorphisms)

u(x(y)) = η(x(y))v(y), y ∈ R ⇐⇒ (A46)

(action of a multiplicator operator)

v(y) = η−1(x(y))u(x(y)), y ∈ R (A47)

Since u /∈ H2(R), then v is not necessarily in Ĥ, according to Lemma A2, which yields
a contradiction.

Since Theorem 1 is not standard, we provide its proof.

Proof of Theorem 1. Let λ = −k2 < 0 an eigenvalue of S and u ∈ H2(R) the associated
eigenfunction such that {

− d2

dx2 + q
}

u L2
= −k2u. (A48)

We defined previously the static wave operator as

W = − d
dy
{c2 d

dy
} : Ĥ → L2(R), (A49)

with Ĥ = {v ∈ H1(R) : c2v′ ∈ H1(R)}.
We showed above (Lemma A2) that the function v such that R 3 x 7→ v(y(x)) =

η−1(x)u(x) or equivalently

y 7→ v(y) = η−1(x(y))u(x(y))

belongs to Ĥ. Now, we want to show that if u solves the Schrödinger equation, then v solves
the static wave equation. If we assume that v does not solve the wave equation, then since
the calculations that lead from the static wave equation to the Schrödinger equation are
well defined in the L2-sense, we obtain that u is not a solution of the Schrödinger equation,
which is not true. We will show that W is a positive operator. Indeed ∀v ∈ Ĥ

(Wv, v)L2 = −
∫
R
{c2vy}yvdy = − lim

R→∞

∫ R

−R
{c2vy}yvdy = (A50)

lim
R→∞

{ ∫ R

−R
vyc2vydy− c2vyv

∣∣R
−R

}
=
∫
R

c2|vy|2 > 0. (A51)

Considering that H1(−R, R) is continuously embedded in H1(R), ∀R > 0, and since
the product rule of differentiation is still valid in H1(−R, R) ∀R > 0, see [24], we obtain
the above result. In addition, note that c2vy, v ∈ H1(R) and H1(R) = H1

0(R) is an algebra.
Furthermore, the eigenvalues of a positive operator are positive, therefore λ = −k2 cannot
be an eigenvalue of W. Thus, this contradicts the initial statement of λ being an eigenvalue
of S.
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The absence of bound states makes the use of the GLM method applicable in a practical
situation of solving an inverse scattering problem from measurements at the surface of an
acoustic 1D medium. The only thing required for the inversion is the knowledge of the
reflection coefficient, or, equivalently, its Fourier transform.
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