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Abstract: The present paper illustrates some classes of multivalue methods for the numerical solution
of ordinary and fractional differential equations. In particular, it focuses on two-step and mixed
collocation methods, Nordsieck GLM collocation methods for ordinary differential equations, and
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the methods together with the convergence and stability analysis are reported and some numerical
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1. Introduction

Numerical collocation is an effective technique for the approximation of solutions to
a given functional equation by means of a continuous approximate belonging to a finite
dimensional space spanned by functions chosen in accordance with the qualitative behavior
of the exact solution. This idea has successfully been applied in several contexts (a very
brief and far from being extensive, list of contributions in the existing literature can be
found in [1–36] and references therein).

In this paper, we aim to collect some of our recent results showing the effectiveness of
collocation in two selected cases:

• Firstly, the case of stiff differential problems [1–3,37,38], commonly arising from
spatially discretized time-dependent partial differential equations. This problem
commonly exposes numerical schemes to the order reduction phenomena, typically
characterizing low stage-order methods such as Runge–Kutta methods on Gaussian
collocation points [1]. It is worth highlighting that improving the numerics for stiff
problems has a direct impact on the numerical treatment of a wide class of problems
that is interesting in several applications. A relevant case is given, for instance, by
multiscale problems: Quoting from [39], “Stiff equations are multiscale problems” and
this situation typically characterizes coupled physical systems whose components
vary on different time-scales. It is the case, for instance, of epidemiological models
for influenza or pandemics (see, for instance, refs. [40–42] and references therein),
since multiscale models are an ideal framework to simultaneously simulate several
processes such as immune response, pharmacokinetics, and interactions between virus
and host.
Our proposal to remove order reduction in providing approximate solutions to stiff
problems is to employ multivalue numerical methods based on numerical collocation.
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These methods are free from order reduction, as it happens for classical collocation
methods. This topic is the subject of Sections 2 and 3;

• Secondly, the case of fractional differential problems, representing a fundamental tool
to model anomalous diffusion [43], material hereditariness, viscoelastic materials [44],
and heat conduction [45]. For these problems, the analytical solution is generally
not available and the numerical treatment is not an easy task, due to the lack of
smoothness of the analytical solution and general methods for Ordinary Differential
Equations (ODEs), applied to Fractional Differential Equations (FDEs), generally
exhibit low order of convergence, e.g., predictor-corrector methods [46]. Therefore ad
hoc numerical methods should be formulated to obtain a higher degree of accuracy, as
for example fractional linear multistep methods [47], a class of product integration
methods [48]. In this scenario, an important role is played by collocation methods, as
for example B-spline wavelets collocation [28], Chebychev collocation [49], spectral
collocation [16,33,50,51], and non-polynomial collocation [25]. In this paper, we focus
on spline collocation methods, which were first introduced by Blank [52], however
the main contribution to the development and analysis of these methods has been
given in [19,29,30,53]. More recently, multivalue spline collocation methods have been
proposed [18,20,54]. This topic is the subject of Section 4.

2. Multivalue Collocation Methods

Multivalue methods for the numerical solution of ODEs [1,37,55–57]:{
y′(t) = f (y(t)), t ∈ [t0, T],
y(t0) = y0,

(1)

with y : [t0, T]→ Rd f : Rd → Rd, and have the form:

Y[n]
i = h

m

∑
j=1

aij f
(

Y[n]
j

)
+

r

∑
j=1

uijy
[n]
j , i = 1, 2, . . . , m,

y[n+1]
i = h

m

∑
j=1

bij f
(

Y[n]
j

)
+

r

∑
j=1

vijy
[n]
j , i = 1, 2, . . . , r,

(2)

where tn = t0 + nh, n = 0, 1, . . . , N are the grid points and h = (T − t0)/N is a fixed
stepsize. The matrices:

A = [aij] ∈ Rm×m, U = [uij] ∈ Rm×r, B = [bij] ∈ Rr×m, V = [vij] ∈ Rr×r (3)

are the coefficients of the methods and the vector c = [c1, c2, . . . , cm]T is called the abscissa
vector. The parameters c1, c2, . . . , cm are usually included in [0, 1], but in some cases can be
taken outside this interval in order to obtain A-stability (see for example Figure 1).

The values Y[n]
i ∈ Rd are called internal stages and provide an approximation to

y(tn + cih), while y[n]i ∈ Rd are called external stages, and each y[n]i provides an approxima-
tion to a linear combination of the derivatives of y at the point tn. The number of internal
stages m and the number of external stages r, influence the order of convergence and the
computational cost of the method, as will be shown later for some classes of methods.

As usual, the coefficient matrices of the multivalue numerical method (2) can be
gathered in the Butcher tableau: [

A U
B V

]
. (4)
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Collocation multivalue numerical methods represent a continuous extension of mul-
tivalue numerical methods in the GLM (General Linear Method) form (2), by means of
following piecewise collocation polynomial:

Pn(tn + θh) =
r

∑
i=1

αi(θ)y
[n]
i + h

m

∑
i=1

βi(θ) f (Pn(tn + cih)), θ ∈ [0, 1], (5)

and by interpreting the internal stages in (2) as Y[n]
i = Pn(tn + cih). In (5), the polynomials

αi(θ) and βi(θ) have a degree equal to the order p of the method and are usually computed
by solving continuous order conditions, as will be described in the following.

Several kind of multivalue collocation methods have been introduced so far, with a
different form for the vector of external stages. We will describe in the next two subsections
two different choices which lead to two-step collocation methods and Nordsieck GLM
collocation methods.

2.1. Two-Step Collocation Methods

Two-step collocation collocation methods have been introduced in [5] and have
the form:

Y[n]
i = ϕ0(ci)yn−1 + ϕ1(ci)yn + h

m

∑
j=1

(
ψj(ci) f

(
Y[n]

j

)
+ χj(ci) f

(
Y[n−1]

j

))
i = 1, 2, . . . , m,

yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn + h
m

∑
j=1

(
ψj(1) f

(
Y[n]

j

)
+ χj(1) f

(
Y[n−1]

j

))
.

(6)

with a collocation polynomial defined by:

Pn(tn + θh) = ϕ0(θ)yn−1 + ϕ1(θ)yn + h
m

∑
j=1

(
ψj(θ) f

(
P(tn + cjh)

)
+ χj(θ) f

(
P(tn−1 + cjh)

))
, (7)

with θ ∈ [0, 1] and Y[n]
j = P(tn + cjh), Y[n−1]

j = P(tn−1 + cjh).
We observe that such methods can be viewed as multivalue collocation methods (2)–(5),

by choosing r = m + 2,
α1(θ) = ϕ1(θ), α2(θ) = ϕ0(θ),

α2+i(θ) = χi(θ), βi(θ) = ψi(θ) i = 1, . . . , m

and

y[n] =

 yn
yn−1

hF(Y[n−1])

 ∈ Rm+2, (8)

where,

Y[n] =


Y[n]

1
...

Y[n]
m

, F(Y[n]) =


f (Y[n]

1 )
...

f (Y[n]
m )

. (9)

With the choice (8) for the external approximation vector, the collocation polynomial (5)
is a global smooth extension of the GLM (2) with tableau (4) given by the following matrices:

A =
[
β j(ci)

]
i,j=1,...,m ∈ Rm×m, U =

[
αj(ci)

]
i=1,...,m,j=1,...,r ∈ Rm×r,

w =
[
αj(1)

]
j=1,...,r ∈ Rr, v =

[
β j(1)

]
j=1,...,m ∈ Rm

B =

 vT

0
I

 ∈ Rr×m, V =

 wT

1 0 0
0 0 0

 ∈ Rr×r,
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where I is the identity matrix of dimension m and 0 is a zero matrix or vector of suitable
dimensions.

Order conditions can be formalized by the following theorem [5].

Theorem 1. A multivalue collocation method (2) with collocation polynomial in (5) and vector of
external stages defined by (8) is an approximation of uniform order p to the solution of the well-
posed problem approximates in the solution of (1) with uniform order p, if the following conditions
are satisfied:

α1(θ) + α2(θ) = 1
θν

ν!
− (−1)ν

ν!
α2(θ)−

m

∑
i=1

(
(ci − 1)ν−1

(ν− 1)!
α2+i(θ) +

(ci)
ν−1

(ν− 1)!
βi(θ)

)
= 0, ν = 1, . . . , p. (10)

The maximum attainable order is p = m+ r− 1, as in this case of m+ r− 1 polynomials
αi(θ) and βi(θ), which are uniquely derived by solving the continuous order conditions (10),
and the corresponding collocation polynomial satisfies the conditions listed in the following
corollary [5].

Corollary 1. The maximum attainable uniform order of convergence for a multivalue colloca-
tion method (2) with collocation polynomial in (5) and vector of external stages defined by (8) is
p = 2m + 1 = m + r − 1. The corresponding collocation polynomial satisfies the following
interpolation and collocation conditions:

Pn(tn) = yn, Pn(tn−1) = yn−1, (11)

P′n(tn + cih) = f (Pn(tn + cih)), P′n(tn−1 + cih) = f (Pn(tn−1 + cih)), i = 1, 2, . . . , m. (12)

2.2. Nordsieck GLM Collocation Methods

Nordsieck GLM collocation methods have been introduced in [4] and rely on the
vector of external stages in the so-called Nordsieck form [37]:

y[n] =


y[n]1

y[n]2
...

y[n]r

 ≈


y(tn)
hy′(tn)

...
hr−1yr−1(tn).

 (13)

With this choice for an external approximation vector, the collocation polynomial (5) is
a global smooth extension of the GLM (2) with tableau (4) given by the following matrices:

A =
[
β j(ci)

]
i,j=1,...,m ∈ Rm×m, U =

[
αj(ci)

]
i=1,...,m,j=1,...,r ∈ Rm×r,

B =
[

β
(i−1)
j (1)

]
i=1,...,m,j=1,...,r

∈ Rr×m, V =
[
α
(i−1)
j (1)

]
i,j=1,...,r

∈ Rr×r,

Order conditions have been derived in [4], as stated in the following theorem.

Theorem 2. A multivalue collocation method (2) with collocation polynomial in (5) and vector
of external stages defined by (13) is an approximation of uniform order p to the solution of the
well-posed problem approximates of the solution of (1) with uniform order p, if and only if the
following conditions are satisfied:
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α1(θ) = 1
θν

ν!
− αν+1(θ)−

m

∑
i=1

cν−1
i

(ν− 1)!
βi(θ) = 0, ν = 1, . . . , r− 1,

θν

ν!
−

m

∑
i=1

cν−1
i

(ν− 1)!
βi(θ) = 0, ν = r, . . . , p.

(14)

Corollary 2. The maximum attainable uniform order of convergence for a multivalue collocation
method (2) with a collocation polynomial in (5) and vector of external stages defined by (13) is
m + r − 1. The corresponding collocation polynomial satisfies the following interpolation and
collocation conditions:

Pn(tn) = y[n]1 , P′n(tn) = y[n]2 , . . . P(r−1)
n (tn) = y[n]r−1, (15)

P′n(tn + cih) = f (Pn(tn + cih)), i = 1, 2, . . . , m. (16)

2.3. Derivation of A-Stable Multivalue Collocation Methods

We describe in this section the existing procedures for the derivation of A-stable
uniform order multivalue collocation methods. The advantages of deriving such methods
lies in their efficiency in the numerical treatment of stiff problem, as they do not suffer from
the order reduction phenomenon [1,2]. We recall that a numerical method is A-stable if its
region of absolute stability includes the entire complex half-plane with a negative real part.

As we observe from Corollaries 1 and 2, the maximum attainable uniform order
multivalue collocation methods with collocation polynomial in (5) and vector of external
stages defined by (8) or (13) is p = m + r− 1. With the aim of deriving A-stable methods,
according to the Daniel–Moore theorem [1], the order of the method cannot exceed 2m.
Therefore the following Theorem clarifies the restriction, on the number of external stages,
necessary for A-stability. The proof can be found in [4].

Theorem 3. An A-stable multivalue collocation method with collocation polynomial in (5) fulfills
the constraint r ≤ m + 1.

As a consequence, two-step collocation methods of Section 2.1 cannot be A-stable,
as for these methods r = m + 2, while A-stable Nordsieck GLM collocation methods of
Section 2.2 can be derived with a suitable choice for r.

In regards to two-step collocation methods, in the paper [5], A-stable methods of
uniform order p = m + s, s = 1, 2, . . . , m have been derived by imposing not all the order
conditions up to p = 2m + 1, but just requiring the fulfillment of the first m + s order condi-
tions in (10). This procedure corresponds to relaxing some of the interpolation/collocation
conditions in (11) and (12), and the corresponding methods are called two-step almost
collocation methods.

In regards to Nordsieck GLM collocation methods, in the paper [4], A-stable methods
of uniform order p = m + r− 1 with r = m + 1 have been provided.

Regarding the computational cost of multivalue collocation methods (2)–(5), it is
strongly related to the solution of the nonlinear system for the computation of the vector
Y[n] in (2), and depends on the matrix A =

[
β j(ci)

]
i,j=1,...,m. Two-step almost colloca-

tion methods having lower triangular or diagonal coefficient matrix A that have been
derived in [24]. Regarding Nordsieck GLM collocation methods, the requirement for a
structured coefficient matrix forces the relaxation of some of the interpolation/collocation
conditions (15) and (16), thus leading to Nordsieck GLM almost collocation methods with
r = m + 1, having order p = r or p = r− 1, i.e., obtained by imposing not all the order
conditions up to p = m + r− 1, but just requiring the fulfillment of the first r or r− 1 order
conditions in (14).
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We now provide examples of A-stable multivalue collocation and almost collocation
methods belonging to the class described in Section 2.2. We consider the case of m = 2 and
r = m + 1 = 3. The collocation polynomial assumes the form:

Pn(tn + ϑh) = y[n]1 + α2(ϑ)y
[n]
2 + α3(ϑ)y

[n]
3

+ h(β1(ϑ) f (P(tn + c1h)) + β2(ϑ) f (P(tn + c2h)))
(17)

and the corresponding Butcher tableau is given by:

[
A U
B V

]
=


β1(c1) 0
β1(c2) β2(c2)

1 α2(c1) α3(c1)
1 α2(c2) α3(c2)

β1(1) β2(1)
β′1(1) β′2(1)
β′′1 (1) β′′2 (1)

1 α2(1) α3(1)
0 α′2(1) α′3(1)
0 α′′2 (1) α′′3 (1)

.

We consider the following forms for the matrix A:

• Full matrix [4] (GLM-F);
• Lower triangular matrix (GLM-T);
• Singly lower triangular matrix (GLM-S);
• Diagonal matrix (GLM-D).

Polynomials αj(θ) and β j(θ) in (17) are constructed by imposing order conditions of
Theorem 2 with p = 4 in the case of GLM-F and p = 3 in the case of GLM-T, GLM-S, and
GLM-D. Figure 1 shows the region of A−stability in the (c1, c2) plane for all the classes
of methods.

Examples of A-stable methods have the following Butcher tableau:

• GLM-F:

c =
[

3/2
9/5

]
,
[

A U
B V

]
=



9
8

−125
288

162
125

− 3
10

1
233
288

7
32

1
201
250

27
125

14
27

−125
486

32
27

−125
243

8
9

0

1
359
486

5
27

0
80

243
4

27

0 −8
9
−1

3



.

• GLM-T:
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c =
[

22/10
9/10

]
,
[

A U
B V

]
=



11
15

0

− 243
1100

81
50

1
22
15

121
150

1 − 549
1100

− 567
1000

−103
429

24
13

− 2
13

28
13

118
143

−32
13

1 −20
33

−19
30

0 −1 −3
5

0
18
11

7
5



.

• GLM-S:

c =
[

22/10
9/10

]
,
[

A U
B V

]
=



11
15

0

− 351
4840

11
15

1
22
15

121
150

1
3473

14520
− 21

220

− 335
4719

880
1053

205
4719

3080
3159

2830
4719

−3520
3159

1
2306
9801

− 19
198

0 − 542
29403

8
297

0
15130
29403

203
297



.

• GLM-D:

c =
[

3
29/10

]
,
[

A U
B V

]
=



1 0

0
29
30

1 2
3
2

1
29
15

841
600

209
15

−37520
2523

−62
5

11260
841

−91
15

5660
841

1
24446
12615

1589
870

0
47

4205
− 91

145

0 − 8369
12165

− 46
145



.
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Figure 1. Regions of A-stability in the (c1, c2) plane.

2.4. Numerical Illustration

We now show the behavior of the methods listed in the previous section on the
Prothero–Robinson problem [1,2]:{

y′(t) = λ(y(t)− sin(t)) + cos(t), t ∈ [0, 10],
y(0) = 0,

(18)

which is stiff when λ � 0. We compare the results of the aforementioned methods with
those obtained by the two-stage Gaussian Runge–Kutta (RK) method. We report in Table 1
the results obtained for λ = −106 in (18), by applying multivalue collocation and almost
collocation methods together with the Runge–Kutta (RK) method of Gauss:

1
2
−
√

3
6

1
4

1
4
−
√

3
6

1
2
+

√
3

6
1
4
+

√
3

6
1
4

1
2

1
2

(19)

The method (19), which has order 4 and uniform order 2, therefore suffers from
order reduction when applied to a stiff problem. Table 1 shows the error in the final step
point for different values of the step size and the experimental order of the methods for
λ = −106. We observe that the Runge–Kutta method exhibits order reduction, while this is
not the case for multivalue collocation and almost collocation methods, having order 4 but
uniform order 2, hence it suffers from order reduction on stiff problems, as is visible from
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Table 1. Multivalue collocation and almost collocation methods, instead, keep their order
of convergence.

Table 1. Absolute errors in the final step point and experimental orders of convergence for prob-
lem (18) with λ = −106.

h GLM-F GLM-T GLM-S GLM-D RK
Error p Error p Error p Error p Error p

1/10 2.41× 10−8 1.51× 10−7 1.51× 10−7 4.88× 10−5 1.52× 10−4

1/20 7.50× 10−10 5.01 9.21× 10−9 4.03 9.21× 10−9 4.03 3.04× 10−6 4.01 3.84× 10−5 1.98
1/40 2.21× 10−11 5.08 5.69× 10−10 4.02 5.70× 10−10 4.01 1.89× 10−7 4.01 9.99× 10−6 1.94
1/80 7.06× 10−13 4.97 3.45× 10−11 4.04 3.58× 10−11 3.99 1.18× 10−8 4.00 2.78× 10−6 1.85

3. Multivalue Mixed Collocation Methods

In this Section we describe the derivation of Nordsieck GLM mixed collocation meth-
ods of the form (2)–(5), with the vector of external stages in Nordsieck form (13). The idea
is, instead of considering a basis of polynomials {αi(θ), β j(θ), i = 1, . . . , r, j = 1, . . . , m},
to consider a basis constituted by a combination of trigonometric and polynomial func-
tions. Such methods are useful for problems of the form (1) for which the exact solution is
oscillatory with a known frequency of oscillation ω.

As a consequence of Theorem 2, the polynomials αi(θ) and β j(θ), associated to Nord-
sieck GLM collocation methods of uniform order p = m + r− 1, have a degree of at most
m + r− 1. Therefore, they can be written in the form:

α1(θ) = 1 αi+1(θ) =
m+r−1

∑
j=1

µi,j−1

j
θ j, i = 1, . . . , r− 1, (20)

βi(θ) =
m+r−1

∑
j=1

µi,j−1

j
θ j, i = 1, . . . , m. (21)

The idea of Nordsieck GLM mixed collocation methods introduced in [35] relies on
considering new basis functions:

{αT
i (θ, z), βT

j (θ, z), i = 1, . . . , r, j = 1, . . . , m},

which depend also on the frequency of oscillation of the problem, i.e., depending on z = ωh,
of the form:

αT
1 (θ, z) = 1, (22)

αT
i+1(θ, z) =

ai
z

sin(zθ)− bi
z

cos(zθ) +
bi
z
+

m+r−3

∑
j=1

γi,j−1

j
θ j i = 1, . . . , r− 1, (23)

βT
i (θ, z) =

ai
z

sin(zθ)− bi
z

cos(zθ) +
bi
z
+

m+r−3

∑
j=1

γi,j−1

j
θ j i = 1, . . . , m. (24)

The next theorem shows the expressions of coefficients ai, bi, γi,j in (23) and ai, bi, γi,j
in (24) in order to obtain the maximum attainable uniform order p = m + r− 1. The proof
can be found in [35].

Theorem 4. A multivalue mixed collocation method (2)–(5), with vector of external stages defined
by (13) and functional basis {αi(θ), β j(θ), i = 1, . . . , r, j = 1, . . . , m} defined in (22)–(24), has
order p = m + r− 1 if:

ai =
det Mi,1

det M
, bi =

det Mi,2

det M
, i = 1, . . . , m, (25)
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γij =



(−1)
j
2+1ai

zj

j!
j is even,

(−1)
j+1

2 bi
zj

j!
j is odd,

j = 0, . . . , r− 2,

det Mi,j−r+4

det M
, j = r− 1, . . . , m + r− 4,

, i = 1, . . . , m, (26)

ai =

m

∑
k=1

(−1)k+1 ci−1
k

(i− 1)!
det Mk,1

det M
, bi =

m

∑
k=1

(−1)k ci−1
k

(i− 1)!
det Mk,2

det M
, i = 1, . . . , r− 1, (27)

γij =



(−1)
j
2+1ai

zj + δi,j+1

j!
j is even,

(−1)
j+1

2 bi
zj + δi,j+1

j!
j is odd,

j = 0, . . . , r− 2,

m

∑
k=1

(−1)k+j−r+1 ci−1
k

(i− 1)!
det Mk,j−r+4

det M
, j = r− 1, . . . , m + r− 4,

, i = 1, . . . , r− 1, (28)

where M is a square non singular matrix of order m given by:

M =



cos(zc1)−
r1

∑
k=0

(−1)k (zc1)
2k

(2k)!
sin(zc1)−

r2

∑
k=0

(−1)k (zc1)
2k+1

(2k + 1)!
cr−1

1 cr
1 . . . cm+r−4

1

cos(zc2)−
r1

∑
k=0

(−1)k (zc2)
2k

(2k)!
sin(zc2)−

r2

∑
k=0

(−1)k (zc2)
2k+1

(2k + 1)!
cr−1

2 cr
2 . . . cm+r−4

2

...
...

...
...

...
...

cos(zcm)−
r1

∑
k=0

(−1)k (zcm)2k

(2k)!
sin(zcm)−

r2

∑
k=0

(−1)k (zcm)2k+1

(2k + 1)!
cr−1

m cr
m . . . cm+r−4

m


,

Mi,j is the submatrix obtained by deleting the i-th row and j-th column from matrix M, c1, . . . , cm
are the collocation points, δij is the usual Kronecker delta, and:

r1 =


r− 2

2
r is even,

r− 3
2

r is odd,
r2 =


r− 2

2
− 1 r is even,

r− 3
2

r is odd.

In order to show the performance of Nordsieck GLM mixed collocation methods, we
show the results obtained on the following test problems:

• Problem 1: {
y′(t) = −(y(t)− sin(ωt)) + ω cos(ωt), t ∈ [0, 10]
y(0) = 0,

(29)

whose solution is y(t) = sin(ωt), so it is a function belonging to the basis.
• Problem 2:{

y′(t) = −(y(t)− sin(ωt + t)) + (ω + 1) cos(ωt + t), t ∈ [0, 10]
y(0) = 0,

(30)

whose solution is y(t) = sin(ωt + t) = sin ωt cos t + cos ωt sin t, so it is a combination
of the basic functions sin ωt and cos ωt.

We put m = 2 and r = 3 and c1 = 3/2, c2 = 9/5 and we denote by MGLM-F, the
corresponding Nordsieck GLM mixed collocation method. In Table 2, we consider for a
comparison, the GLM-F method of Section 2.3. The table clearly shows the advantage of
mixed collocation versus polynomial collocation in the case of the oscillatory solution.
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Table 2. Absolute errors (in the final step point) and effective orders of convergence. Absolute errors
in the final step point and experimental orders of convergence with ω = 100.

h GLM-F on Problem (29) MGLM-F on Problem (29) GLM-F on Problem (30) MGLM-F on Problem (30)

Error Error Error p Error p

1/40 0.2764 1.4818× 10−12 0.3626 0.0133

1/80 0.0326 8.4277× 10−13 0.0436 3.0560 9.5762× 10−4 3.7958

1/160 0.0024 1.2212× 10−15 0.0031 3.8140 6.1966× 10−5 3.9499

1/320 1.5567× 10−4 8.9595× 10−14 1.9729× 10−4 3.9739 3.9064× 10−6 3.9876

1/640 9.8558× 10−6 1.4988× 10−14 1.2403× 10−5 3.9916 2.4468× 10−7 3.9969

4. Multivalue Spline Collocation Methods for FDEs

In this section, we review multivalue spline collocation methods [18,20,54], applied to
the IVP problem of type:{

Dαy(t) = f (t, y(t)), t ∈ [0, b],
y(i)(0) = γi, i = 0, . . . , n− 1,

(31)

where n− 1 < α < n, n ∈ N, γi ∈ R, f : [0, b]×R → R. Here we consider the Caputo
fractional derivative [58–60]:

Dαy(t) =
1

Γ(n− α)

∫ t

0

y(n)(s)
(t− s)α+1−n ds.

The convergence analysis of spline collocation methods is carried out in the functional
space Cq,ν(0, T], defined as follows [15].

Let q ∈ N and ν ∈ (−∞, 1), then y : [0, T]→ R belongs to the space Cq,ν(0, T] if it is q
times continuously differentiable in (0, T], and:

|y(i)(t)| ≤ c


1 if i < 1− ν,
1 + | log t| if i = 1− ν,
t1−ν−i if i > 1− ν,

t ∈ (0, T], i = 1, . . . , q.

Sufficient conditions for obtaining a solution in the space Cq,ν(0, T] are provided by
the following theorem.

Theorem 5 ([30]). Let f ∈ C([0, T]×R), q times continuously differentiable in (0, T]×R, and
∃ν ∈ [1− α, 1) such that:

∣∣∣∣ ∂i+j

∂ti∂yj f (t, y)
∣∣∣∣ ≤ φ(|y|)


1 if i < 1− ν
1 + | log t| if i = 1− ν

t1−ν−i if i > 1− ν

, (t, y) ∈ (0, T]×R,

∀i, j ∈ N with i + j ≤ q. In addition, for α ∈ (0, 1) assume that:∣∣∣∣ ∂i+j

∂ti∂yj [ f (t, y1)− f (t, y2)]

∣∣∣∣ ≤ φ(max{|y1|, |y2|})|y1 − y2|
{

1 if i = 0
t1−ν−i if i > 0

,

(t, yi) ∈ (0, T] × R, i = 1, 2. The function φ : [0, ∞) → R is assumed to be monotonically
increasing. Let the fractional IVP (31) have a solution y ∈ C[0, T] with Dαy ∈ C[0, T]. Then
y ∈ Cq,ν(0, T] and Dαy ∈ Cq,ν(0, T].

By setting z = Dαy, we have:
y = Jαz + Q, (32)
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with,

(Jαz)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1z(s) ds, t > 0, (33)

Q(t) =
dαe−1

∑
i=0

γi
i!

ti, (34)

dαe being the smallest integer not less than α. With this position, we may rewrite the
IVP (31) as a nonlinear equation:

z = f (t, Jαz + Q). (35)

Once (35) is solved, y can be computed by (32).

4.1. One-Step Collocation Methods for FDEs

Let us introduce a graded mesh IN on [0, T] with grading exponent r ≥ 1:

tj = b
(

j
N

)r
, (36)

and collocation parameters 0 ≤ η1 < · · · < ηm ≤ 1. Let,

S(−1)
k (IN) = {v : v|[tj−1,tj ]

∈ Πk, j = 1, . . . , N}. (37)

The one step collocation method approximates the solution z of (35) by a function
v ∈ S(−1)

m−1(IN). The collocation solution v is computed by imposing these collocation
conditions, for j = 1, . . . , N:

vj(tjk) = f (tjk, (Jαv)(tjk) + Q(tjk)), k = 1, . . . , m. (38)

where vj := v|[tj−1,tj ]
. Then, the approximate solution of (31) is the function yN , defined as:

yN = Jαv + Q. (39)

Collocation conditions (38) give rise to the nonlinear system in the unknowns
zjk := vj(tjk):

zjk = f

(
tjk,

m

∑
µ=1

zjµ(Jα ϕj,µ)(tjk) +
j−1

∑
λ=1

m

∑
µ=1

zλµ(Jα ϕλ,µ)(tjk) + Q(tjk)

)
, k = 1, . . . , m,

where ϕλ,µ is equal to the µ-th Lagrange fundamental polynomial corresponding to the
nodes tλ1, . . . , tλm in [tλ−1, tλ], and it is null outside this interval.

The error is analyzed in the following theorem, where this quantity is used:

EN(p, ν, r) =


N−r(1−ν) if 1 ≤ r ≤ p

1−ν

N−p(1 + log N) if r = p
1−ν = 1

N−p if r = p
1−ν > 1 or r > p

1−ν .

(40)

Theorem 6 ([30], [Th. 4.1]). Let the IVP (31) have a solution y ∈ C[0, b], with Dαy ∈ C[0, b]
and let f ∈ C([0, b]×R) such that its derivatives ∂

∂t f (t, y) and: ∂2

∂t2 f (t, y) are continuous
in (0, b]×R and ∣∣∣∣ ∂j

∂yj f (t, y)
∣∣∣∣ ≤ ψ(|y|), (t, x) ∈ (0, b]×R, j = 0, 1, 2.
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ψ : [0, ∞)→ R is a monotonically increasing function.
Then there exist N0 ∈ N and δ0 > 0 such that, for all N ≥ N0, the one-step collocation method

possesses a unique solution v ∈ S(−1)
m−1(IN) in the ball ‖u− z‖∞ ≤ δ0, where z = Dαy ∈ C[0, b].

If, in addition, the assumptions of Theorem 5 with q := m and ν ∈ [1− α, 1) are fulfilled, then for
all N ≥ N0, the following error estimate holds:

‖yN − y‖∞ ≤ cEN(m, ν, r),

with yN given by Formula (39). Here c is a constant not depending on N, and EN is defined by (40).

4.2. Two-Step Collocation Methods for FDEs

Given the graded mesh IN defined in (36) and collocation parameters 0 ≤ η1 < · · · <
ηm ≤ 1, with (η1, ηm) 6= (0, 1), the two-step collocation method approximates the solution
z of (35) by a function v ∈ S(−1)

2m−1(IN). By defining the polynomial vj = v|[tj−1,tj ]
, we impose

these collocation and interpolation conditions, for j = 2, . . . , N:

vj(tjk) = f (tjk, (Jαv)(tjk) + Q(tjk)), k = 1, . . . , m (41)

vj(tj−1,k) = vj−1(tj−1,k), k = 1, . . . , m (42)

The collocation solution v(t) can be expressed as:

v(t) = v1(t) +
N

∑
λ=2

(
m

∑
k=1

zλkLλ,m+k(t) +
m

∑
k=1

zλ−1,kLλk(t)

)
, t ∈ [0, T], (43)

where v1 is obtained by a suitable starting procedure (cfr. [20]); Lλ,µ = Lµ in [tλ−1, tλ] and it
is null outside. Lµ is the µ-th Lagrange fundamental polynomial corresponding to the nodes
{tj−1,k, tj,k | k = 1, . . . , m}. The coefficients zλµ are the solution of the nonlinear system:

zjk = f
(

tjk, (Jαv)(tjk) + Q(tjk)
)

, k = 1, . . . , m.

A more explicit formulation of the above system is:

zjk = f

(
tjk, (Jαv1)(tjk) +

m

∑
µ=1

zjµ(JαLj,m+µ)(tjk) +
j−1

∑
λ=2

m

∑
µ=1

zλµ(JαLλ,m+µ)(tjk)

+
m

∑
µ=1

zj−1,µ(JαLjµ)(tjk) +
j−1

∑
λ=2

m

∑
µ=1

zλ−1,µ(JαLλµ)(tjk) + Q(tjk)

)
, (44)

k = 1, . . . , m. Although a number of fractional integrals must be computed, they may be
analytically evaluated, thus no further approximation is needed.

The main converge result is provided by the following theorem:

Theorem 7 ([20], [Th. 4.5]). Let hypothesis HP 1 of Theorem 6 hold. Then there exist N0 ∈ N
and δ0 > 0 such that, for all N ≥ N0, the two-step collocation method possesses a unique solution
v ∈ S(−1)

2m−1(IN) in the ball ‖u − z‖∞ ≤ δ0, where z = Dαy ∈ C[0, T]. If, in addition, the
assumptions of Theorem 5 with q := 2m and ν ∈ [1− α, 1) are satisfied, then for all N ≥ N0, the
error is bounded as follows:

‖yN − y‖∞ ≤ cEN(2m, ν, r),

with yN defined in (39). Here, the value of the constant c does not depend on N, and EN is defined
in (40).
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It is evident that a suitable choice of the grading exponent r is the basic step to obtain
a high accuracy. The best choice of r grows with m, i.e., with the number of collocation
abscissae and also depends on the degree of smoothness of the analytical solution.

By comparing one- and two-step collocation methods, we observe that they have the
same computational cost, since they both require the solution of a nonlinear system of
dimension m, nevertheless, the error of the two-step method decreases as O(N−2m), while
the error of the one-step method decreases as O(N−m) (for both methods we considered
the best case).

We provide a numerical illustration on the following test equation, taken from [61].

Dαy(t) =
40320

Γ(9− α)
t8−α − 3

Γ(5 + α
2 )

Γ(5− α
2 )

t4− α
2 +

(
3
2

t
α
2 − t4

)3

+
9
4

Γ(α + 1)− (y(t))
3
2 ,

t ∈ [0, 1],

y(0) = 0,

α = 1/2. The exact solution is y = t8 − 3t4+α/2 + 9
4 tα. The hypotheses of Theorem 5 are

satisfied by ν = 0.5 and any q ∈ N. In Figure 2, we plot the work-precision diagram
obtained by one- and two-step collocation methods, with collocation parameters equally

spaced in [0, 1] with η0 6= 0 and ηm 6= 1; with r =
m

1− ν
for the one-step methods and

r =
2m

1− ν
for the two-step methods. We observe that multivalue collocation obtain a

definite improvement of one-step collocation methods, except for low accuracy requests.

0 2 4 6 8

cd

10
2

10
3

10
4

fv
a

l

one-step m=2 p=2
one-step m=4 p=4
two-step m=2 p=4

0 2 4 6 8 10 12

cd

102

103

104

105

fv
a

l

one-step m=3 p=3
one-step m=6 p=6
two-step m=3 p=6

(a) (b)

Figure 2. Work-precision diagrams for one- and two-step collocation methods for FDEs, cd is the
number of correct digits, and f val is the number of function evaluations. (a) One-step methods with
m = 2 and m = 4, two-step methods with m = 2; (b) one-step methods with m = 3 and m = 6, two
step methods with m = 3.

5. Conclusions

We presented a concise selection of our recent results on collocation methods for ODEs
and FDE. This technique has exhibited a wide range of benefits in terms of accuracy and
efficiency. Moreover, the choice of collocation basis makes the numerics more adapted to
the problem, with meaningful improvements when qualitative behaviors of the solution
are merged in the numerical scheme. Adapted functional basis are relevant, for instance,
in the case of oscillatory problems [62–65]. Further developments of this research will be
oriented to the establishment of a theory of collocation methods for stochastic problems
(see, for instance, refs. [51,66–71] and references therein).

Author Contributions: All authors A.C., D.C., R.D., B.P. equally contributed to this work. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors are members of the INdAM Research group GNCS and are supported by the
GNCS-INDAM project. A. Cardone, D. Conte, and R. D’Ambrosio are supported by PRIN2017-MIUR
project 2017JYCLSF “Structure preserving approximation of evolutionary problems”.



Mathematics 2022, 10, 185 15 of 17

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

FDEs Fractional Differential Equation
GLM General Linear Method
IVP Initial Value Problem
ODE Ordinary Differential Equation
RK Runge–Kutta

References
1. Butcher, J. Numerical Methods for Ordinary Differential Equations, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016.
2. Hairer, E.; Wanner, G. Solving Ordinary Differential Equations. II; Springer Series in Computational Mathematics, Stiff and

Differential-Algebraic Problems, Second Revised Edition, Paperback; Springer: Berlin, Germany, 2010; Volume 14, p. xvi+614.
3. Lambert, J. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem; John Wiley & Sons, Inc.: Hoboken, NJ,

USA, 1991.
4. D’Ambrosio, R.; Paternoster, B. Multivalue collocation methods free from order reduction. J. Comput. Appl. Math. 2021, 387,

112515. [CrossRef]
5. D’Ambrosio, R.; Ferro, M.; Jackiewicz, Z.; Paternoster, B. Two-step almost collocation methods for ordinary differential equations.

Numer. Algorithms 2010, 53, 195–217. [CrossRef]
6. Costabile, F.; Gualtieri, M.; Napoli, A. Lidstone-based collocation splines for odd-order BVPs. Math. Comput. Simul. 2021,

186, 124–135. [CrossRef]
7. Costabile, F.; Napoli, A. Collocation for high order differential equations with two-points Hermite boundary conditions. Appl.

Numer. Math. 2015, 87, 157–167. [CrossRef]
8. Costabile, F.; Napoli, A. Collocation for high-order differential equations with Lidstone boundary conditions. J. Appl. Math. 2012,

2012, 120792. [CrossRef]
9. Costabile, F.; Napoli, A. A class of collocation methods for numerical integration of initial value problems. J. Appl. Math. 2011,

62, 3221–3235. [CrossRef]
10. Costabile, F.; Napoli, A. Stability of Chebyshev collocation methods. Comput. Math. Appl. 2004, 47, 659–666. [CrossRef]
11. Lie, I. The stability function for multistep collocation methods. Numer. Math. 1990, 57, 779–787. [CrossRef]
12. Lie, I.; Nø rsett, S. Superconvergence for Multistep Collocation. Math. Comp. 1989, 52, 65–79. [CrossRef]
13. Blank, L. Stability of collocation for weakly singular Volterra equations. IMA J. Numer. Anal. 1995, 15, 357–375. [CrossRef]
14. Brunner, H. Cambridge monographs on applied and computational mathematics. In Collocation Methods for Volterra Integral and

Related Functional Differential Equations; Cambridge University Press: Cambridge, UK, 2004; Volume 15, p. xiv+597.
15. Brunner, H.; Pedas, A.; Vainikko, G. Piecewise polynomial collocation methods for linear Volterra integro-differential equations

with weakly singular kernels. SIAM J. Numer. Anal. 2001, 39, 957–982. [CrossRef]
16. Zayernouri, M.; Karniadakis, G.E. Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J.

Comput. Phys. 2015, 293, 312–338. [CrossRef]
17. Cardone, A.; Conte, D. Multistep collocation methods for Volterra integro-differential equations. Appl. Math. Comput. 2013,

221, 770–785. [CrossRef]
18. Cardone, A.; Conte, D.; Paternoster, B. A MATLAB Implementation of Spline Collocation Methods for Fractional Differential

Equations. Lect. Notes Comput. Sci. 2021, 12949, 387–401.
19. Cardone, A.; Conte, D. Stability analysis of spline collocation methods for fractional differential equations. Math. Comput. Simulat.

2020, 178, 501–514.
20. Cardone, A.; Conte, D.; Paternoster, B. Two-step collocation methods for fractional differential equations. Discrete Contin. Dyn.

Syst. Ser. B 2018, 23, 2709–2725. [CrossRef]
21. Conte, D.; D’Ambrosio, R.; Paternoster, B. Two-step diagonally-implicit collocation based methods for Volterra integral equations.

Appl. Numer. Math. 2012, 62, 1312–1324.
22. Conte, D.; Paternoster, B. Multistep collocation methods for Volterra integral equations. Appl. Numer. Math. 2009, 59, 1721–1736.
23. Conte, D.; Jackiewicz, Z.; Paternoster, B. Two-step almost collocation methods for Volterra integral equations. Appl. Math.

Comput. 2008, 204, 839–853. [CrossRef]
24. D’Ambrosio, R.; Paternoster, B. Two-step modified collocation methods with structured coefficient matrices. Appl. Numer. Math.

2012, 62, 1325–1334.

http://doi.org/10.1016/j.cam.2019.112515
http://dx.doi.org/10.1007/s11075-009-9280-5
http://dx.doi.org/10.1016/j.matcom.2020.09.002
http://dx.doi.org/10.1016/j.apnum.2014.09.008
http://dx.doi.org/10.1155/2012/120792
http://dx.doi.org/10.1016/j.camwa.2011.08.036
http://dx.doi.org/10.1016/S0898-1221(04)90053-3
http://dx.doi.org/10.1007/BF01386443
http://dx.doi.org/10.1090/S0025-5718-1989-0971403-5
http://dx.doi.org/10.1093/imanum/15.3.357
http://dx.doi.org/10.1137/S0036142900376560
http://dx.doi.org/10.1016/j.jcp.2014.12.001
http://dx.doi.org/10.1016/j.amc.2013.07.012
http://dx.doi.org/10.3934/dcdsb.2018088
http://dx.doi.org/10.1016/j.amc.2008.07.026


Mathematics 2022, 10, 185 16 of 17

25. Ford, N.; Morgado, M.; Rebelo, M. Nonpolynomial collocation approximation of solutions to fractional differential equations.
Fract. Calc. Appl. Anal. 2013, 16, 874–891. [CrossRef]

26. Guo, B.Y.; Yan, J.P. Legendre-Gauss collocation method for initial value problems of second order ordinary differential equations.
Appl. Numer. Math. 2009, 59, 1386–1408.

27. Guo, B.y.; Wang, Z.q. Legendre-Gauss collocation methods for ordinary differential equations. Adv. Comput. Math. 2009,
30, 249–280. [CrossRef]

28. Li, X. Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method. Commun. Nonlinear
Sci. Numer. Simul. 2012, 17, 3934–3946. [CrossRef]

29. Pedas, A.; Tamme, E. On the convergence of spline collocation methods for solving fractional differential equations. J. Comput.
Appl. Math. 2011, 235, 3502–3514. [CrossRef]

30. Pedas, A.; Tamme, E. Numerical solution of nonlinear fractional differential equations by spline collocation methods. J. Comput.
Appl. Math. 2014, 255, 216–230. [CrossRef]

31. Pedas, A.; Tamme, E. Spline collocation for nonlinear fractional boundary value problems. Appl. Math. Comput. 2014, 244, 502–513.
[CrossRef]

32. Wang, Z.Q.; Guo, B.Y. Legendre-Gauss-Radau collocation method for solving initial value problems of first order ordinary
differential equations. J. Sci. Comput. 2012, 52, 226–255. [CrossRef]

33. Zayernouri, M.; Karniadakis, G.E. Fractional spectral collocation method. SIAM J. Sci. Comput. 2014, 36, A40–A62. [CrossRef]
34. Paternoster, B. Phase-fitted collocation-based Runge-Kutta-Nystrom method. Appl. Numer. Math. 2000, 35, 339–355. [CrossRef]
35. Conte, D.; D’Ambrosio, R.; D’Arienzo, M.P.; Paternoster, B. Multivalue mixed collocation methods. Appl. Math. Comput. 2021,

409, 126346. [CrossRef]
36. Norsett, S.; Wanner, G. Perturbed collocation and Runge Kutta methods. Numer. Math. 1981, 38, 193–208. [CrossRef]
37. Jackiewicz, Z. General Linear Methods for Ordinary Differential Equations; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009;

p. xvi+482. [CrossRef]
38. Söderlind, G.; Jay, L.; Calvo, M. Stiffness 1952–2012: Sixty years in search of a definition. BIT Numer. Math. 2015, 55, 531–558.

[CrossRef]
39. Cash, J. Efficient numerical method for the solution of stiff initial-value problems and differential algebraic equations. R. Soc.

Lond. Proc. Ser. A Math. Phys. Eng. Sci. 2003, 459, 797–815. [CrossRef]
40. Bellomo, N.; Bingham, R.; Chaplain, M.A.; Dosi, G.; Forni, G.; Knopoff, D.A.; Lowengrub, J.; Twarock, R.; Virgillito, M.E. A

multiscale model of virus pandemic: Heterogeneous interactive entities in a globally connected world. Math. Models Methods
Appl. Sci. 2020, 30, 1591–1651. [CrossRef]

41. Heldt, F.; Frensing, T.; Pflugmacher, A.; Gröpler, R.; Peschel, B.; Reichl, U. Multiscale Modeling of Influenza A Virus Infection
Supports the Development of Direct-Acting Antivirals. PLoS Comp. Biol. 2013, 9, e1003372. [CrossRef]

42. Southern, J.; Pitt-Francis, J.; Whiteley, J.; Stokeley, D.; Kobashi, H.; Nobes, R.; Kadooka, Y.; Gavaghan, D. Multi-scale computational
modelling in biology and physiology. Prog. Biophys. Mol. Biol. 2008, 96, 60–89. [CrossRef] [PubMed]

43. Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 77.
[CrossRef]

44. Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; Imperial College Press:
London, UK, 2010; p. xx+347. [CrossRef]

45. Povstenko, Y. Thermoelasticity that uses fractional heat conduction equation. J. Math. Sci. 2009, 162, 296–305. [CrossRef]
46. Diethelm, K.; Ford, N.J.; Freed, A.D. A predictor-corrector approach for the numerical solution of fractional differential equations.

Nonlinear Dynam. 2002, 29, 3–22. [CrossRef]
47. Lubich, C. Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comp. 1985,

45, 463–469. [CrossRef]
48. Garrappa, R.; Popolizio, M. On accurate product integration rules for linear fractional differential equations. J. Comput. Appl.

Math. 2011, 235, 1085–1097. [CrossRef]
49. Khader, M.M. On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 2011,

16, 2535–2542. [CrossRef]
50. Burrage, K.; Cardone, A.; D’Ambrosio, R.; Paternoster, B. Numerical solution of time fractional diffusion systems. Appl. Numer.

Math. 2017, 116, 82–94. [CrossRef]
51. Cardone, A.; D’Ambrosio, R.; Paternoster, B. A spectral method for stochastic fractional differential equations. Appl. Numer.

Math. 2019, 139, 115–119. [CrossRef]
52. Blank, L. Numerical Treatment of Differential Equations of Fractional Order; Technical Report, Numerical Analysis Report; Department

of Mathematics, University of Manchester: Manchester, UK, 1996.
53. Pedas, A.; Tamme, E. Spline collocation methods for linear multi-term fractional differential equations. J. Comput. Appl. Math.

2011, 236, 167–176. [CrossRef]
54. Cardone, A.; Conte, D.; Paternoster, B. Stability analysis of two-step spline collocation methods for fractional differential

equations. submitted.
55. D’Ambrosio, R.; Hairer, E. Long-term stability of multi-value methods for ordinary differential equations. J. Sci. Comput. 2014,

60, 627–640. [CrossRef]

http://dx.doi.org/10.2478/s13540-013-0054-3
http://dx.doi.org/10.1007/s10444-008-9067-6
http://dx.doi.org/10.1016/j.cnsns.2012.02.009
http://dx.doi.org/10.1016/j.cam.2010.10.054
http://dx.doi.org/10.1016/j.cam.2013.04.049
http://dx.doi.org/10.1016/j.amc.2014.07.016
http://dx.doi.org/10.1007/s10915-011-9538-7
http://dx.doi.org/10.1137/130933216
http://dx.doi.org/10.1016/S0168-9274(99)00143-9
http://dx.doi.org/10.1016/j.amc.2021.126346
http://dx.doi.org/10.1007/BF01397089
http://dx.doi.org/10.1002/9780470522165
http://dx.doi.org/10.1007/s10543-014-0503-3
http://dx.doi.org/10.1098/rspa.2003.1130
http://dx.doi.org/10.1142/S0218202520500323
http://dx.doi.org/10.1371/journal.pcbi.1003372
http://dx.doi.org/10.1016/j.pbiomolbio.2007.07.019
http://www.ncbi.nlm.nih.gov/pubmed/17888502
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1142/9781848163300
http://dx.doi.org/10.1007/s10958-009-9636-3
http://dx.doi.org/10.1023/A:1016592219341
http://dx.doi.org/10.1090/S0025-5718-1985-0804935-7
http://dx.doi.org/10.1016/j.cam.2010.07.008
http://dx.doi.org/10.1016/j.cnsns.2010.09.007
http://dx.doi.org/10.1016/j.apnum.2017.02.004
http://dx.doi.org/10.1016/j.apnum.2019.01.009
http://dx.doi.org/10.1016/j.cam.2011.06.015
http://dx.doi.org/10.1007/s10915-013-9812-y


Mathematics 2022, 10, 185 17 of 17

56. D’Ambrosio, R.; Hairer, E.; Zbinden, C. G-symplecticity implies conjugate-symplecticity of the underlying one-step method. BIT
Numer. Math. 2013, 53, 867–872. [CrossRef]

57. D’Ambrosio, R.; Esposito, E.; Paternoster, B. General linear methods for y′′ = f (y(t)). Numer. Algorithms 2012, 61, 331–349.
[CrossRef]

58. Diethelm, K. An application-oriented exposition using differential operators of Caputo type. In The Analysis of Fractional
Differential Equations; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2010; Volume 2004, p. viii+247. [CrossRef]

59. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics
Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204, p. xvi+523.

60. Podlubny, I. Fractional Differential Equations; Mathematics in Science and Engineering; Academic Press, Inc.: San Diego, CA, USA,
1999; Volume 198, p. xxiv+340.

61. Diethelm, K.; Ford, N.J.; Freed, A.D. Detailed error analysis for a fractional Adams method. Numer. Algorithms 2004, 36, 31–52.
[CrossRef]

62. Cardone, A.; D’Ambrosio, R.; Paternoster, B. Exponentially fitted IMEX methods for advection–diffusion problems. J. Comput.
Appl. Math. 2017, 316, 100–108. [CrossRef]

63. Cardone, A.; D’Ambrosio, R.; Paternoster, B. High order exponentially fitted methods for Volterra integral equations with
periodic solution. Appl. Numer. Math. 2017, 114, 18–29.

64. Cardone, A.; Ixaru, L.G.; Paternoster, B.; Santomauro, G. Ef-Gaussian direct quadrature methods for Volterra integral equations
with periodic solution. Math. Comput. Simul. 2015, 110, 125–143. [CrossRef]

65. Ixaru, L.G.; Vanden Berghe, G. Exponential Fitting; Mathematics and its Applications, with 1 CD-ROM (Windows, Macintosh and
UNIX); Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; Volume 568, p. xiv+308.

66. D’Ambrosio, R.; Giordano, G.; Paternoster, B.; Ventola, A. Perturbative analysis of stochastic Hamiltonian problems under time
discretizations. Appl. Math. Lett. 2021, 409, 107223. [CrossRef]

67. D’Ambrosio, R.; Di Giovacchino, S. Mean-square contractivity of stochastic theta-methods. Comm. Nonlin. Sci. Numer. Simul.
2021, 96, 105671. [CrossRef]

68. D’Ambrosio, R.; Di Giovacchino, S. Nonlinear stability issues for stochastic Runge-Kutta methods. Comm. Nonlin. Sci. Numer.
Simul. 2021, 94, 105549. [CrossRef]

69. Conte, D.; D’Ambrosio, R.; Paternoster, B. Improved theta-methods for stochastic Volterra integral equations. Comm. Nonlin. Sci.
Numer. Simul. 2021, 93, 105528. [CrossRef]

70. D’Ambrosio, R.; Scalone, C. On the numerical structure preservation of nonlinear damped stochastic oscillators. Numer.
Algorithms 2021, 86, 933–952. [CrossRef]

71. Conte, D.; D’Ambrosio, R.; Giordano, G.; Paternoster, B. Continuous Extension of Euler-Maruyama Method for Stochastic
Differential Equations. Lect. Notes Comput. Sci. 2021, 12949, 135–145.

http://dx.doi.org/10.1007/s10543-013-0437-1
http://dx.doi.org/10.1007/s11075-012-9637-z
http://dx.doi.org/10.1007/978-3-642-14574-2
http://dx.doi.org/10.1023/B:NUMA.0000027736.85078.be
http://dx.doi.org/10.1016/j.cam.2016.08.025
http://dx.doi.org/10.1016/j.matcom.2013.10.005
http://dx.doi.org/10.1016/j.aml.2021.107223
http://dx.doi.org/10.1016/j.cnsns.2020.105671
http://dx.doi.org/10.1016/j.cnsns.2020.105549
http://dx.doi.org/10.1016/j.cnsns.2020.105528
http://dx.doi.org/10.1007/s11075-020-00918-5

	Introduction
	Multivalue Collocation Methods
	Two-Step Collocation Methods
	Nordsieck GLM Collocation Methods
	Derivation of A-Stable Multivalue Collocation Methods
	Numerical Illustration

	Multivalue Mixed Collocation Methods
	Multivalue Spline Collocation Methods for FDEs
	One-Step Collocation Methods for FDEs
	Two-Step Collocation Methods for FDEs

	Conclusions
	References

