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Abstract: As one of the most promising forms of renewable energy, solar energy is increasingly
deployed. The simulation and control of photovoltaic (PV) systems requires identification of their
parameters. A Hybrid Adaptive algorithm based on JAYA and Differential Evolution (HAJAYADE) is
developed to identify these parameters accurately and reliably. The HAJAYADE algorithm consists
of adaptive JAYA, adaptive DE, and the chaotic perturbation method. Two adaptive coefficients are
introduced in adaptive JAYA to balance the local and global search. In adaptive DE, the Rank/Best/
1 mutation operator is put forward to boost the exploration and maintain the exploitation. The chaotic
perturbation method is applied to reinforce the local search further. The HAJAYADE algorithm is
employed to address the parameter identification of PV systems through five test cases, and the
eight latest meta-heuristic algorithms are its opponents. The mean RMSE values of the HAJAYADE
algorithm from five test cases are 9.8602 × 10−4, 9.8294 × 10−4, 2.4251 × 10−3, 1.7298 × 10−3, and
1.6601 × 10−2. Consequently, HAJAYADE is proven to be an efficient and reliable algorithm and
could be an alternative algorithm to identify the parameters of PV systems.

Keywords: parameter identification; optimization; hybrid algorithm; JAYA; differential evolution

1. Introduction

Nowadays, governments and the public are more concerned about environmental
protection and the energy crisis, meaning that the unsustainable energy structure dominated
by fossil energy urgently needs to be adjusted. They have turned to renewable energy,
which may be the main alternative to fossil fuels. Among various renewable energies, solar
energy is one of the most promising energies as it is clean, renewable, green, etc. [1]. For
solar energy, photovoltaic (PV) systems are commonly used because they can transform
solar energy into electrical energy. It is reported that the market for PV systems has
increased by as much as 50%, with more than 700,000 solar panels installed every day [2].
However, PV systems are often deployed in harsh environments, so that the utilization
efficiency is greatly influenced. It is indispensable to assess the performance behavior of
PV systems using models on the basis of observation data. Commonly used models are
the single-diode model (SDM) and double-diode model (DDM). The performance of these
models relies on the involved parameters. However, they are not available directly as they
vary due to the harsh environments. Therefore, it is necessary to estimate the parameters
of these models.

Identifying the parameters of these models can be defined as an optimized problem.
There are two main approaches to solve the problem, i.e., the mathematical method and
meta-heuristic algorithms. The former often tries to minimize a suitable function by
imposing restrictions such as convexity and differentiability [3]. However, the problem is
often nonlinear and multimodal, making the mathematical method ineffective and causing
it to quickly fall into the local optimum [4]. Hence, various approaches are based on
meta-heuristic algorithms.
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Meta-heuristic algorithms are widely used to estimate the parameters of PV systems as
they are simple, flexible, and derivation-free. These algorithms are developed based on the
evolutionary concept, biological behavior, and physical phenomena. A teaching–learning
optimization algorithm that simulates the learning and teaching process was combined
with the artificial bee colony algorithm that forges the behavior of honey bees [2]. An
oppositional teaching–learning algorithm was put forward to solve the problem. The
opposition–learning technique was used to help the algorithm escape from the local opti-
mum [5]. The multiple learning backtracking search optimization algorithm was realized
for estimating the parameters, in which multi-updating strategies were developed to boost
the diversity of the population [6]. An adaptive and chaotic grey wolf optimizer was de-
signed to deal with the issue [7]. A multi-swarm spiral leader particle swarm optimization
(PSO) algorithm was implemented to identify parameters. Several search mechanisms were
used in the algorithm to achieve good performance [8]. The improved slime mould algo-
rithm introduced Lévy flight (LF) and adaptive factors to attain the same aim [8]. In other
work, an advanced slime mould algorithm was developed to solve three commercial PV
models [9]. The Whippy Harris Hawks algorithm, as an extended version of Harris Hawks
optimization, was designed to estimate the parameters of PV systems, and superior search
capability was attained [10]. A robust and reliable approach on the basis of a stochastic
fractal search algorithm was used to address the problem, in which three PV models were
involved [11]. A hybrid algorithm based on the Rao algorithm and the chaotic map was
developed and exhibited minor deviation when addressing the problem [12]. An improved
marine predators algorithm using two different mutation strategies was proposed for the
issue, and serial experiments achieved better results [13]. An extended gaining–sharing
knowledge algorithm was applied to extract the parameters of PV systems, in which an
adaptive mechanism was incorporated into the algorithm [14]. An adaptive differential evo-
lution (DE) algorithm was developed to address the problem, and the experimental results
from three PV models proved the efficiency of the algorithm [15]. An enhanced metaphor-
free Gradient-based Optimizer Algorithm (GOA) was developed to cope with the issue [16].
An opposition-based GOA was also realized to identify the parameters of PV systems [17].
An effective and efficient solver called SFLBS was employed to tackle the problem [18].
Based on GOA, chaotic GOA was realized to derive PV systems’ parameters [19]. An
ensemble multi-strategy-driven shuffled frog leading algorithm was developed to optimize
the PV’s parameters to guarantee the optimal energy conversion [20].

These algorithms have attained remarkably good results when estimating the parame-
ters of PV systems. However, it has to be pointed out that most of the above algorithms
have to use additional parameters, except for the population size. The parameter settings
greatly influence the performance of these algorithms. Setting the proper parameter values
for a specific problem is still challenging. The parameter tuning is also a tedious task.
Therefore, developing a competitive and advanced algorithm to extract the parameters of
these models is still demanding work.

JAYA, developed by Rao [21], is a novel meta-heuristic algorithm. Its parameter-free
nature makes the algorithm different from the conventional meta-heuristic algorithms. For
instance, the genetic algorithm employs the crossover and mutation probabilities, PSO
uses the inertia weight, etc. The algorithm attains the optimal solution by approaching
the best solution and avoiding the worst solution. The algorithm’s structure is simple,
and the algorithm is easy to implement. Therefore, the algorithm has also been used to
solve problems in industrial applications [3,22–30]. For example, JAYA has been applied
to solve the standard hybrid energy system [29]. It has been integrated with a branch
and bound algorithm (BBA) to optimize the scheduling problem [30]. Various variants
based on the JAYA algorithm have been proposed, and several variants based on JAYA
have been employed to estimate the parameters of PV models. A comprehensive learning
JAYA algorithm was developed by introducing the comprehensive learning mechanism
to solve the parameters of three PV models [31]. An enhanced JAYA was developed to
accurately and efficiently address the problem, in which three extensions were incorpo-
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rated [32]. Performance-guided JAYA was offered, in which the promising search direction
was controlled [4]. A logistic chaotic JAYA algorithm was realized and the algorithm used
logistic chaotic map and mutation strategies to boost the population diversity [33]. An
Improved JAYA (IJAYA) was realized by randomly selecting two mutation strategies. The
proposed JAYA algorithm was used to address the problem [3]. Although these works
have boosted the performance of JAYA, they also may demonstrate some deficiencies. For
example, the two mutation strategies are randomly used in the IJAYA algorithm, without
considering the quality of the solution. The search capability is limited when extracting
the parameters of PV models [4] and these improvements are only based on JAYA, without
considering the hybrid idea.

As demonstrated above, the aforementioned meta-heuristic algorithms have been
successfully applied to solve the parameter identification of PV models [3,4,32,34,35].
However, these algorithms show different performances when attaining or approaching an
optimal solution. Some have defects, such as lower robustness, premature convergence,
and not exploiting the local information. It is necessary to design a competitive algorithm
to address the problem. Meanwhile, these efforts seldom use the hybrid idea to create
updating mechanisms, leading to limited improvements. Hybridization integrates the
advantages of different algorithms to establish a hybrid algorithm while minimizing the
substantial disadvantage. It is a common approach to boost the performance of evolutionary
algorithms. An effective hybrid algorithm named whale optimization/DE algorithm was
developed to estimate the parameters of PV models [36]. A hybrid GA-PSO algorithm was
proposed to optimize the size of a house with PV panels, batteries, and wind turbines [37].
A hybrid algorithm using multiverse optimizer, equilibrium optimization, and moth flame
optimization methods was implemented to tackle the optimal designs for wave energy
converters [38]. A hybrid cooperative co-evolution algorithm was also developed [39]. In
general, there are still shortcomings in the research on JAYA, which need to be improved
by promoting the identification parameters of PV systems based on the hybrid idea.

In light of these observations, a Hybrid Adaptive JAYA and Differential Evolution (HA-
JAYADE) algorithm is developed. This is proposed based on the strengths and weaknesses
of JAYA and DE. For JAYA, it is simple, while the search capacity is limited. Meanwhile, the
adaptive JAYA position updating mechanism introduces two adaptive coefficients to boost
the local and global search balance. The DE algorithm is flexible, and the search capacity
depends on mutation strategies [40,41]. Among these mutation strategies of DE, Best/1 is
commonly used with powerful exploitation and weak exploitation [42]. The Rank/Best/1
is put forward to enhance the exploration of the algorithm and maintain the exploitation by
introducing the ranking information of individuals into the mutation strategy. To enhance
the search capacity, the solutions obtained from the proposed HAJAYADE algorithm have
been updated through three mutation strategies, the adaptive JAYA position updating
mechanism, the Rank/Best/1 mutation strategy of DE algorithm, and the chaotic perturba-
tion. The chaotic perturbation is widely used in JAYA variants and is adopted here to search
around the best solution so that the exploitation can be further advanced [3,4]. The search
capacity of the proposed HAJAYADE algorithm is greatly enhanced and used to solve
the identification of PV parameters. The HAJAYADE algorithm is compared with eight
meta-heuristic algorithms, the conventional JAYA and DE algorithms. A statistical test is
performed to validate the performance of the proposed HAJAYADE algorithm. Therefore,
the paper narrows the knowledge gap by the following contributions:

(1) Two adaptive coefficients are introduced into JAYA to balance the local and global
search so that an adaptive JAYA (AJAYA) is developed.

(2) An adaptive DE algorithm is put forward by the novel Rank/Best/1 mutation operator,
which considers the quality of the solution in the mutation stage.

(3) A Hybrid Adaptive algorithm based on JAYA and Differential Evolution (HAJAYADE)
is developed to identify the parameters of PV systems.

(4) The HAJAYADE is proven to be an efficient and reliable algorithm compared with
eight opponents.
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The PV models are introduced and the objective functions are defined in Section 2.
The JAYA and DE algorithms are introduced and the proposed HAJAYADE algorithm is
elaborated in Section 3. The experiments and the analysis of the results are described in
Section 4. The conclusions are made in Section 5.

2. PV Modeling Formation

There are several models to describe PV systems. Among these models, SDM and
DDM are widely used in electrical engineering. In this section, SDM, DDM, and PV module
models, based on SDM and DDM, are briefly introduced, and the objective function of the
PV model is formatted.

2.1. Mathematical Model

(1) Single-diode model (SDM)

SDM can precisely depict the static features of the solar cell. The model consists of
a resistor to show the leakage current, and a serial resistor to describe the losses of the
current. The model is demonstrated in [4].

The current IL can be computed as follows:

IL = Iph − Id − Ish (1)

Id = Isd ×
[

exp
(

q× (VL + Rs × IL)

n× k× T

)
− 1
]

(2)

Ish =
VL + Rs × IL

Rsh
(3)

where IL is the current of the output, Iph is the current from the solar cell, Id is the current
from the diode, which can be computed by Equation (2), Rs and Rsh are two resistors, VL
is the output of the cell voltage, Isd is from the reverse saturation of the diode, n is the
feature factor of the diode, both k = 1.3806503× 10−23 J/K and q = 1.60217646× 10−19 C
are constants. The parameter T is the absolute temperature of the cell. Equations (1)–(3)
can be combined, and the output cell can be depicted as follows:

IL = Iph − Isd ×
[

exp
(

q× (VL + Rs × IL)

n× k× T

)
− 1
]
− VL + Rs × IL

Rsh
(4)

where five parameters
(

Iph, Isd, Rs, Rsh, n
)

are unknown and need to be estimated. These
parameters have to be identified so that the performance of the solar cells can be fully
measured. The problem can be addressed by optimization algorithms.

(2) Double-diode model (DDM)

Different from the SDM, the DDM has double diodes. The DDM considers the in-
fluence of recombination current loss. Ref. [4] shows the circuit, and the output can be
computed as follows:

IL = Iph − Id1−Id2 − Ish

= Iph − Isd1 ×
[
exp

(
q×(VL+Rs×IL)

n1×k×T

)
− 1
]

−Isd2 ×
[
exp

(
q×(VL+Rs×IL)

n2×k×T

)
− 1
]
− VL+Rs×IL

Rsh

(5)

where Isd1 and Isd2 are the diffusion and saturation current, n1 and n2 are the diffusion diode
and recombination diode ideal factor. There are seven parameters

(
Iph, Isd1, Isd2, Rs, Rsh, n1, n2

)
that need to be estimated.

(3) PV module model
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According to [4], the PV module model is built on a number of PV cells in paral-
lel or/and in series. The module is based on the single-diode module model (SMM)
and double-diode module model (DMM). The output current of the SMM is computed
as follows:

IL =

(
Iph − Isd ×

[
exp

(
q×(VL×IL/Ns+Rs×IL/Np)

n×k×T

)
− 1
]

−VL/Ns+Rs×IL/Np
Rsh

)
× Np

(6)

where Np is the number of solar cells in parallel, and Ns is the number of solar cells in

series. Hence, five parameters
(

Iph, Isd, Rs, Rsh, n
)

need to be estimated.

2.2. Problem Formation

The parameters of the above models need to be estimated so that the performance of
PV can be measured. Generally, the issue can be transformed into an optimization problem
by minimizing the calculated and experimental data difference. The error can be defined
by the following equations, in which Equations (7)–(9) are for SDM, DDM, and SMM, and
x is the set of unknown parameters to be evaluated. F(VL, IL, x) = Iph − Isd ×

[
exp

(
q×(VL+Rs×IL)

n×k×T

)
− 1
]
− VL+Rs×IL

Rsh
− IL

x =
{

Iph, Isd, Rs, Rsh, n
} (7)


F(VL, IL, x) = Iph − Isd1 ×

[
exp

(
q×(VL+Rs×IL)

n1×k×T

)
− 1
]
−

Isd2 ×
[
exp

(
q×(VL+Rs×IL)

n2×k×T

)
− 1
]
− VL+Rs×IL

Rsh
− IL

x =
{

Iph, Isd1, Isd2, Rs, Rsh, n1, n2

} (8)


F(VL, IL, x) = (Iph − Isd ×

[
exp

(
q×
(

VL×IL
Ns +Rs×

IL
Np

)
n×k×T

)
− 1

]
−VL/Ns+Rs×IL/Np

Rsh
)× Np − IL

x =
{

Iph, Isd, Rs, Rsh, n
} (9)

In previous studies, the root mean square error (RMSE) is employed as the objective
function to measure the difference between simulated and experimental data [4]. If there
are measurement errors, we can perform multiple measurements, and the mean result
can be obtained and used as the experimental data. The measurement errors can be
reduced. Minimizing the objective function is to search for the optimal solution x in the
specific range.

RMSE(x) =

√√√√ 1
N

N

∑
k=1

fk(VL, IL, x)2 (10)

where N is the number of experimental data, and x is the solution needed to be optimized.

3. Proposed HAYAJADE Algorithm Based on JAYA Algorithm and DE Algorithm

Both JAYA and DE are population-based evolutionary algorithms. In this section, two
algorithms are briefly presented. Initialization is the first step for both algorithms. For a min-
imization problem, let f (x) be the objective function with D-dimension (j = 1, 2, . . . , D), xi,j
is the value of jth dimension for ith candidate solution and xi =

(
xi,1, xi,2, . . . , xi,j, . . . , xi,D

)
is the ith candidate solution’s position. The range of xi,j is between Lj and Uj. The initial
solution xi,j can be generated as follows:

xi,j = Lj +
(
Uj − Lj

)
× randi,j, j = 1, 2, . . . , D (11)
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where randi,j is a random number between 0 and 1, Uj and Lj are upper and lower bound-
aries of the jth dimension.

3.1. JAYA Algorithm

JAYA is a novel evolutionary algorithm compared with the DE algorithm. It was devel-
oped by Rao [21]. The algorithm can be employed to solve constrained and unconstrained
problems. It is based on the idea that the solution should approach the best solution and
avoid the worst solution when optimizing a specific problem. Unlike the conventional
population-based evolutionary algorithms, JAYA is parameter-free, as it only has a common
parameter, i.e., population size.

The best solution xbest =
{

xbest,1, xbest,2, . . . , xbest,D
}

has the minimization fitness value,
while xworst = {xworst,1, xworst,2, . . . , xworst,D} has the maximization fitness value among the
current solutions. Then, xi,j is updated by the following equation:

x′i,j = xi,j + rand1 ×
(

xbest,j −
∣∣xi,j

∣∣)− rand2 ×
(

xworst,j −
∣∣xi,j

∣∣) (12)

where rand1 and rand2 are two random numbers between 0 and 1, xworst,j and xbest,j are
values of the jth dimension for the worst and best solutions,

∣∣xi,j
∣∣ is the absolute value of

the jth dimension for the ith solution, x′i,j and xi,j are the updated and the original values of
the jth dimension for the ith solution. The term xbest,j −

∣∣xi,j
∣∣ is used to denote the tendency

towards the optimal solution, while the term xworst,j −
∣∣xi,j

∣∣ is applied to represent the
tendency to avoid the worst solution.

If the generated individual x′i is superior to the original individual xi, the new indi-
vidual x′i will take the place of the original one. Otherwise, the original one is kept. The
process can be mathematically presented as follows:

xi =

{
x′i , i f f

(
x′i
)
< f (xi)

xi, otherwise
(13)

3.2. DE Algorithm

The DE algorithm is also a very simple and efficient population-based evolutionary
algorithm that is older than the JAYA algorithm [40]. However, it is one of the most popular
evolutionary algorithms due to its structure, real number encoding, and effectiveness [43].
The steps in the DE algorithm involve mutation, crossover, and selection.

There are many mutation operators in the DE algorithm. The mutation operator Best/1
is commonly used as follows:

vi = xbest + F× (xr1 − xr2) (14)

where r1 and r2 are randomly generated between 1 and the value of population size
(r1 6= r2 6= i), xbest is the optimal solution found so far, vi is the mutant vector, and F is the
scalar factor in the range of 0 and 1. The term xr1 − xr2 is the difference vector.

The following step is crossover. It is used to exchange the information between the individ-
ual xi =

{
xi,1, xi,2, . . . , xi,j, . . . , xi,D

}
and the mutant vector vi =

{
vi,1, vi,2, . . . , vi,j, . . . , vi,D

}
.

The most commonly used crossover operator is defined as follows:

ui,j =

{
vi,j i f rand ≤ CR or j = Jrand

xi,j otherwise
(15)

where rand is a random number between 0 and 1, CR is the crossover constant, which can
be defined by the user, Jrand is the integer in the range of 1 and D to make use of the fact
that ui at least has a component from vi.
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The last step is the same as the JAYA algorithm, which is the greedy selection. If the ui
is superior to the xi, the xi is replaced by ui. Otherwise, ui is abandoned and xi is kept.

xi =

{
ui, i f f (ui) < f (xi)

xi, otherwise
(16)

3.3. Hybrid Adaptive JAYA and DE (HAJAYADE)

For population-based meta-heuristic algorithms, it is necessary to realize a balance
between exploitation and exploration. The exploration is to search as broadly as possible
to identify the potential region, while the exploitation is to search around the potential
region. In the early stage of evolution, the exploration is encouraged to scatter throughout
the whole search space. At the later stage of evolution, exploitation is more necessary to
approach the optimal solution.

For the JAYA algorithm, the main feature is its parameter-free nature, which makes it
attractive [21]. The algorithm uses information from the best and worst solutions to search
around the space. The single search strategy used in JAYA is to approach the best solution
and avoid the worst solution. However, the single strategy may deteriorate the exploitation
and exploration capabilities of the algorithm, which may lead to the local optimum.

In recent years, many improvements have been implemented to improve the per-
formance of JAYA [3,4,32,34,35]. However, these efforts seldom use the hybrid idea to
design updating mechanisms, leading to limited improvements as the hybrid is a common
approach to boost the performance for most evolutionary algorithms [44]. If the feature
of DE is reasonably integrated into the framework of JAYA, the exploitation can be signifi-
cantly boosted as the capacity is superior for the Best/1 mutation strategy. Meanwhile, an
adaptive approach is used to enhance the exploration, and balance the exploitation and
exploration in the proposed algorithm. Lastly, a chaotic method is applied to boost the
exploitation further [18]. Based on the observations, we developed a Hybrid Adaptive
JAYA and DE algorithm (HAJAYADE). The algorithm consists of adaptive JAYA (AJAYA),
adaptive DE, and adaptive chaotic perturbation.

3.3.1. Adaptive JAYA (AJAJA)

The conventional JAYA assigns the same priority to the best and the worst solutions.
The best solution can be given more priority, while the worse solution can be assigned less
priority so that the search direction can approach the potential region more quickly. Hence,
two adaptive coefficients are introduced as follows:

w1 =

{
1 f (xbest) = 0

Mean( f (x))
f (xbest)

f (xbest) 6= 0
(17)

w2 =

{
1 f (xworst) = 0

Mean( f (x))
f (xworst)

f (xworst) 6= 0
(18)

where xbest and xworst are the best and worst solutions found so far, f (xbest) and f (xworst)
are their fitness values, and Mean( f (x)) is the mean value of these fitness values. For
a minimization problem, w1 is greater than 1 while w2 is less than 1. As the iteration
increases, they approach 1, as shown in Figure 1.
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Then, the two adaptive coefficients are introduced into Equation (19) as follows:

x′i,j = xi,j + w1 × rand1 ×
(

xbest,j −
∣∣xi,j

∣∣)− w2 × rand2 ×
(

xworst,j −
∣∣xi,j

∣∣) (19)

At the beginning of the iteration, the differences among f (xbest), f (xworst), and
Mean( f (x)) are significant. w1 is larger while w2 is smaller. The search direction is
directly towards the potential region. At the later stage of the iteration, the difference
among the three values is slight. w1 and w2 are very close to 1. The xbest and xworst are
also close to each other. The local search can be implemented. Therefore, we introduce two
coefficients w1 and w2 to balance exploration and exploitation. Their values depend on the
fitness values of solutions and do not need to introduce any extra parameters.

3.3.2. Adaptive DE Algorithm

The performance of the DE algorithm mainly relies on the mutation operator. For
Best/1, the exploitation is powerful while the exploration is weak. Searching around the
best solution may deteriorate the exploration. To maintain the exploitation and improve
the exploration, we propose the Rank/Best/1 mutation operator in Equation (20).

vi = xbest + rand×
(
xrankr1 − xr2

)
(20)

where rankr1 is the integer in the range of 1 and population size, rand is a random number
in the range of 0 and 1 to take the place of the scalar factor F so that the lesser parameter is
introduced. We select rankr1 depending on the fitness value of f

(
xrankr1

)
. Firstly, we sort

solutions based on their fitness values in ascending order. Then, we assign the ranking
values ranki to each solution. The better the solution, the smaller the ranki [45]. The
selection probability pi can be computed as follows:

ranki = NP− i (21)

pi =
ranki
NP

(22)

where i is the rank index, ranki is the rank value, and pi is the selection probability. The
better the solution, the more the pi.

For the conventional Best/1, r1 and r2 are randomly generated. The difference vector
xr1 − xr2 does not change significantly, especially at the early stage. The search range
and exploration are limited. Different from Best/1, the rankr1 is generated and selected
depending on its corresponding prankr1 . We randomly generate a random number rand
in the range of 0 and 1. If prankr1 > rand, we accept the rankr1. Otherwise, we have to
regenerate the rankr1. As the unique generated mechanism is used, the difference vector
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xrankr1 − xr2 changes significantly, especially at the early stage. The search range is fully
extended, and the exploration is boosted. At the latter stage, the difference in the population
is much smaller, so the difference vector xrankr1 − xr2 changes slightly. The exploitation is
realized. To avoid the local optimum, r2 is randomly generated in the range of 1 and NP
without using the unique approach.

3.3.3. Adaptive Chaotic Method

Lastly, the adaptive chaotic method is applied to improve the exploitation of the
algorithm further. The chaotic approach has been proven valuable and successful in many
evolutionary algorithms [3,4]. The method is used to explore the best solution, and a
logistic map is a useful approach in many experiments of JAYA. Therefore, it is also adopted
as follows:

zk =

{
rand k = 1

4× zk−1 × (2× zk−1 − 1) k > 1
(23)

where k is the index of iteration. When k = 1, zk is randomly generated between 0 and 1.
zk is used as a perturbation to the best solution.

x∗j =

{
xbest,j otherwise

xbest,j + rand× (2× zk − 1) i f rand < 1− FES/FESmax
(24)

where xbest,j is the value of the jth dimension for xbest, zk is the value of kth chaotic, FES is
the number of function evaluation, FESmax is the maximal function evaluation. At the early
stage, the FES is small and the condition rand < 1− FES/FESmax is met more frequently;
more chaotic perturbation is used to generate solutions around the xbest. At the later stage,
with the increasing of FES, it is difficult to satisfy the condition rand < 1− FES/FESmax.
xbest is very close to the optimal solution, and more perturbation is unnecessary. If the
solution x∗ is superior to the worst solution, x∗ will take the place of the solution. Otherwise,
the solution x∗ is discarded.

3.3.4. Framework of HAJAYADE

The proposed HAJAYADE algorithm is mainly based on JAYA and DE. Therefore, we
use two populations for the two algorithms. By the greedy selection, the two populations
form a single population. The flowchart of HAJAYADE is presented in Figure 2, and the
pseudo-code of HAJAYADE is shown as follows (Algorithm 1).

3.3.5. Complexity of the Proposed HAJAYADE Algorithm

The complexity of the HAYAYADE is discussed as follows. Let the population size
be NP and the dimension of the problem be D. Identifying the best and worst solutions,
computing the mean fitness value demands O(NP). Updating the position of popula-
tion needs O(NP× D). Ranking solutions in the population requires O(N × Plog(NP)).
The mutant process requires O(NP). The crossover operator demands O(NP× D). The
greedy selection for the hybrid algorithm requires O(NP). The chaotic operator requires
O(D). Therefore, the total complexity of the proposed HAJAYADE algorithm needs
O(NP + NP× D + NP× log(NP) + NP + NP× D + D). As the log(NP) is often smaller
than D, the complexity of the proposed HAJAYADE algorithm is O(NP× D).
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Algorithm 1: HAJAYADE

Input:
The population size :
NP; the maximal function evaluation (FESmax ); crossover constant CR

Output: The optimal solution
1 Generate initial population p by Equation (11)
2 Evaluate the fitness value of population p
3 FES = NP;
4 While (FES < FESmax )
5 Identify the best solution xbest and its corresponding fitness value f (xbest)
6 Identify the worst solution xworst and its corresponding fitness value f (xworst)
7 Calculate the adaptive parameters w1 and w2 by Equations (17) and (18)
8 for i = 1 : NP
9 Update the population p by Equation (19) and generate the trial vector x′i
10 end
11 Compute the selection probability pi according to Equation (22)
12 for i = 1 : NP
13 Generate a rand in the range of 0 and 1
14 Randomly select an integer rankr1 in the range of 1 and NP
15 While (rand > p(rankr1)||i == rankr1 )
16 Randomly select an integer rankr1 in the range of 1 and NP
17 end
18 Randomly select an integer r2 in the range of 1 and NP
19 While (i == r2||rankr1 == r2 )
20 Randomly select an integer r2 in the range of 1 and NP
21 end
22 Generate the mutant vector ui by Equation (20)
23 end
24 for i = 1 : NP
25 Generate the trial vector vi by Equation (15)
26 end
27 for i = 1 : NP
28 Evaluate the fitness value of x′i and vi respectively
29 if

(
f
(

x′i
)
< f (xi) )

30 xi = x′i ; f (xi) = f
(

x′i
)
;

31 end
32 if ( f (vi) < f (xi) )

33 xi = vi; f (xi) = f (vi);
34 end
35 FES = FES + 2;
36 end
37 Identify the best solution xbest and the worst solution xworst
38 Use the chaotic perturbation to generate the solution x∗ by Equation (24)
39 if ( f (x∗) < f (xworst))
40 xworst = x∗; f (x∗) = f (xworst);
41 end
42 FES = FES + 1;
43 end
44 Output the optimal solution xbest and its corresponding fitness f (xbest).
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4. Experimental Results and Analysis

The performance of the proposed HAJAYADE algorithm is used to estimate the
parameters of PV models, including the SDM, DDM, and SMM. The current–voltage data
are from reference [46]. They are widely employed to test diverse techniques developed
to estimate the parameters of PV models. The data of SDM contain 26 groups of current
and voltage under 1000 W/m2 at 33 ◦C, which is the RTC France Si cell. The DDM is
measured by 57 silicon. The SMM includes the Photowatt-PWP201 PV model, STM6-
40/36 PV model, STP6-120/36 PV model. The temperatures at the three PV models are
4 ◦C, 51 ◦C, and 55 ◦C [32]. For the five problems, the range of parameters is listed in
Table 1.
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Table 1. Ranges of parameters.

Parameter
SDM/DDM Photowatt-PWP201 STM6-40/36 STP6-120/36

Upper Lower Upper Lower Upper Lower Upper Lower

Iph(A) 1 0 2 0 2 0 8 0

Isd, Isd1, Isd2(µA) 1 0 50 0 50 0 50 0

n, n1, n2 2 1 50 1 60 1 50 1

Rs(Ω) 0.5 0 2 0 0.36 0 0.36 0

Rp(Ω) 100 0 2000 0 1000 0 1500 0

To test the performance of the proposed HAJAYADE algorithm, some of the latest
algorithms and their variants are used as its opponents, including GWO [47], CMAES [48],
TLABC [2], TAPSO [49], MLBSA [6], GOTLBO [5], PGJAYA [4], and IJAYA [3]. GWO is
a novel swarm intelligent algorithm proposed by Mirjalili et al. [47]. The self-adaptation
of the mutation distribution is adopted in the CMAES algorithm to boost the local and
global search [48]. TLABC is a hybrid algorithm based on TLBO and ABC, with the
purpose of enhancing the reliability and accuracy of meta-heuristic algorithms [2]. In
TAPSO, three archives are used to design an efficient learning model and select proper
exemplars [49]. In MLBSA, a fraction of individuals learn from the elite solution, while
the remaining individuals learn from the historical population and current population to
balance the exploration and exploitation [6]. In GOTLBO, a generalized opposition-based
learning technique is integrated into basic TLBO to enhance the convergence [5]. In the
PGJAYA algorithm, each individual can adaptively select mutation strategies depending
on its selection probability [4]. In IJAYA, an adaptive coefficient and an experience-based
mutation operator are introduced to boost the diversity of the population and enhance the
exploration [3].

The main parameters of the above nine algorithms are listed in Table 2. These param-
eters are mainly based on their original references so that the best performances of these
algorithms can be guaranteed. The maximal function evaluations are set to 50,000. Each
algorithm runs thirty times independently, and the statistical results are obtained. These
algorithms run on a PC with a memory of 8 GB, primary frequency of 3.4 GHz, Win 10 OS,
and Matlab R2020a.

Table 2. Parameter values of ten algorithms.

Algorithm Parameters

GWO →
a linearly decreases from 2 to 0; NP = 20

CMAES σ = 0.25, NP = 20

TLABC limit = 200, F = rand(0, 1); NP = 50

TAPSO w = 0.7298, pc = 0.5, pm = 0.02, NP = 20

MLBSA NP = 50

GOTLBO NP = 50, Jr = 0.3

PGJAYA NP = 20

IJAYA NP = 20

HAJAYADE NP = 20; Cr = 0.5

4.1. Results and Analysis

(1) Results of SDM

For the SDM, i.e., the RTC France Si cell, the statistical results involving the maximal,
mean, minimal, and the standard deviation values of RMSE from the above nine algorithms,
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i.e., GWO, CMAES, TLABC, TAPSO, MLBSA, GOTLBO, PGJAYA, IJAYA, and HAJAYADE,
are listed in Table 3. In terms of the minimal value, most algorithms except GWO, CMAES,
and IJAYA are the best. Only three algorithms, i.e., MLBSA, PGJAYA, and HAJAYADE, can
obtain the best value in terms of the mean value. However, only the proposed HAJAYADE
algorithm has the lowest maximal value. Therefore, the proposed HAYAJADE algorithm
is the best one for the SDM. The convergence curves of the nine algorithms are plotted
in Figure 3. It can be noticed that the convergence speed of GWO and CMAES is lower
compared with the remaining algorithms. When the convergence curves are magnified, it
can be observed that the convergence speed of these algorithms is also different, in which
the proposed HAJAYADE algorithm is the fastest. The best solutions obtained from 30 runs
for each algorithm are listed in Table 4. To validate the quality of the results obtained from
the proposed HAJAYADE algorithm, the best-estimated values are employed to establish
the relationship between the current and voltage in Figure 4. The experimental data are
highly consistent with the calculated data. The figure further validates the effectiveness of
the proposed HAJAYADE algorithm.

Table 3. Statistical results from nine algorithms for the SDM problem.

Algorithm Min Mean Max Std

CMAES 2.4203 × 10−3 4.501 × 10−3 9.7738 × 10−3 2.0983 × 10−3

GWO 1.0023 × 10−3 8.1335 × 10−3 4.4315 × 10−2 1.3204 × 10−2

TLABC 9.8602 × 10−4 9.9218 × 10−4 1.0317 × 10−3 1.1679 × 10−5

TAPSO 9.8602 × 10−4 1.0267 × 10−3 2.2063 × 10−3 2.228 × 10−4

MLBSA 9.8602 × 10−4 9.8602 × 10−4 9.8604 × 10−4 2.7152 × 10−9

GOTLBO 9.8602 × 10−4 1.01 × 10−3 1.3865 × 10−3 9.01 × 10−5

PGJAYA 9.8602 × 10−4 9.8602 × 10−4 9.8607 × 10−4 7.8692 × 10−9

IJAYA 9.8625 × 10−4 9.8924 × 10−4 9.9869 × 10−4 2.8943 × 10−6

HAJAYADE 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 0
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Table 4. Optimal solutions obtained from nine algorithms for SDM.

Algorithm Iph Isd Rs Rsh n RMSE

CMAES 0.76076 0.9522 0.031301 95.9066 1.5988 2.4203 × 10−3

GWO 0.76093 0.32791 0.03631 51.4854 1.4828 1.0023 × 10−3

TLABC 0.76078 0.32302 0.036377 53.7185 1.4812 9.8602 × 10−4

TAPSO 0.76078 0.32302 0.036377 53.7185 1.4812 9.8602 × 10−4

MLBSA 0.76078 0.32302 0.036377 53.7185 1.4812 9.8602 × 10−4

GOTLBO 0.76078 0.32302 0.036377 53.7185 1.4812 9.8602 × 10−4

PGJAYA 0.76078 0.32302 0.036377 53.7186 1.4812 9.8602 × 10−4

IJAYA 0.76074 0.32302 0.036382 54.0089 1.4811 9.8625 × 10−4

HAJAYADE 0.76078 0.32302 0.036377 53.7185 1.4812 9.8602 × 10−4
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(2) Results on the DDM

For the DDM, seven parameters need to be optimized, and the dimension is more
than the SDM. The results from the above nine algorithms are revealed in Table 5, in which
HAJAYADE has attained the best results in terms of the minimal (9.8294 × 10−4), mean
(9.8641 × 10−4), and maximal value (9.96 × 10−4). The difference among these statistical
results of the proposed HAJAYADE algorithm is tiny, indicating that the proposed HAYA-
JADE algorithm is robust. The result of PGJAYA is second only to the proposed HAJAYADE
algorithm, ranking second. GWO has obtained the worst result as the algorithm only uses
the top three wolves to guide the search direction. The exploration is limited, and the
algorithm is easily trapped into the local optimum. The standard deviation of the algorithm
is the largest, which indicates that GWO is less robust. The reason behind the superior
performance is that the proposed HAJAYADE algorithm uses the hybrid mechanism, which
boosts exploration and exploitation. The excellent performance can also be measured by
convergence curves, in which the log (mean RMSE) is used as the value of the y-axis so that
the difference among the nine algorithms is apparent. The convergence speed of the pro-
posed HAJAYADE algorithm is much faster according to Figure 5. The best results attained
from these algorithms are listed in Table 6, and the result of the proposed HAJAYADE
algorithm is used to construct the model. The experimental and calculated data from the
proposed HAJAYADE algorithm are plotted in Figure 6. It is evident that the two groups’
data are in superior accordance.
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Table 5. Statistical results from nine algorithms for the DDM.

Algorithm Min Mean Max Std

CMAES 9.9015 × 10−4 3.2883 × 10−3 6.9683 × 10−3 1.8499 × 10−3

GWO 1.1429 × 10−3 9.6965 × 10−3 3.8045 × 10−2 1.2305 × 10−2

TLABC 9.8407 × 10−4 1.0616 × 10−3 1.4496 × 10−3 1.2359 × 10−4

TAPSO 9.8269 × 10−4 1.2853 × 10−3 2.3508 × 10−3 4.1093 × 10−4

MLBSA 9.8285 × 10−4 9.856 × 10−4 9.8778 × 10−4 9.3682 × 10−7

GOTLBO 9.8299 × 10−4 1.0303 × 10−3 1.4242 × 10−3 1.0111 × 10−4

PGJAYA 9.8298 × 10−4 9.8624 × 10−4 9.9773 × 10−4 2.9021 × 10−6

IJAYA 9.8631 × 10−4 1.0107 × 10−3 1.182 × 10−3 4.704 × 10−5

HAJAYADE 9.8294 × 10−4 9.8641 × 10−4 9.96 × 10−4 2.8534 × 10−6
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Table 6. Optimal solutions obtained from nine algorithms for DDM.

Algorithm Iph Isd1 Rs Rsh n1 Isd2 n2 RMSE

CMAES 0.76062 0.26941 0.036502 56.3321 1.4674 0.1659 1.7803 9.9015 × 10−4

GWO 0.76106 0.89499 0.036962 48.1939 1.3866 0.6471 1.729 1.1429 × 10−3

TLABC 0.76079 0.38772 0.036647 54.6552 1.8584 0.232 1.4546 9.8407 × 10−4

TAPSO 0.76079 0.67827 0.036741 54.9983 1.9987 0.23154 1.4529 9.8269 × 10−4

MLBSA 0.76078 0.5284 0.036623 54.9649 1.9978 0.25212 1.4602 9.8285 × 10−4

GOTLBO 0.76078 0.25815 0.036604 54.8163 1.4622 0.48047 1.9987 9.8299 × 10−4

PGJAYA 0.76078 0.25828 0.036598 54.8875 1.4622 0.48583 1.461 9.8298 × 10−4

IJAYA 0.76082 0.29722 0.036558 54.0126 1.8502 0.25073 1.461 9.8631 × 10−4

HAJAYADE 0.76078 0.49872 0.036602 54.9059 1.9992 0.25657 1.4617 9.8294 × 10−4
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(3) Results on PV models

There are three PV models, the Photowatt-PWP201, the STM6-40/36, and the STP6-
120/36. It is necessary to optimize five parameters. The above nine algorithms are used to
identify these five parameters. The statistical results of the three groups are listed in Table 7.
GWO and CMAES have attained inferior results for the three groups. Except for the two
algorithms, TAPSO has obtained worse results for both Photowatt-PWP201 (2.5928 × 10−3)
and STP6-120/36 (6.2436 × 10−1), and GOTLBO is inferior for STM6-40/36 in terms of
the mean value (3.4321 × 10−3). On the contrary, regarding the three JAYA variants, the
performances of PGJAYA, IJAYA, and HAJAYADE are better. In more detail, PGJAYA and
HAJAYADE have attained the best results for Photowatt-PWP201. The performances of
HAJAYADE are more robust compared with PGJAYA and IJAYA. Thus, it is the best one
among the nine algorithms.

The solutions attained from these algorithms are presented in Table 8. The calculated
data and experimental data are visually illustrated in Figure 7. It can be further observed
that the difference between the two serial data is tiny, indicating that the solutions obtained
from the proposed HAJAYADE algorithm are accurate. In addition, the convergence curves
of the nine algorithms for the three PV models are presented in Figure 8. It can be observed
that the remaining algorithms are similar in terms of convergence speed for Photowatt-
PWP201, except for GWO and CMAES. The convergence rate of the nine algorithms is
significantly different for STM6-40/36 and STP6-120/36, in which the proposed HAJAYADE
algorithm is the fastest.
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Table 7. Statistical results from nine algorithms for three PV models.

Model Algorithm Min Mean Max Std

Photowatt-PWP201

CMAES 4.9842 × 10−3 5.957 × 10−2 2.5934 × 10−1 7.5656 × 10−2

GWO 2.6039 × 10−3 3.9456 × 10−2 2.7431 × 10−1 9.368 × 10−2

TLABC 2.4251 × 10−3 2.4266 × 10−3 2.4496 × 10−3 5.7303 × 10−6

TAPSO 2.4251 × 10−3 2.5928 × 10−3 4.1483 × 10−3 3.8109 × 10−4

MLBSA 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−3 4.9687 × 10−10

GOTLBO 2.4251 × 10−3 2.427 × 10−3 2.4621 × 10−3 7.5384 × 10−6

PGJAYA 2.4251 × 10−3 2.4251 × 10−3 2.426 × 10−3 1.7877 × 10−7

IJAYA 2.4251 × 10−3 2.427 × 10−3 2.4385 × 10−3 2.8147 × 10−6

HAJAYADE 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−3 3.2215 × 10−15

STM6-40/36

CMAES 1.9343 × 10−3 8.8897 × 10−2 1.613 × 10−1 5.1349 × 10−2

GWO 4.8387 × 10−3 8.6059 × 10−3 1.7596 × 10−2 3.3055 × 10−3

TLABC 1.7298 × 10−3 1.9398 × 10−3 2.6262 × 10−3 2.2746 × 10−4

TAPSO 1.7298 × 10−3 2.3263 × 10−3 1.0566 × 10−2 1.5873 × 10−3

MLBSA 1.7298 × 10−3 1.8 × 10−3 3.7038 × 10−3 3.5966 × 10−4

GOTLBO 1.7298 × 10−3 3.4321 × 10−3 2.1722 × 10−2 3.5876 × 10−3

PGJAYA 1.7298 × 10−3 1.7302 × 10−3 1.7376 × 10−3 1.4416 × 10−6

IJAYA 1.7345 × 10−3 1.8305 × 10−3 2.221 × 10−3 1.2044 × 10−4

HAJAYADE 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 3.6569 × 10−16

STP6-120/36

CMAES 1.6612 × 10−2 5.2725 × 10−1 1.4131 6.0591 × 10−1

GWO 1.733 × 10−2 2.2768 × 10−1 1.4131 4.1976 × 10−1

TLABC 1.6601 × 10−2 1.6775 × 10−2 1.8269 × 10−2 3.3454 × 10−4

TAPSO 5.7763 × 10−2 6.2436 × 10−1 1.299 3.7049 × 10−1

MLBSA 1.6601 × 10−2 1.6627 × 10−2 1.6786 × 10−2 4.1209 × 10−5

GOTLBO 1.6605 × 10−2 2.2226 × 10−2 5.9712 × 10−2 9.5158 × 10−3

PGJAYA 1.6601 × 10−2 1.6609 × 10−2 1.6722 × 10−2 2.7355 × 10−5

IJAYA 1.6733 × 10−2 1.6813 × 10−2 1.691 × 10−2 4.1722 × 10−5

HAJAYADE 1.6601 × 10−2 1.6601 × 10−2 1.6606 × 10−2 9.2421 × 10−7



Mathematics 2022, 10, 183 18 of 28

Table 8. Optimal solutions attained from nine algorithms for three PV models.

Model Algorithm Iph Isd Rs Rsh n RMSE

Photowatt-
PWP201

CMAES 1.0467 0.19815 1.2319 316.3977 46.6264 4.9842 × 10−3

GWO 1.0287 0.48801 1.1664 1544.616 49.969 2.6039 × 10−3

TLABC 1.0305 0.34823 1.2013 981.9822 48.6428 2.4251 × 10−3

TAPSO 1.0305 0.34823 1.2013 981.9824 48.6428 2.4251 × 10−3

MLBSA 1.0305 0.34823 1.2013 981.9823 48.6428 2.4251 × 10−3

GOTLBO 1.0305 0.34823 1.2013 981.9823 48.6428 2.4251 × 10−3

PGJAYA 1.0305 0.34823 1.2013 981.992 48.6429 2.4251 × 10−3

IJAYA 1.0305 0.34864 1.2011 982.0576 48.6474 2.4251 × 10−3

HAJAYADE 1.0305 0.34823 1.2013 981.9824 48.6428 2.4251 × 10−3

STM6-40/36

CMAES 7.4755 2.2665 0.0046056 17.8598 1.2576 1.6612 × 10−2

GWO 7.4664 3.389 0.0044212 1052.2704 1.292 1.733 × 10−2

TLABC 7.4725 2.335 0.0045946 22.2199 1.2601 1.6601 × 10−2

TAPSO 7.4811 27.857 0.0028127 809.038 1.5075 5.7763 × 10−2

MLBSA 7.4725 2.335 0.0045946 22.2202 1.2601 1.6601 × 10−2

GOTLBO 7.4741 2.2787 0.0046047 19.572 1.2581 1.6605 × 10−2

PGJAYA 7.4725 2.3351 0.0045946 22.2253 1.2601 1.6601 × 10−2

IJAYA 7.4697 2.5505 0.0045678 40.1402 1.2675 1.6733 × 10−2

HAJAYADE 7.4725 2.3351 0.0045946 22.2199 1.2601 1.6601 × 10−2

STP6-120/36

CMAES 7.4755 2.2665 0.0046056 17.8598 1.2576 1.6612 × 10−2

GWO 7.4664 3.389 0.0044212 1052.2704 1.292 1.733 × 10−2

TLABC 7.4725 2.335 0.0045946 22.2199 1.2601 1.6601 × 10−2

TAPSO 7.4811 27.857 0.0028127 809.038 1.5075 5.7763 × 10−2

MLBSA 7.4725 2.335 0.0045946 22.2202 1.2601 1.6601 × 10−2

GOTLBO 7.4741 2.2787 0.0046047 19.572 1.2581 1.6605 × 10−2

PGJAYA 7.4725 2.3351 0.0045946 22.2253 1.2601 1.6601 × 10−2

IJAYA 7.4697 2.5505 0.0045678 40.1402 1.2675 1.6733 × 10−2

HAJAYADE 7.4725 2.3351 0.0045946 22.2199 1.2601 1.6601 × 10−2
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4.2. Statistical Results

The boxplot visually demonstrates the distribution of results from the nine meta-
heuristic algorithms during 30 runs. They are plotted in Figure 9. It can be seen that
the results from the CMAES and GWO are very scattered, which indicates that the two
algorithms are not robust. On the contrary, the TLABC, MLBSA, IJAYA, PGJAYA, and
HAJAYADE show superior performances compared with the remaining algorithms in
terms of robustness.

To further compare the performance of the nine algorithms, the Wilcoxon Signed Rank
test on the basis of the results from 30 independent runs is performed. The comparison
results demonstrate the significant difference between the proposed HAJAYADE algorithm
and its opponents. The results are listed in Table 9, in which the p-value is used to
determine whether the hypothesis (α = 0.05) should be rejected. The flags + and = indicate
that the proposed HAJAYADE algorithm is superior, similar to its opponents. If the
p-value is smaller than 0.05, the null hypothesis is rejected, and the performances of
the two corresponding algorithms have a significant difference. Otherwise, there are no
significant differences.
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From Table 9, it can be seen that HAJAYADE is superior to its opponents in two models,
i.e., STM6-40/36 and STP6-120/36. For SDM, the test result of the GOTLBO algorithm
is similar to that of the HAYAJADE algorithm. For DDM, the PGJAYA almost achieves
similar performance to HAJAYADE. For Photowatt-PWP201, TLABC and GOTLBO are
equivalent to HAJAYADE in terms of the statistical test. Therefore, according to the
Wilcoxon Signed Rank test, the proposed HAJAYADE algorithm is significantly superior to
the remaining algorithms.

Table 9. Wilcoxon Signed Rank test results.

Model Algorithm p Sig.

SDM

CMAES 1.7344 × 10−6 < 0.05 +

GWO 1.7344 × 10−6 < 0.05 +

TLABC 6.3198 × 10−5 < 0.05 +

TAPSO 6.8862 × 10−5 < 0.05 +

MLBSA 0.0252 < 0.05 +

GOTLBO 0.4653 > 0.05 =

IJAYA 1.7344 × 10−6 < 0.05 +

PGJAYA 1.7344 × 10−6< 0.05 +
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Table 9. Cont.

Model Algorithm p Sig.

DDM

CMAES 1.7344 × 10−6 < 0.05 +

GWO 1.7344 × 10−6 < 0.05 +

TLABC 4.5336 × 10−4 < 0.05 +

TAPSO 0.0015 < 0.05 +

MLBSA 0.2452 > 0.05 =

GOTLBO 0.0047 < 0.05 +

IJAYA 1.6394 × 10−5 < 0.05 +

PGJAYA 0.5440 > 0.05 =

Photowatt-PWP201

CMAES 1.7344 × 10−6 < 0.05 +

GWO 1.7344 × 10−6 < 0.05 +

TLABC 0.3388 > 0.05 =

TAPSO 3.5152 × 10−6 < 0.05 +

MLBSA 0.0077 < 0.05 +

GOTLBO 0.0598 > 0.05 =

IJAYA 1.7344 × 10−6 < 0.05 +

PGJAYA 1.7344 × 10−6 < 0.05 +

STM6-40/36

CMAES 1.7344 × 10−6 < 0.05 +

GWO 1.7344 × 10−6 < 0.05 +

TLABC 1.7344 × 10−6 < 0.05 +

TAPSO 1.9209 × 10−6 < 0.05 +

MLBSA 2.3534 × 10−6 < 0.05 +

GOTLBO 1.7344 × 10−6 < 0.05 +

IJAYA 1.7344 × 10−6 < 0.05 +

PGJAYA 1.7344 × 10−6 < 0.05 +

STP6-120/36

CMAES 1.7344 × 10−6 < 0.05 +

GWO 1.7344 × 10−6 < 0.05 +

TLABC 2.1266 × 10−6 < 0.05 +

TAPSO 1.7344 × 10−6 < 0.05 +

MLBSA 4.7292 × 10−6 < 0.05 +

GOTLBO 1.7344 × 10−6 < 0.05 +

IJAYA 1.7344 × 10−6 < 0.05 +

PGJAYA 2.3704 × 10−6 < 0.05 +

4.3. Discussion

The proposed HAJAYADE algorithm has three components: adaptive JAYA, adaptive
DE, and the chaotic perturbation method. Next, we conduct additional experiments to
test the effectiveness of the hybrid mechanism. As the chaotic perturbation method is only
performed on a single solution, it cannot be considered an algorithm. We combine the
adaptive JAYA and chaotic perturbation method as the AJAYA algorithm. Adaptive DE
and the chaotic perturbation method are regarded as ADE. In addition, the conventional
DE and JAYA algorithms are used to make comparisons. For the traditional DE, CR = 0.5.
The experimental settings are similar to all six algorithms, i.e., population size = 20 and
the maximal function evaluations = 50,000. The results of the five algorithms are listed in
Table 10, in which the minimum, mean, maximal, and Wilcoxon Signed Rank test results
are presented.
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Table 10. Results from HAJAYADE, DE, ADE, JAYA, and AJAYA.

Model Algorithm Min Mean Max Std p-Value Sig.

SDM

HAJAYADE 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 0

DE 9.8602 × 10−4 1.0419 × 10−3 1.2856 × 10−3 6.9221 × 10−5 2.1 × 10−6 +

ADE 9.8602 × 10−4 1.0051 × 10−3 9.8602 × 10−4 3.719 × 10−16 0.18 =

JAYA 9.8602 × 10−4 1.2757 × 10−3 2.7168 × 10−3 3.8514 × 10−4 1.7 × 10−6 +

AJAYA 9.8602 × 10−4 1.0051 × 10−3 1.52 × 10−3 9.7296 × 10−5 1.7 × 10−6 +

DDM

HAJAYADE 9.8294 × 10−4 9.8641 × 10−4 9.96 × 10−4 2.8534 × 10−6

DE 9.8387 × 10−4 1.1227 × 10−3 1.7544 × 10−3 1.7327 × 10−4 7.7 × 10−6 +

ADE 9.8389 × 10−4 1.0093 × 10−3 1.2502 × 10−3 6.5712 × 10−5 0.0230 +

JAYA 9.8412 × 10−4 1.3229 × 10−3 3.8766 × 10−3 6.4739 × 10−4 2.6 × 10−6 +

AJAYA 9.8471 × 10−4 1.2189 × 10−3 3.0356 × 10−3 4.2576 × 10−4 1.5E-5 +

Photowatt-
PWP201

HAJAYADE 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−3 3.22 × 10−15

DE 2.4251 × 10−3 2.4277 × 10−3 2.4596 × 10−3 7.5232 × 10−6 7.7 × 10−6 +

ADE 2.4251 × 10−3 2.4251 × 10−3 2.4251 × 10−3 1.9962 × 10−9 0.3933 =

JAYA 2.4251 × 10−3 2.4694 × 10−3 2.7907 × 10−3 7.9988 × 10−5 2.4 × 10−6 +

AJAYA 2.4251 × 10−3 6.2249 × 10−3 1.1869 × 10−2 3.1602 × 10−3 1.7 × 10−6 +

STM6-40/36

HAJAYADE 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 3.656 × 10−16

DE 1.7301 × 10−3 4.4017 × 10−3 2.8936 × 10−2 6.0003 × 10−3 1.7 × 10−6 +

ADE 1.7298 × 10−3 1.7298 × 10−3 1.7299 × 10−3 1.332 × 10−8 0.6215 =

JAYA 1.7298 × 10−3 4.246 × 10−3 1.1996 × 10−2 3.2538 × 10−3 1.7 × 10−6 +

AJAYA 1.7298 × 10−3 1.7418 × 10−3 1.8392 × 10−3 2.568 × 10−5 1.7 × 10−6 +

STP6-120/36

HAJAYADE 1.6601 × 10−2 1.6601 × 10−2 1.6606 × 10−2 9.2421 × 10−7

DE 1.6601 × 10−2 2.3981 × 10−2 4.9865 × 10−2 8.1081 × 10−3 1.7 × 10−6 +

ADE 1.6601 × 10−2 1.6607 × 10−2 1.6731 × 10−2 2.445 × 10−5 0.2289 =

JAYA 1.6601 × 10−2 4.4317 × 10−2 1.7681 × 10−1 3.646 × 10−2 1.9 × 10−6 +

AJAYA 1.6601 × 10−2 1.6608 × 10−2 1.6666 × 10−2 ,1.673 × 10−5 1.8 × 10−5 +

From the results listed in Table 10, the following observations can be attained as follows:

(1) The min RMSE can be used to test whether the algorithm has the capacity to find a
good solution. Most algorithms can find min RMSE on SDM, STM6-40/36, Photowatt-
PWP201, and STP6-120/36. However, four algorithms, DE, ADE, JAYA, and AJAYA,
fail to find a better RMSE compared with HAJAYADE for DDM.

(2) In terms of the mean values, the proposed HAJAYADE algorithm has attained the
best mean results on the five models. In addition, ADE has achieved the same
performance for two models, i.e., Photowatt-PWP201 and STM6-40/36. Hence, the
average accuracy of the proposed HAJAYADE algorithm can be revealed by the mean
RMSE values obtained by the algorithm.

(3) Concerning the maximal values, they demonstrate the maximum discreteness of
RMSE. The proposed HAJAYADE algorithm can offer the best maximal values for
SDM, Photowatt-PWP201, STM6-40/36, and STP6-120/36, which are almost the same
as the mean values. For SDM and Photowatt-PWP201, ADE has attained the best
maximal values.

(4) Concerning the standard deviation of the results, AJAYA, ADE, and HAJAYADE
have provided superior performance as the standard deviation values are very small.
The observations indicate that the three algorithms are very robust. The parameters
attained by the three algorithms can be considered reliable.

(5) From the non-parametric test, it can be noticed that the proposed HAJAYADE algo-
rithm is significantly superior to JAYA, AJAYA, and DE. Meanwhile, it is also superior
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to ADE for DDM. Therefore, HAJAYADE can be ranked the highest. Meanwhile, ADE
and AJAYA are better than the conventional DE and JAYA. It is demonstrated that the
adaptive mechanism is effective.

From the convergence curves shown in Figure 10, we can see that the speed of the
HAJAYADE is faster than that of the remaining algorithms, especially for the STM6-40/36
and the STP6-120/36. The hybrid mechanism can contribute to the superior performance.
For the conventional JAYA, the single mutation strategy is too simple to exhibit better
performance. Two adaptive parameters are introduced into the algorithm to boost the
exploration and exploitation. For the DE, the search direction depends on the best solution
when the Best/1 strategy is adopted. The rank mutation mechanism based on the Best/1
can improve the exploration ability while retaining the exploitation. Lastly, we adopt the
chaotic perturbation method to boost the exploitation further. Hence, we can conclude that
the HAJAYADE can offer superior and reliable performance when solving the parameter
identification for various models compared with the remaining algorithms.
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5. Conclusions

A novel hybrid algorithm, named HAJAYADE, based on JAYA and DE, is developed
to estimate the parameters of PV models as the hybrid is a valuable and effective method
compared with the singular ones. The novel HAJAYADE algorithm mainly consists of three
components. Firstly, two adaptive coefficients are introduced to the conventional JAYA.
The two coefficients can coordinate the tendency to approach the best solution and avoid
the worst solutions, which can help the algorithm to move towards the potential region
more quickly and strengthen the local search. Secondly, the Rank/Best/1 mutation strategy
is proposed in DE. To enhance the exploration, an individual is selected depending on the
ranking of the fitness value, while the other individual is randomly chosen. Thirdly, an
adaptive chaotic perturbation is performed on the best solution. The solution can replace
the worst solution if the worst solution is inferior to the solution.

Three typical PV models are used as benchmarks. Five test cases are implemented.
Nine meta-heuristic algorithms, CMAES, GWO, TLABC, TAPSO, MLBSA, GOTLBO, IJAYA,
PGJAYA, and DE, are employed to make comparisons. The experimental results reveal that
the HAJAYADE is superior in terms of the minimal, mean, maximal values, robustness,
and convergence speed compared with its opponents. According to the presented results,
the effectiveness of the adaptive coefficients and Rank/Best/1 mutation mechanism is
also validated.

In future research, the proposed HAYAJYADE algorithm will be employed to solve
more complicated problems, such as economic dispatch, resource scheduling, and feature
selection. Furthermore, it also can be used to optimize combinatorial issues by making
some modifications, such as in the permutation flow shop scheduling problem [50] and
traveling salesman problem [51].
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