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Abstract: In this article, we obtain certain bounds for statistical curvatures of submanifolds with any
codimension of Kenmotsu-like statistical manifolds. In this context, we construct a class of optimum
inequalities for submanifolds in Kenmotsu-like statistical manifolds containing the normalized scalar
curvature and the generalized normalized Casorati curvatures. We also define the second fundamen-
tal form of those submanifolds that satisfy the equality condition. On Legendrian submanifolds of
Kenmotsu-like statistical manifolds, we discuss a conjecture for Wintgen inequality. At the end, some
immediate geometric consequences are stated.

Keywords: statistical manifolds; kenmotsu-like statistical manifolds; casorati curvatures; generalized
wintgen inequality

1. Introduction

A statistical manifold is an extension of a statistical model that is abstraction. The statis-
tical manifold characterization is based on a statistical model in which the density functions
are swapped by any Riemannian manifold M̄, the Riemannian metric d̄ substitutes the
Fisher information matrix of the manifold M̄, the dual connections D̄(−1) and D̄(1) are
exchanged by a couple of dual connections D̄ and D̄∗, and the skewness tensor is modified
by a three-covariant skewness tensor, which counts the cummulants of the third order.
Amari [1] first developed statistical manifolds in 1985. He looked at it from the standpoint
of information geometry, and such manifolds include the concept of dual connections,
also known as conjugate connections in affine geometry, which is strongly linked to affine
differential geometry and has applications in numerous fields of scientific disciplines.

In its most basic form, information geometry is a part of mathematics that uses dif-
ferential geometry concepts to the topic of probability theory. A model is a statistical
manifold, and the amount of the parameters affects the point of statistical manifold and
its transformation are well known from thermodynamics. The natural Riemannian mani-
fold for thermodynamics is the statistical manifold. The geometrical representation in the
framework of Gibbs’s statistical mechanical representation for reversible and irreversible
fluctuations in the value of the critical variable. Entropy mechanics, which can give sig-
nificant mechanical techniques in the analysis of thermodynamics, remains at the center
of Gibbs’ work. Gibbs statistical manifolds frameworks have been extended to represent
statistical manifold kinematics. Furthermore, thermodynamic equilibrium exists in the
form of statistical groups across independent states, which serve as a link between sta-
tistical thermodynamics and information geometry theories. Fisher information matrix,
for example, is useful to neural networks and Langevin kinetics. Furthermore, Newtonian
dynamics can be recast in the language of Riemannian geometry applied to probability

Mathematics 2022, 10, 176. https://doi.org/10.3390/math10020176 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10020176
https://doi.org/10.3390/math10020176
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3895-7548
https://orcid.org/0000-0002-1713-6831
https://orcid.org/0000-0002-6562-4610
https://doi.org/10.3390/math10020176
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10020176?type=check_update&version=2


Mathematics 2022, 10, 176 2 of 15

theory, namely, information geometry, where the link is made using the probability distribu-
tion’s average. As a result, the dynamics take place on a statistical manifold that is naturally
endowed with a metric structure furnished by information geometry and the curvature
of the statistical manifolds has a significant influence. For example, an entropy dynamics
(ED) statistical model has been constructed on a 6n-dimensional statistical manifold M.
The micro-coordinated on the manifolds are represented by the expectation values of micro
variables associated with Gaussian distribution.

The normalized square of the length of the second basic form of a submanifold of
a Riemannian manifold was defined by Casorati [2] as Casorati curvature. This concept
went beyond the primary direction of Riemannian manifold hypersurfaces. Geometry
and other domains, such as computer visual information, have examined the Casorati
curvature. Some findings were achieved in terms of isotropical Casorati curvature of
production surfaces. In Riemannian manifolds, a geometrical explanation of the Casorati
curvature of submanifolds was also investigated. Recently, a geometric analysis of the
Cauchy–Schwarz inequality in terms of Casorati curvature has been considered. In this
reason, the geometric study of Casorati curvatures for submanifolds is new and has many
research problems. A couple of optimal Casorati inequalities had been obtained by many
distinguished geometers in different ambient space forms (for example, [3,4]). Decu et al.
have built certain inequalities for statistical submanifolds of Kenmotsu statistical manifolds
with constant φ-sectional curvature involving normalized δ-Casorati curvatures and scalar
curvature in [5]. Inequalities for statistical warped product submanifolds were explored by
Aliya et al. in [6].

Wintgen [7], on the other hand, proposed a crucial relationship between the Gauss
curvature, normal curvature, and squared mean curvature of any surface N in a four-
dimensional Euclidean space E4, as well as the necessary and sufficient conditions under
which the equality case holds. Guadalupe and Rodriguez generalized Wintgen’s inequality
to a real-space surface of arbitrary codimension in the form Rm+2(c), m ≥ 2. After that,
Chen extended this inequality to surfaces in a 4-dimensional pseudo-Euclidean space
E4

2 with a neutral metric. In [8], DeSmet, Dillen, Verstraelen, and Vrancken found the
DDVV conjecture (called the generalized Wintgen inequality in general) for an isometric
immersion of a Riemannian manifold into a real space form. Furthermore, in [8], they
conjectured this inequality for a submanifold with codimension 2 in a real space form
Rm+2(c). The solution of this conjecture was independently proven by Lu [9] and Ge and
Tang [10] for general case. Since then, many remarkable articles were published and several
inequalities of this type were obtained for other kinds of submanifolds in different ambient
spaces (see [11–15]).

The derivation of inequality in terms of Casorati curvatures for various submanifolds
in various ambient spaces is focused on an optimization approach that establishes that
the polynomial of quadratic type in the components of the second fundamental form is
parabolic. However, in the present paper, the proof of the inequality involving Casorati
curvatures (of submanifolds in Kenmotsu-like statistical manifolds) in Theorem 3 is empha-
sised on a constrained extremum problem on the submanifold given in Lemma 1. Equality
case is also examined. On the other hand, we extend the classical DDVV inequality to a
Legendrian submanifold in Kenmotsu-like statistical manifolds. The main ingredient in
proving Theorem 6 is given by Theorem 5, which actually translates the DDVV-conjecture
to an algebraic problem involving some traceless symmetric matrices.

2. Preliminaries

A semi-Riemannian manifold M̄ and non-degenerate metric d̄, and a torsion-free
affine connection by D̄. The triplet (M̄, D̄, d̄) is said to be a statistical manifold [16] with
symmetric D̄d̄. It is usually denoted by (M̄, D̄, d̄).

In case of a statistical manifold, we have a second connection D̄∗ as:

Gd̄(x, y) = ḡ(D̄zx, y) + d̄(x, D̄∗z y), (1)
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for any x, y, z ∈ Tr M̄, r ∈ M̄. The torsion-free affine connection D̄∗ is called dual (or
conjugate) of the connection D̄ with respect to the d̄ and obeys

(D̄∗)∗ = D̄.

2D̄0 = D̄ + D̄∗, (2)

where D̄0 is indicates the Levi-Civita connection on M̄.
A semi-Riemannian manifold (M̄, d̄) is said to be an almost contact metric manifold

with almost contact structure (ψ, ξ, η, d) of certain kind [17] if it admits the almost contact
structure (ψ, ξ, η) which satisfies the following equations:

η(ξ) = 1, ψ(ξ) = 0 and η ◦ ψ = 0, (3)

and also has another tensor field ψ∗ of type (1, 1) which obeys

d̄(ψx, y) = −ḡ(x, ψ∗y), (4)

for any x, y ∈ Tr M̄. It is easy to see that

ψ∗2x = −x + η(x)ξ and d̄(ψx, ψ∗y) = d̄(x, y)− η(x)η(y), (5)

ψ∗ξ = 0 and η(ψ∗(x)) = 0. (6)

As a tensor field ψ is not symmetric, it shows that ψ + ψ∗ 6= 0 everywhere.
Kenmotsu [18] initiated the study of Kenmotsu geometry, which is a crucial class of

contact geometry. The almost contact metric manifold of certain class (M̄, D̄, φ, ξ, η, d̄) is
said to be Kenmotsu-like statistical manifold [19], if the following axioms hold

D̄xξ = x− η(x)ξ, D̄∗xξ = x− η(x)ξ, (7)

(D̄xψ)y = d(ψx, y)ξ − η(z)ψx and (D̄∗xψ∗)y = d̄(ψ∗x, y)ξ − η(z)ψ∗. (8)

The curvature tensor R̄ with respect to D̄ on a Kenmotsu-like statistical manifold is given as:

R̄(x, y)z =
c− 3

4
{d̄(y, z)x− d̄(x, z)y}

+
c + 1

4
{d̄(ψy, z)ψx− d̄(ψx, z)ψy

−2d̄(ψx, y)ψz− d̄(y, ξ)d̄(z, ξ)x

+d̄(x, ξ)d̄(z, ξ)y + d̄(y, ξ)d̄(z, x)ξ

−d̄(x, ξ)d̄(z, y)ξ}, (9)

where c ∈ R.
After, shifting ψ to ψ∗ in (9), we turn up the expression of the curvature tensor R̄∗

for D̄∗.
Certainly, (M̄, D̄∗, d̄) is a statistical manifold. For example, every semi-Riemannian

manifold (M̄, D̄, d̄) endowed with a Riemannian connection D̄ is a trivial statistical mani-
fold. In this case, one turn up

d̄(R̄(x, y)z, z′) = −d̄(z, R̄∗(x, y)z′), (10)

for any x, y, z, z′ ∈ Tr M̄ [16].
Let M be a submanifold of M̄ on a statistical manifold

(
M̄, D̄, d̄

)
. Then (

(
M, D, d

)
is

also said to be a statistical manifold with the induced statistical structure (D, d) on M from
(D̄, d̄) and we say

(
M, D, d

)
is a statistical submanifold in

(
M̄, D̄, d̄

)
.
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The Gauss and Weingarten equations are used in statistical settings, respectively,
defined by [20]:

D̄xy = Dxy + h(x, y), D̄∗xy = D∗xy + h∗(x, y),

D̄xU = −AU (x) + D⊥x U , D̄∗xU = −A∗U (x) + D⊥∗x U ,

}
(11)

for any x, y ∈ Tr M and U ∈ T⊥r M, where D̄ and D̄∗ are the dual connections on M̄.
Similarly, on M, we denote them by D and D∗. For D̄ and D̄∗, the bilinear and symmetric
imbedding curvature tensor of M in M̄ are, respectively, indicated by h and h∗.

The finest relation between h (respectively, h∗) and A (respectively, A∗) can be seen
as [20]

d̄(h(x, y),U ) = d(A∗U x, y) and d̄(h∗(x, y),U ) = d(AU x, y), (12)

for any x, y ∈ Tr M and U ∈ T⊥r M.
It is also noted that the relations 2h0 = h + h∗ and 2A0

U = AU + A∗U exist by using (2).
The curvature tensor of D̄ and D are given by R̄ and R, respectively. Then, for any

x, y, z, z′ ∈ Tr M. Now, the corresponding Gauss formula are [20]

d̄(R̄(x, y)z, z′) = d(R(x, y)z, z′) + d̄(h(x, z), h∗(y, z′))

−d̄(h∗(x, z′), h(y, z)), (13)

and

d̄(R̄∗(x, y)z, z′) = d(R∗(x, y)z, z′) + d̄(h∗(x, z), h(y, z′))

−d̄(h∗(x, z′), h(y, z)). (14)

The Ricci equations for D⊥ and D⊥∗ are, respectively, given below [20]

d̄(R⊥(x, y)U ,V) = d̄(R̄(x, y)U ,V) + d([A∗U , AV ]x, y), (15)

and

d̄(R∗⊥(x, y)U ,V) = d̄(R̄∗(x, y)U ,V) + d([AU , A∗V ]x, y), (16)

for any x, y ∈ Tr M and U ,V ∈ T⊥r M. Here R⊥ and R∗⊥ are the normal curvature tensors
for D⊥ and D⊥∗ on T⊥r M, respectively.

The usual definitions, in general, cannot produce a sectional curvature with regard
to dual connections (which, of course, are not metric). In [21,22], Opozda presented a
statistical sectional curvature on a statistical manifold. As a result, the statistical curvature
tensor fields of M̄ and M are defined as:

2S̄ = (R̄ + R̄∗), and 2S = (R + R∗).

Additionally, the normal statistical curvature tensor S⊥ is defined as:

2S⊥ = (R⊥ + R∗⊥).

For x ∈ Tr M, we put

x = tan(ψx) + nor(ψx)

= Px + Fx,
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where Px is the tangential and Fx is the normal component of ψx. Likewise, we can write

ψ∗x = tan(ψ∗x) + nor(ψ∗x)

= P∗x + F∗x,

where P∗x is the tangential and F∗x is the normal component of ψ∗x.
Similar to the classical definition of C-totally real and Legendrian submanifolds of a

Kenmotsu manifold (see [23]), we provide the following definition:

Definition 1. Let M be an n-dimensional submanifold of an (2m + 1)-dimensional Kenmotsu-
like statistical manifold (M̄, d, ψ, η, ξ). If ψ(Tr M) ⊂ T⊥r M, then M is called C-totally real.
However, if n = m, then a C-totally real submanifold turns to a Legendrian submanifold. Thus,
it is easy to say that Legendrian submanifold is a C-totally real submanifold with the smallest
possible codimension.

In the following sections, we prove several sharp inequalities on statistical submanifold
immersed into a Kenmotsu-like statistical manifold with a curvature tensor of the kind (9).

3. Bounds for Normalized Scalar Curvature

In this section, we derive an inequality on the normalized scalar curvature of a sta-
tistical submanifold immersed into a Kenmotsu-like statistical manifold with a curvature
tensor of the kind (9).

Let a statistical submanifold M of dimension m in a Kenmotsu-like statistical manifold
M̄2n+1. We assume a local orthonormal tangent (respectively, normal) frame {v1, . . . , vm}
(respectively, {vm+1, . . . , v2n+1}) of Tr M (respectively, T⊥r M), r ∈ M. Then, σ(r) is the
scalar curvature of M and hence the normalized scalar curvature ρ of M are express as:

σ(r) =
m

∑
i,j=1
i<j

d(S(vi, vj)vj, vi),

ρ =
2σ

m(m− 1)
.

The mean curvature vectors are given by:

H =
1
m

m

∑
i=1

h(vi, vi), and H∗ =
1
m

m

∑
i=1

h∗(vi, vi).

We set

hk
ij = d̄(h(vi, vj), vk), and h∗ij = d̄(h∗k(vi, vj), vk),

for i, j = {1, . . . , m} and k = {m + 1, . . . , 2n + 1}.
We show the following.

Theorem 1. Let a statistical submanifold Mm in a Kenmotsu-like statistical manifold M̄2n+1 with
curvature tensor is of the form (9). Then

ρ ≥ c− 3
4

+
c + 1

4m(m− 1)

{
2‖P‖2 − (trace(P))2 − trace(P∗2)

}
+

m
m− 1

d̄(H, H∗)− 1
m(m− 1)

‖h‖‖h∗‖. (17)



Mathematics 2022, 10, 176 6 of 15

Proof. Let {v1, . . . , vm} and {vm+1, . . . , v2n+1} be orthonormal frames of Tr M and T⊥r M,
r ∈ M, respectively. From Equations (9) and (13), we get:

2σ =
c− 3

4
(m2 −m) +

c + 1
4

{
2‖P‖2 − (trace(P))2 − trace(P∗2)

}
+m2d̄(H, H∗)−

2n+1

∑
k=m+1

m

∑
i,j=1

hk
ijh
∗k
ij

≥ c− 3
4

(m2 −m) +
c + 1

4

{
2‖P‖2 − (trace(P))2 − trace(P∗2)

}
+m2d̄(H, H∗)− ‖h‖‖h∗‖.

By adopting the definition of the normalized scalar curvature ρ of M, we turn up the
desired inequality.

The characterization of equality cases in Theorem 1.

Theorem 2. Let a statistical submanifold Mm in a Kenmotsu-like statistical manifold M̄2n+1 with
curvature tensor is of the form (9). Equalities hold in (17) if and only if either h = 0 or h∗ = 0 holds.

4. Optimizations on a Statistical Submanifold with Casorati Curvatures

In this section, first we study Casorati curvatures (in short CC) for a statistical sub-
manifold, with respect to D and D∗, in a Kenmotsu-like statistical manifold.

Let a statistical submanifold M of dimension m in a Kenmotsu-like statistical manifold
M̄2n+1. We assume a local orthonormal tangent (respectively, normal) frame {v1, . . . , vm}
(respectively, {vm+1, . . . , v2n+1}) of Tr M (respectively, T⊥r M), r ∈ M. Then, the squared
norm of second fundamental forms h and h∗ (‖h‖2 and ‖h‖∗2) are, respectively, indicated
by C and C∗, known by the Casorati curvatures (CC) of M in M̄. Therefore, we have:

mC = ‖h‖2 and mC∗ = ‖h∗‖2,

here

‖h‖2 =
2n+1

∑
k=m+1

m

∑
i,j=1

(
hk

ij
)2,

‖h∗‖2 =
2n+1

∑
k=m+1

m

∑
i,j=1

(
h∗kij
)2.

Next, we define an orthonormal basis {v1, . . . , vt} of a t-dimensional subspace L of TM,
d ≥ 2. Then, the scalar curvature of the d-plane section L and the CC of subspace L are,
respectively, given below:

σ(L) =
d

∑
i,j=1
i<j

S(vi, vj, vj, vi)

and

tC(L) =
2n+1

∑
k=m+1

d

∑
i,j=1

(
hk

ij
)2,

tC∗(L) =
2n+1

∑
k=m+1

d

∑
i,j=1

(
h∗kij
)2
).
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The normalized CC δC(m− 1) and δ̂C(m− 1) are, respectively, defined as:

[δC(m− 1)]r =
1
2
Cr +

(
m + 1

2m

)
inf{C(L)|L : a hyperplane of Tr M}

and

[δ̂C(m− 1)]r = 2Cr −
(

2m− 1
2m

)
sup{C(L)|L : a hyperplane of Tr M}.

Further, we, respectively, define the generalized normalized CC δC(p; m− 1) and δ̂C(p; m− 1)
as follows:

(1) For 0 < p < m2 −m

[δC(p; m− 1)]r = pCr + ζ(p) inf{C(L)|L : a hyperplane of Tr M}.

(2) For p > m2 −m

[δ̂C(p; m− 1)]r = pCr − ζ(p) sup{C(L)|L : a hyperplane of Tr M},

where

ζ(p) =
1

pm
(m− 1)(m + p)(m2 −m− p), p 6= m(m− 1).

In a similar way, the normalized CCs δ∗C(m− 1) and δ̂∗C(m− 1) and the generalized normal-
ized CC δ∗C(p; m− 1) and δ̂∗C(p; m− 1) can be defined. We also notice that

2C0 = C + C∗,
2δ0
C(p; m− 1) = δC(p; m− 1) + δ∗C(p; m− 1).

To derive the section’s optimum inequalities, we require the following key lemma.

Lemma 1 ([24]). If ϑ = {(u1, u2, . . . , um) ∈ Rm : u1 + u2 + · · ·+ um = L} be a hyperplane of
Rm and f : Rm → R is a quadratic form, then

f (u1, u2, . . . , um) = µ1

m−1

∑
i=1

(ui)
2 + µ2(um)

2 − 2
m

∑
i,j=1
i<j

uiuj, µ1, µ2 > 0. (18)

The restricted extremum problem therefore gives f the following global solution:

u1 = u2 = · · · = um−1 =
L

µ1 + 1
,

um =
L

µ2 + 1
=
L(m− 1)
(µ1 + 1)µ2

= (µ1 −m + 2)
L

µ1 + 1
,

provided that

µ2 =
m− 1

µ1 −m + 2
. (19)
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Let {v1, . . . , vm} and {vm+1, . . . , v2n+1} be orthonormal frames of Tr M and T⊥r M,
r ∈ M, respectively. From Equations (9) and (13), we arrive at

2σ =
c− 3

4
(m2 −m) +

c + 1
4

{
2‖P‖2 − (trace(P))2 − trace(P∗2)

}
+2m2‖H0‖2 − 2mC0 − m2

2

(
‖H‖2 + ‖H∗‖2

)
+

m
2
(
C + C∗

)
.

We now define a quadratic polynomial in terms of the components of the second funda-
mental form Q as

Q = pC0 + ζ(p)C0(L)− 2σ +
c− 3

4
(m2 −m) +

c + 1
4

{
2‖P‖2 − (trace(P))2

−trace(P∗2)
}
− m2

2

(
‖H‖2 + ‖H∗‖2

)
+

m
2
(
C + C∗

)
. (20)

We suppose that L is spanned by v1, . . . , vm (without loss of generality), combining (20), it
follows that:

Q =
m + p

m

2n+1

∑
k=m+1

m

∑
i,j=1

(h0k
ij )

2 +
ζ(p)

m− 1

2n+1

∑
k=m+1

m−1

∑
i,j=1

(h0k
ij )

2 −
2n+1

∑
k=m+1

( m

∑
i=1

h0k
ii

)2

=
2n+1

∑
k=m+1

m−1

∑
i=1

[
2(λ + 1)(h0k

ii )
2 +

2(m + p)
m

(h0k
im)

2
]

+

[
λ ∑

1≤i 6=j≤m−1
(h0k

ij )
2 − 2 ∑

1≤i 6=j≤m
(h0k

ii h0k
jj ) +

p
m
(h0k

mm)
2
]

≥
2n+1

∑
k=m+1

[ m−1

∑
i=1

λ(h0k
ii )

2 − 2 ∑
1≤i 6=j≤m

h0k
ii h0k

jj +
p
m
(h0

mm)
2
]

, (21)

where

λ =

(
p
m

+
ζ(p)

m− 1

)
.

Let us assume the quadratic form f k : Rm → R, for k = m + 1, . . . 2n + 1, defined by

f k(h0k
11, . . . , h0k

mm
)
=

m−1

∑
i=1

λ(h0k
ii )

2 − 2 ∑
1≤i 6=j≤m

h0k
ii h0k

jj +
p
m
(h0k

mm)
2 (22)

and the problem as follows:

min{ f k(h0k
11, . . . , h0k

mm
)

: h0k
11 + · · ·+ h0k

mm = Lk,Lk ∈ R}.

On Comparing the functions (18) and (22), we find that

µ1 =
p
m

+
ζ(p)

m− 1
and µ2 =

p
m

,

which verify the relation the relation (19). Thus, by Lemma 1, entails that the critical point
(h0k

11, . . . , h0k
mm) is given by:

h0k
11 = · · · = h0k

m−1m−1 =
Lk

µ1 + 1
=
L

λ + 1
, h0k

mm =
Lk

µ2 + 1
=

mLk

m + p
, (23)

and a result, it is the global lowest point.
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Next, plugging (23) into (22), we arrive at

f k(h0k
11, . . . , h0k

mm) = 0. (24)

From (21) and (24), we get Q ≥ 0 and hence we have the following:

2σ ≤ pC0 + ζ(p)C0(L) +
m
2

(
C + C∗

)
+

c− 3
4

(m2 −m) +
c + 1

4{
2‖P‖2 − (trace(P))2 − trace(P∗2)

}
−m2

2

(
‖H‖2 + ‖H∗‖2

)
.

Further, we find that:

ρ ≤ p
m(m− 1)

C0 +
ζ(p)

m(m− 1)
C0(L) +

1
2(m− 1)

(
C + C∗ + c− 3

4

)
+

c + 1
4m(m− 1)

{
2‖P‖2 − (trace(P))2 − trace(P∗2)

}
− m

2(m− 1)

(
‖H‖2 + ‖H∗‖2

)
.

Hence, we get the following inequality.

Theorem 3. Let a statistical submanifold Mm in a Kenmotsu-like statistical manifold M̄2n+1

with curvature tensor is of the form (9). Then, the generalized normalized CC δC(p; m− 1) and
δ∗C(p; m− 1) holds

ρ ≤
2δ0
C(p; m− 1)
m(m− 1)

+
1

m− 1
C0 +

c− 3
4

+
c + 1

4m(m− 1)

{
2‖P‖2 − (trace(P))2

−trace(P∗2)
}
− m

2(m− 1)

(
‖H‖2 + ‖H∗‖2

)
. (25)

Remark 1. In a similar way ones can obtain inequality for the generalized normalized CC
δ̂C(p; m− 1) and δ̂∗C(p; m− 1), that is,

ρ ≤
2δ̂0
C(p; m− 1)
m(m− 1)

+
1

m− 1
C0 +

c− 3
4

+
c + 1

4m(m− 1)

{
2‖P‖2

−(trace(P))2 − trace(P∗2)
}
− m

2(m− 1)

(
‖H‖2 + ‖H∗‖2

)
. (26)

The characterization of equality cases in Theorem 3.

Theorem 4. Let a statistical submanifold Mm in a Kenmotsu-like statistical manifold M̄2n+1

with curvature tensor is of the form (9). Equalities occur identically, at all points of M, in the
Equations (25) and (26) if and only if the totally geodesic submanifolds endowed with respect to the
Levi–Civita connection.

5. Bounds for the Normalized Normal Scalar Curvature

In this segment, we use the most important ingredient, derived by Lu for the symmetric
and trace-free operators in [9], in the proof of our desired DDVV inequality. This is
as follows.
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Theorem 5. Let a Riemannian submanifold of dimension n immersed into (n + m)-dimensional
Riemannian manifold. For every set {B1, . . . , Bm} of symmetric (m×m)-matrices with trace zero
the following inequality holds:

m

∑
r,s=1
||Br, Bs||2 ≤

( m

∑
r=1
||Br||2

)2

.

Let an m-dimensional Legendrian submanifold M of a Kenmotsu-like statistical mani-
fold M̄2m+1 with curvature tensor is of the form (9) and {v1, . . . , vm} and {vm+1, . . . , v2m+1}
be orthonormal frames of Tr M and T⊥r M, r ∈ M, respectively. From Equations (9) and (13),
we arrive at:

2σ =
c− 3

4
(m2 −m) + 2m2‖H0‖2 − m2

2

(
‖H‖2 + ‖H∗‖2

)
−2‖h0‖2 +

1
2
(
‖h‖2 + ‖h∗‖2).

Then, the normalized scalar curvature of of M is ρ

ρ =
c− 3

4
+

2m
m− 1

‖H0‖2 − m
2(m− 1)

(
‖H‖2 + ‖H∗‖2

)
− 2

m(m− 1)
‖h0‖2 +

1
2m(m− 1)

(
‖h‖2 + ‖h∗‖2). (27)

However, if we fix h− Hd = τ, h∗ − H∗d = τ∗ and h0 − H0d = τ0, the traceless part of the
second fundamental forms, then, respectively, we get:

‖τ‖2 = ‖h‖2 −m‖H‖2, ‖τ∗‖2 = ‖h∗‖2 −m‖H∗‖2,

‖τ0‖2 = ‖h0‖2 −m‖H0‖2.

Thus, the expression (28) becomes:

ρ =
c− 3

4
+ 2‖H0‖2 − 1

2

(
‖H‖2 + ‖H∗‖2

)
− 2

m(m− 1)
‖τ0‖2

+
1

2m(m− 1)
(
‖τ‖2 + ‖τ∗‖2). (28)

Now, we compute our main extrinsic curvature and the normalized normal scalar curvature
of M as below.

ρ⊥ =
1

m(m− 1)

{
∑

1≤a<b≤m
∑

1≤i<j≤m

[
d(R⊥(vi, vj)vm+a, vm+b)

+d(R∗⊥(vi, vj)vm+a, vm+b)

]2}1/2

=
1

m(m− 1)

{
∑

1≤a<b≤m
∑

1≤i<j≤m

[
d̄(R̄(vi, vj)vm+a, vm+b)

+d([A∗vm+a , Avm+b ]vi, vj)

+d̄(R̄∗(vi, vj)vm+a, vm+b)

+d([Avm+a , A∗vm+b
]vi, vj)

]2}1/2

,
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which refers to the following:

ρ⊥ =
1

m(m− 1)

{
∑

1≤a<b≤n
∑

1≤i<j≤m

[
c + 1

4
(δibδja − δiaδjb)

+4d([A0
vm+a , A0

vm+b
]vi, vj) + g([Avm+a , Avm+b ]vi, vj)

+d([A∗vm+a , A∗vm+b
]vi, vj)

]2}1/2

. (29)

On simplifying (29) and applying the Cauchy-Schwarz inequality, (α + β + γ + π)2 −
4(α2 + β2 + γ2 + π2) ≤ 0, for α, β, γ, π ∈ R, we introduce an inequality in (29) for ρ⊥

as follows:

ρ⊥ ≤ 2
m(m− 1)

{
∑

1≤a<b≤n
∑

1≤i<j≤m

[(
c + 1

4

)2

(δibδja − δiaδjb)
2

+16d([A0
vm+a , A0

vm+b
]vi, vj)

2 + d([Avm+a , Avm+b ]vi, vj)
2

+d([A∗vm+a , A∗vm+b
]vi, vj)

2
]}1/2

≤ 2
m(m− 1)

{
m2(m + 1)2(c + 1)2

64
+

1
4

n

∑
a,b=1

[
16||A0

a, A0
b||

2

+||Aa, Ab||2 + ||A∗a , A∗b ||
2
]}1/2

.

Now, by following the same steps done in [13], the sets {B0
1, B0

2, . . . , B0
m}, {B1, B2, . . . , Bm}

and {B∗1 , B∗2 , . . . , B∗m} of symmetric with trace zero operators on Tr M are defined as:

< B0
a E, F >=< τ0(E, F),Ua >, < BaE, F >=< τ(E, F),Ua >, (30)

< B∗a E, F >=< τ∗(E, F),Ua > . (31)

Clearly, we have the relations

B0
a = A0

a− < H0,Ua > Id, Ba = Aa− < H,Ua > Id, B∗a = A∗a− < H∗,Ua > Id

and

[A0
a, A0

b] = [B0
a , B0

b ], [Aa, Ab] = [Ba, Bb], [A∗a , A∗b ] = [B∗a , B∗b ], (32)

for any b ∈ {1, . . . , m}.
Therefore, we have:

ρ⊥ ≤ 2
m(m− 1)

{
m2(m + 1)2(c + 1)2

64
+

1
4

n

∑
a,b=1

[
16||B0

a , B0
b ||

2

+||Ba, Bb||2 + ||B∗a , B∗b ||
2
]}1/2

.

Then, by applying Theorem 5, we can easily arrive at:

ρ⊥ ≤ |c + 1|
4

+
1

m(m− 1)

n

∑
a,b=1

[
4||B0

a ||2 + ||Ba||2 + ||B∗a ||2
]

≤ |c + 1|
4

+
1

m(m− 1)

[
4||τ0||2 + ||τ||2 + ||τ∗||2

]
.
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Substituting (28) in the last relation, we get:

ρ⊥ ≤ 2ρ +
|c + 1|

4
− c− 3

2
+

8
m(m− 1)

||τ0||2 − 4‖H0‖2 + ‖H‖2 + ‖H∗‖2. (33)

However, the normalized scalar curvature ρ0 of M for Levi–Civita connection is:

ρ =
c− 3

4
+

m
m− 1

‖H0‖2 − 1
m(m− 1)

‖h0‖2

=
c− 3

4
+ ‖H0‖2 − 1

m(m− 1)
‖τ0‖2. (34)

Putting (34) into (35), we give the main result of this segment.

Theorem 6. Let a Legendrian submanifold Mm of a Kenmotsu-like statistical manifold M̄2m+1

with curvature tensor is of the kind (9). Then we have:

ρ⊥ ≤ 2ρ− 8ρ0 +
|c + 1|+ 6c

4
− 9

2
+4‖H0‖2 + ‖H‖2 + ‖H∗‖2. (35)

6. Some Geometric Applications

In this part, we study some immediate applications of the results (Theorems 1 and 3)
proved in the previous section.

In light of Lemma 1 and taking q = m(m−1)
2 in δC(p; m− 1) (respectively, δ∗C(p; m− 1)),

we find that: [
δC

(
m(m− 1)

2
; m− 1

)]
q

= m(m− 1)[δC(m− 1)]r

(respectively,
[

δ∗C

(
m(m− 1)

2
; m− 1

)]
q

= m(m− 1)[δ∗C(m− 1)]r)

at any point r ∈ M.
Thus, we turn up the following corollaries on Theorem 3.

Corollary 1. Let a statistical submanifold Mm of a Kenmotsu-like statistical manifold M̄2n+1 with
curvature tensor is of the kind (9). Then, the normalized CC δC(m− 1) and δ∗C(m− 1) holds

ρ ≤ 2δ0
C(m− 1) +

1
m− 1

C0 +
c− 3

4
+

c + 1
4m(m− 1)

{
2‖P‖2 − (trace(P))2

−trace(P∗2)
}
− m

2(m− 1)

(
‖H‖2 + ‖H∗‖2

)
. (36)

Remark 2. In a similar way, ones can obtain inequality for the normalized CC δ̂C(m− 1) and
δ̂∗C(m− 1).

Now, from

‖H0‖2 =
1
4

(
‖H‖2 + ‖H∗‖2 + 2d̄(H, H∗)

)
,

and together with H0 = 0, we have the relation

‖H‖2 + ‖H∗‖2 = −2d̄(H, H∗).

Hence, the following corollary follows directly from inequalities (25) and (26).
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Corollary 2. Let a statistical submanifold Mm of a Kenmotsu-like statistical manifold M̄2n+1 with
curvature tensor is of the kind (9). If M is minimal, that is, H0 = 0. Then, we have:

ρ ≤
2δ0
C(p; m− 1)
m(m− 1)

+
1

m− 1
C0 +

c− 3
4

+
c + 1

4m(m− 1)

{
2‖P‖2

−(trace(P))2 − trace(P∗2)
}
+

m
(m− 1)

d̄(H, H∗). (37)

Corollary 3. Let a statistical submanifold Mm of a Kenmotsu-like statistical manifold M̄2n+1 with
curvature tensor is of the kind (9). If M is minimal, that is, H0 = 0. Then, we have:

ρ ≤ 2δ0
C(m− 1) +

1
m− 1

C0 +
c− 3

4
+

c + 1
4m(m− 1)

{
2‖P‖2

−(trace(P))2 − trace(P∗2)
}
+

m
(m− 1)

d̄(H, H∗). (38)

Some consequences of Theorem 1 are the following.

Corollary 4. Let a statistical submanifold Mm of a Kenmotsu-like statistical manifold M̄2n+1 with
curvature tensor is of the kind (9). If c = −1, then

m(m− 1)(ρ + 1) ≥ m2d̄(H, H∗)− ‖h‖‖h∗‖.

Corollary 5. Let a statistical submanifold Mm of a Kenmotsu-like statistical manifold M̄2n+1 with
curvature tensor is of the kind (9). Suppose that

1. h(x, y) = d(x, y)H and h∗(x, y) = d(x, y)H∗;
2. h = 0 and h∗ = 0;
3. c = −1.

Then ρ + 1 ≥ 0.

Remark 3. In the above Corollary 5, we have 0 = h(x, y) = d(x, y)H, x, y ∈ TrM, which gives
H = 0. Similarly, 0 = h∗(x, y) = g(x, y)H∗ implies H∗ = 0. Hence, an inequality (17) reduces
to ρ + 1 ≥ 0.

Corollary 6. Let a statistical submanifold Mm of a Kenmotsu-like statistical manifold M̄2n+1 with
curvature tensor is of the kind (9). If the following holds

ρ =
c− 3

4
+

c + 1
4m(m− 1)

{
2‖P‖2 − (trace(P))2 − trace(P∗2)

}
.

Then neither h = 0 nor h∗ = 0.

Let us take a minimal submanifold M for the Levi-Civita connection, which gives H +
H∗ = 0 because of H0 = 0 and thus, we have the relation −2d̄(H, H∗) = ||H||2 + ||H∗||2.
Then Theorem 6 gives

Corollary 7. Let a statistical submanifold Mm of a Kenmotsu-like statistical manifold M̄2n+1 with
curvature tensor is of the kind (9). Then we have

ρ⊥ ≤ 2ρ− 8ρ0 +
|c + 1|+ 6c

4
− 9

2
− 2d̄(H, H∗).
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7. Related Examples

Example 1. Let R4 be a Euclidean space with local coordinate system {x1, x2, y1, y2}, which
admits the following almost complex structure J

J =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

,

the metric dR4 = 2∂x2
1 + 2∂x2

2 − ∂y2
1 − ∂y2

2 and the flat affine connection DR4
is a Kähler-like

statistical manifold (see [17]). If
(
R,∇D, ∂t2) is a trivial statistical manifold, it is known from [13]

that the product manifold
(

M̄5 = R× f R4, D̄, d̄ = ∂t2 + f 2dR4

)
is a Kenmotsu-like statistical

manifold, where f = et ∈ R+.

We define ψ, ξ and η by

ψ =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 −1 0 0 0
0 0 −1 0 0

, ξ = dt =


1
0
0
0
0


and η = (1, 0,−y1, 0,−y2). We also find

ψ∗ =


0 0 0 0 0
0 0 0 − 1

2 0
0 0 0 0 − 1

2
0 2 0 0 0
0 0 2 0 0

.

Next, we give examples of submanifolds in M̄5 as follows:

Example 2. The statistical submanifold M3 = R× f R2 of M̄5, where f = et ∈ R+, attains
equality for both inequalities (25) and (26) because M3 is a totally geodesic submanifold of M̄5 with
respect to the Levi–Civita connection. Thus, Theorem 4 is satisfied.

Example 3. Let us take a 3-dimensional submanifold M3 of M̄5 defined by an isometric immersion
ω : M3 → M̄5 as ω(u, v, t) = (0, v, u, 0, t). Then the vector fields at each point of M3 are given
as E1 = (0, 0, 1, 0, 0), E2 = (0, 1, 0, 0, 0) and E3 = (0, 0, 0, 0, 1). By direct calculations, we have
[E1, E2] = [E2, E3] = [E3, E1] = 0 and hence by Koszula formula, we calculate the Levi-Civita
connection D0 as D0

Xi
Xj = 0 for 1 ≤ i, j ≤ 3. This tells us that M3 is a totally geodesic submanifold

of M̄5 with respect to D0. Thus, Theorem 4 is satisfied.

Example 4. Let ω be an isometric immersion from M3 to M̄5 defined by ω(x1, y1, z1) = (x1, y1, z1,
0, 0). The vector fields at each point of M3 are given by X1 = e−z1(x1∂x1 + y1∂y1), X2 = e−z1 ∂y1,
and X3 = e−2z1 ∂z1. By direct calculations, we find that [X1, X2] = −e−z1 X2, [X1, X3] =
e−2z1 X1, and [X2, X3] = e−2z1 X2. It is easy to see that M3 is a non-totally geodesic submanifold
of M̄5 with respect to Levi-Civita connection D0. In this case, the inequalities (25) and (26) are
precisely satisfied at all points and the case of equality cannot be attained.
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