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Abstract: The curve number (CN) rainfall–runoff model is widely adopted. However, it had been
reported to repeatedly fail in consistently predicting runoff results worldwide. Unlike the existing
antecedent moisture condition concept, this study preserved its parsimonious model structure for
calibration according to different ground saturation conditions under guidance from inferential
statistics. The existing CN model was not statistically significant without calibration. The calibrated
model did not rely on the return period data and included rainfall depths less than 25.4 mm to for-
mulate statistically significant urban runoff predictive models, and it derived CN directly. Contrarily,
the linear regression runoff model and the asymptotic fitting method failed to model hydrological
conditions when runoff coefficient was greater than 50%. Although the land-use and land cover
remained the same throughout this study, the calculated CN value of this urban watershed increased
from 93.35 to 96.50 as the watershed became more saturated. On average, a 3.4% increase in CN
value would affect runoff by 44% (178,000 m3). This proves that the CN value cannot be selected
according to the land-use and land cover of the watershed only. Urban flash flood modelling should
be formulated with rainfall–runoff data pairs with a runoff coefficient > 50%.

Keywords: curve number; flash flood model; inferential statistics

1. Introduction

Flood and its related disasters are caused by excessive volumes of water (runoff)
which are not absorbed by the ground. Residents at low-elevated regions are often at
risk of inundation, financial loss, and even the loss of lives. As the pace of urbanisation
accelerates around the world, flash flood damage takes place more frequently. Between
1961 and 2020, nearly 10,000 cases were reported with 1.3 million deaths and a minimum
of USD 3.3 trillion of financial losses at an equivalent loss rate of almost USD 1800 per
second [1]. On average, the total reported deaths worldwide were 23,000/year for the
past 6 decades at an equivalent rate of one death every 24 min [1]. Thus, it is important to
study the relationship between rainfall and runoff in order to quantify the runoff amount
from rainfall with equations or predictive models for water resources management, flood
prediction, and risk mitigation to benefit mankind. Although there are many rainfall–runoff
models for runoff prediction, this study assessed a popular rainfall–runoff model from the
United States Department of Agriculture (USDA), Soil Conservation Services (SCS) for flash
flood prediction and benchmarked its runoff prediction accuracy against two parsimonious
models which also used two modelling parameters. The main objective is to formulate
and identify a parsimonious runoff predictive model which requires the least modelling
parameters for urban flash flood prediction.
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Near the end of the 1930s and beginning of the 1940s, infiltrometer tests were carried
out by the Natural Resources Conservation Service (NRCS) agency, also known as USDA,
SCS in order to assess the impact of watershed treatments along with soil conservation
measures on the rainfall–runoff process. The US Congress administered a Watershed
Protection and Flood Prevention Act (Public Law PL-566) years later in August 1954.
Therefore, the SCS had to establish a procedure for national implementation and thus,
hydrologic methods that were once an agency procedure to tackle particular scenarios were
taken and applied with immediate effect. Having said that, the method did not emerge in
the archived literature, nor underwent professional review and critical procedures for a
decade and a half [2,3]. The procedure established by the SCS was developed according
to available data primarily from watersheds overseen with rain and streamflow gages
in the USA. However, the SCS had to overcome most issues in ungagged watersheds.
Hydrological models and procedures constructed by early pioneers were therefore adopted
and grew into a runoff equation for the SCS curve number (CN) as:

Q =
(P− Ia)

2

P− Ia + S
(1)

where

Q = Amount of runoff depth (mm).
P = Depth of rainfall (mm).
Ia = The initial abstraction amount (mm).
S = Maximum potential water retention of a watershed (mm).

Furthermore, the SCS developed a hypothesis whereby Ia = λS, λ being the initial ab-
straction ratio coefficient. The equation was vaguely supported by daily rainfall and runoff
data and the sole source of accredited evidence was the NRCS’s National Engineering Hand-
book, Section 4 (NEH-4). In 1954, the SCS also created the CN methodology, although certain
preliminary field data and core assumptions emerged undocumented and untraced [2–4].

In addition to that, the SCS proposed that Ia = λS = 0.20S where the initial abstraction
ratio coefficient (λ) was 0.20, in which the criterion correlates Ia and S. Field data acquired
from different regions in the USA also contributed to the proposed relationship of Ia to S.
They determined that λ = 0.20 due to the simple correlation between Ia and S data points
used by the SCS. Notwithstanding the sizeable scatter in the data, λ = 0.20 was adopted by
the SCS with the conclusion that half of the data points fell in range of 0.095 < λ < 0.38 [2,4].
The initial abstraction (Ia) is otherwise the depth of the rainfall event necessary for runoff
commencement. Replacing Ia = 0.20S simplifies Equation (1) to become the conventional
SCS runoff forecast model that is commonly used in textbooks, certified hydrological
design manuals, and is widely used in design software as well as programs following its
establishment in 1954 [2–4]. The conventional (simplified) SCS runoff prediction model is:

Q =
(P− 0.2S)2

P + 0.8S
(2)

Equation (2) holds a restriction where P > 0.20S, or else Q would be equal to zero.
Howbeit, proliferating studies lean against the accuracy of Equation (2)’s predictions
as well as the hypothesis where Ia = 0.20S. Literature reviews exhibit inconsistency in
using Equation (2) to predict runoff results and a number of researchers encouraged the
calibration of regional hydrological conditions to be carried out instead of simply following
that of the SCS [5,6].

In the past six decades, the CN technique gained wide acceptance and appliance to hy-
drological problems that were not originally intended to be solved by the SCS. The technique
became the most popular method to predict runoff and was widely taught in colleges and
universities worldwide. The model was also integrated into many software and USDA SCS
systems like the Chemicals, Runoff and Erosion System simulation from the Agricultural Man-
agement Systems (CREAMS) model. It is also used in other models, such as the Agricultural
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Nonpoint Source model (AGNPS), Hydrologic Engineering Centre–Hydrologic Modelling
System (HEC-HMS), USDA Technical Release 20 (TR-20), and USDA Technical Release 55
(TR-55). In fact, it presented a runoff component for successive water quality and erosion
models comprising the Areal Nonpoint Source Watershed Environment Response System
(ANSWERS), the simulator for Water Resources in Rural Basins (WRRB), the Erosion Produc-
tivity Impact Calculator (EPIC), the Pesticide Root Zone model (PRZM), the Water Erosion
Prediction Project (WEPP), and the distributed Soil Water Assessment Tool (SWAT) [2–5].
Although not mentioned here, any software and technical handbooks which incorporated
Equation (2) are very likely to produce inconsistent runoff prediction results.

Recently, researchers proposed a global gridded CN concept for runoff modelling [7,8].
However, some reported that the usage of the CN in representing a watershed is arbitrary,
vague, and often contradictory in describing related areas of land cover [2,9]. Other researchers
emphasised the importance to apply a multi-modelling approach and statistical methods
with land-use and cover variations in order to achieve better flood modelling results [10,11],
while [12] even concluded that even very-fine-resolution topography and high-resolution
land cover data may not be able to produce reliable urban flood modelling results using the
HEC-RAS software. Some researchers also reported difficulty to determine an optimum λ

value [13] in the SCS CN model. Therefore, it is crucial to ameliorate the modelling approach
in order to achieve better model applications to manage water resources and river basins.

As Equation (2) was rooted into many fields, the model re-assessment prevents SCS
practitioners from committing type II errors (a statistical term used within the context of
hypothesis testing that describes the error that occurs when one accepts a null hypothesis
that is actually false). The calibration methodology will derive a statistically significant
rainfall–runoff model with better runoff prediction accuracy and produce a watershed-
specific CN system for an area of interest. Instead of referring to the conventional CN
table compiled by SCS which originated from USA, researchers will be able to derive
watershed-specific CN anywhere with the presented methodology in this study. The CN
derivation methodology will also replace the common unscientific CN adjustments or
tweaking practices in order to achieve better runoff prediction results. The approach entails
performing “trial and error” CN refining with the observed data to better the results of
runoff prediction and assumes that λ = 0.20 for any watershed. However, such practice lacks
statistical justification and often leads to inconsistent runoff prediction results. Study [14]
cautioned that a ±10% CN variation could lead to ±50% change in runoff. It would create
CN value(s) for a watershed; however, the “calibrated” CN value(s) may not even be able
to predict runoff conditions of other watersheds with similar land-use and land cover
conditions again. CN values are a better match for traditional agricultural watersheds
but less accurate in the estimation of semiarid rangelands and are the worst for forested
watersheds [2]. Therefore, CN values should be derived from the local P-Q dataset to reflect
realistic situations [6,13,15].

It is not a common practice for practitioners to assess the statistical significance of a
predictive model with their dataset. Many engineering students were not taught about the
importance of such validation procedures prior to the use of any formulas and equations.
The main aim of this study is to emphasise that any formula or predictive model should
not be blindly adopted, in order to avoid committing type II error.

2. Methodology and Study Site

When the SCS runoff model was adopted to model rainfall and runoff conditions of
a watershed, the assumption of the initial abstraction ratio coefficient (λ = 0.20) was also
accepted. SCS practitioners do not question the validity of the runoff model and therefore,
there is a potential of perpetrating a type II error. A hypothesis was used to assess the validity
of the existing SCS model according to the rainfall–runoff dataset of this study. The model
will be calibrated only when the hypothesis is rejected. In the event that the hypothesis cannot
be rejected, the existing SCS model will be adopted for modelling in this study.
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Null Hypothesis (H0): Ia = λS where λ = 0.20 is valid and applicable for this study. The
null hypothesis assesses the validity of Equation (2) as pertaining to the collected dataset.
H0 must be statistically significant at least at alpha (α) significance level of = 0.05 for it to be
adopted to model the rainfall–runoff condition at the watershed of study. Otherwise, the
model should be calibrated. According to the SCS, λ is a constant value of 0.20 in Ia = λS.

In the event of H0 rejection, a statistically significant initial abstraction ratio coefficient
(λ) and total abstraction value (s) will be derived at alpha = 0.01 which will lead to the
calculation of the best collective representative CN for the watershed as proposed by the
authors’ previous study that based model calibration on the non-parametric inferential
statistics, the bootstrapping bias corrected, and an accelerated (BCa) procedure [6]. Unlike
the existing antecedent moisture condition (AMC) concept which correlates CNI (CN in
dry conditions), CNII (CN in normal conditions), and CNIII (CN in wet conditions) to
determine the runoff condition of a saturated soil, this study extends the model calibration
method proposed previously [6] to model the runoff condition of an urban watershed
under different ground saturation conditions without using return period data. Other than
that, this study added a new control factor to calibrate the model by limiting the overall
model prediction bias near to zero to prevent the newly calibrated model’s bias toward a
specific dataset under this study. As such, the supervised numerical optimisation algorithm
will identify the optimum λ and S value under the model bias control within the bootstrap
BCa confidence intervals while keeping the overall runoff predictive model’s error and bias
near to zero. The BCa technique was chosen as it is the only inferential statistic with a bias
correction ability while able to provide a confidence interval (CI) at specific alpha levels for
statistical assessments. It is also a data-distribution-free method which is compatible to the
nature of any rainfall data distribution and available in the IBM statistical software SPSS
used by this study.

The SCS rainfall–runoff model was calibrated previously by US researchers under
the recommendation to only consider rainfall depths > 25.4 mm (1 inch) in order to avoid
modelling bias towards small rainfall events resulting in higher CNs in rural watersheds [2].
However, the recommended guideline often excludes low-rainfall-depth field data, leading
to an insufficient sample size to produce statistically significant results. Some researchers
even lowered the limit to 15 mm (arbitrary) with a minimum of 10 events in their study
plots [16]. Therefore, this study reviewed the recommended guidelines and demonstrated
the possibility to extend the authors’ previously proposed calibration methodology and to
propose another new model calibration method based on watershed saturation conditions.

A 22.33 km2 urban watershed (Sungai Kayu Ara) in the capital city of Malaysia, Kuala
Lumpur, which consists of a large portion of impervious area, was chosen for this study.
Over the years, this urban watershed is plagued by flash flood damages while the return
period-based concept to assess the drainage capacity efficiency has neither rectified nor
improved the condition. Sungai Kayu Ara watershed covers an area as shown in Figure 1.

The river originates from a forest reserve in the northern upstream and flows toward
the relatively flattened developed suburban areas. The outlet of this watershed is marked
by a dash circle in Figure 1 under the monitor of a water level station. Ninety-two storm
events (1.4 to 90 mm) were collected in this study to produce the rainfall–runoff dataset
through the separation of base flow from the hydrograph. A total of 61% (56 rainfall events)
of this dataset has a rainfall depth of <25.4 mm (1 inch), but with a measurable runoff
amount. Runoff coefficient (Q/P) of this dataset spans from 6% to 97% which is ideal
to model runoff change according to the watershed saturation conditions, out of which,
thirty-seven (37) rainfall–runoff data pairs have Q/P greater than 50% and twenty-four
data pairs are greater than 60%.

This watershed was chosen to show that it is possible to include rainfall depth < 25.4 mm
(1 inch) and incorporate watershed saturation conditions into the SCS runoff model calibration for
urban runoff prediction. The dataset also contains multiple Q/P (%) data batches in order to reflect
the runoff trend and characteristic change due to increasing watershed saturation conditions.
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This study highlights the modelling effect on runoff predictions with different saturation-
based datasets and advises practitioners against the blind adoption of the authors’ previously
proposed model calibration methodology [6] for urban flash flood modelling with any rainfall–
runoff dataset.

Unlike the Hortonian runoff model, hydrologists have recognised that runoff was the
result of rainfall from very wet parts of a watershed since 1960 [17,18]. When the effective
soil water-storage capacity is exceeded, runoff will be produced. This runoff generation
process is referred to as the saturation-excess runoff. Q/P (%) of a watershed will become
larger when effective soil water-storage is reducing [19–22]. Even a medium-sized storm
event over a saturated watershed with a high runoff coefficient may cause severe flooding;
therefore, it is critical to assess the performance of different runoff models under different
runoff coefficient conditions in order to select the best performing parsimonious urban
rainfall–runoff model for urban runoff estimation.

This study formulated a feasible runoff predictive model for urban flash flood prediction
without using the return period data. Inspired by the saturation-excess runoff concept used
by past studies [23–25], the SCS rainfall–runoff model’s calibration methodology presented
previously [6] was extended to model urban runoff under different ground saturation con-
ditions according to the runoff coefficient which was calculated by dividing runoff amount
(Q) to the corresponding rainfall depths (P). The P-Q dataset was then sorted in descending
order of the calculated runoff coefficient of each P-Q data pair. A minimum of twenty P-Q
events were used to ensure a sufficient sample size for analyses [2,26,27]. The significance of
this extended application paved the way for the calibrated SCS runoff model to model urban
runoff under different watershed ground saturation conditions (i.e., Q/P > 50%, 60%, and
70% etc.) for urban flash flooding forecasting, the design of hydraulic infrastructures, and
drainage capacity assessment.

This study also presented the possibility of developing an urban rainfall–runoff model
with a P-Q dataset which includes any rainfall depth that is less than 25.4 mm but with
a significant measurable runoff amount. Equation (1) is calibrated with urban hydrolog-
ical constraints according to the rainfall–runoff dataset to illustrate that the calibrated
SCS runoff model could be utilised for modelling urban runoff. In the authors’ previous
works [6,27], Equation (1) was rearranged into an S general formula, whereby the S and
λ values can be derived according to the corresponding P-Q data pairs, the formula is:

Sλ =

[
P− (λ−1)Q

2λ

]
−
√

PQ−P2+
[
P− (λ−1)Q

2λ

]2

λ . The corresponding S values will be denoted by Sλ
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to differentiate from the conventional S value where λ value = 0.20. Sλ must be correlated
to the S0.2 values prior to the calculation of the CN value [2,6,27]. The non-parametric boot-
strapping (BCa) technique was set in SPSS for 2000 random samplings with replacements
from the 92 data pairs and produced 99% confidence interval (CI) for parameter optimi-
sation. In another words, the parameter of interest underwent 2000 random validations
against its dataset. By utilizing Equation (1), the λ and S optimisation was achieved using
the approach of numerical analyses. Model calibration of this study was conducted by
removing data pairs of Q/P > 60%, between 40 and 60%, and <40% for model calibration, re-
spectively, with validation against the remaining dataset. Through several iterations of the
minimisation of the overall predictive model fitting bias and residual sum of square error
(RSS) between the predicted Q against its observed values, the final model was formulated.

Runoff models are compared for their model predictive accuracy in this study. The
residual spread of a model is indicated by residual sum of squares (RSS) in which a lower
RSS is equivalent to an improved conjecturing model. On the other hand, the model
efficiency index (E also known as the Nash–Sutcliffe) lies on a spectrum of minus infinity
to 1.0 whereby index value = 1.0 shows an ideal conjectured model. In the instance where
E < 0, it is inferior to utilizing an average to predict the dataset. The average residual of
a predictive model (BIAS) indicates an altogether model prediction error quantified by
the average of its residual to stipulate a pattern in the overall model prediction. A zero
value means that it is an ideal error-free overall model prediction, and a negative value
demonstrates the under-predictive overall model tendency, and conversely. In addition, a
better predictive model will also have smaller residual range and interval, smaller standard
deviation in residual, and mean residual near to zero.

2.1. Linear Regression Model

Equation (1) will be calibrated (only if H0 was rejected) and benchmarked against the
linear regression model for runoff prediction accuracy in this study with models of parsi-
monious interest. For urban rainfall–runoff, the one-dimensional linear regression model
was proposed by early pioneers and often utilised, whereby the slope of the regression
equation represents a hydrological reduction variable [28] or a proportion in relation to a
whole of an impermeable area of a watershed [29]. The intercept on the x-axis estimates a
watershed’s local depression amount or depression loss [30]. The linear regression model’s
base form is:

Q = mP + c (3)

where

Q = Amount of runoff (mm).
P = Depth of rainfall (mm).
m = Gradient (slope).
c = Constant (intercept on the x-axis).

2.2. Asymptotic Curve Number Modelling

US researcher [31] first pointed out that the most common use of Equation (2) was
to calculate runoff from the rainfall depth with the same return period and proposed to
perform “frequency matching” by pairing P-Q data pairs with same return periods, while
another US researcher [32] reported that CN values decreased against increasing rainfall
amounts, and there was a notable pattern in that CN would eventually approach a constant
value in most cases. He also proposed a two-parameter asymptotic fitting method (AFM) to
sort the rainfall and runoff dataset separately in descending order and pair them up again
as “ordered data”. The method accepted the SCS proposal where λ = 0.20. Three different
patterns were observed and classified as standard behaviour, complacent behaviour, and
violent behaviour.

AFM was proposed to determine the representative CN for the watershed of interest
through its P-Q dataset (λ value remains as 0.20 under this method) under the theoretical
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projection when P approaches infinity amount. CN cannot be determined for the com-
placent behaviour watershed, but standard behaviour watershed follows the following
formula for CN determination:

CN(P) = CN∞ + (100−CN∞)e(−
P
k ) (4)

where

CN(P) = Fitted CN value of a specific rainfall depth.]
CN∞ = CN of a watershed of interest.
P = Rainfall depth (mm).
K = Fitting parameter.

Violent behaviour watershed follows the following formula for CN determination:

CN(P) = CN∞

[
1− e−k(P−Pth)

]
(5)

where

Pth = Threshold Rainfall depth (mm).

AFM was chosen to benchmark against the linear regression model and the proposed
calibrated model in this study because it is the only CN model that relies on two fitting
parameters and has been widely adopted by SCS practitioners.

3. Results
3.1. Linear Regression Model

Using the IBM SPSS, the best fitted model of linear regression for the P-Q dataset of
this study based on the basic linear intercept Equation (3) was identified as below while the
descriptive and inferential statistics are tabulated in Table 1. Equation (6) has the highest
R2

adj of 0.831 and the lowest fitting model standard error (SE) of 4.648.

Q = 0.62P − 3.182 (6)

Table 1. Descriptive and Inferential Statistics of Equation (6) at α = 0.05.

CI BCa CI

Model Coeff. p Value Lower Upper p Value Lower Upper

Constant −3.182 0.001 −4.956 −1.408 0.004 −5.484 −0.882
Gradient 0.62 0.000 0.561 0.678 0.000 0.531 0.703

From Table 1, both fitting parameters of the linear regression model are statistically
significant (p < 0.01) and the BCa results reaffirmed the p value significances. Previous
researchers [29] used the fitting gradient to estimate the percentage of impervious area while
the constant value implies the local depression amount or the watershed’s depression loss.
However, at alpha = 0.05, the confidence interval (CI) spans 252% and 83% in the respective
constant and gradient fitting while the BCa CI results show 622% and 76% variation in those
categories. At alpha = 0.05, stringent BCa CI results imply that the local depression, or the
depression-loss, of the Sungai Kayu Ara watershed can be any value between 0.89 mm and
5.5 mm (BCa lower-to-upper confidence interval of the fitting constant parameter) while
the interpretation of impervious area estimates within the watershed can be any value
between 53.1% and 70.3% (BCa lower-to-upper confidence interval of the fitting gradient
parameter). Hydrological implications from those two parameters are open to a wide range
of interpretations at this point.
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3.2. The Existing (Simplified) SCS Runoff Model

Using the entire dataset, the results of BCa established a CI span for derived λ values
of the P-Q dataset at the Sungai Kayu Ara watershed (Table 2) can also be used to assess
H0. To implement Equation (2), H0 must be accepted. The λ confidence interval span and
the standard deviation are utilised to assess H0.

Table 2. BCa results (α = 0.01) of derived λ values at Sungai Kayu Ara watershed.

BCa 99% CI

λ Lower Upper S Lower Upper

Mean 0.021 0.007 0.051 36.3 28.2 46.7
Median 0.004 0.004 0.006 30.0 22.7 33.7

Skewness 9.020 3.2
Kurtosis 84.332 16.8

Std. Deviation 0.097 35.8

The mean and median CI span (Table 2) did not comprise of a λ = 0.20. Furthermore,
the derived λ dataset’s standard deviation is not zero (to indicate that it is a constant),
hence H0 can be rejected at α = 0.01, ruling out the validity of Equation (2) to model runoff
conditions at this watershed. Therefore, the SCS model must undergo model calibration to
avoid the risk of type II errors.

3.3. Calibrated SCS Runoff Model for the Sungai Kayu Ara Watershed

Tabulated in Table 2 are the descriptive statistics regarding the nature of the data
distribution of the values of λ and S. The supervised least-square-fitting algorithm has been
configured to find the optimum value of λ and S in the confine of the median confidence
intervals because of the nature of their skewed data distribution (Table 2). For the Sungai
Kayu Ara watershed, the optimum λ value would be 0.004 and the best collective represen-
tation of S is 31.47 mm (denoted as S0.004), with an overall model bias of zero (α = 0.01) to
model the entire dataset. As Ia = λ S, substituting λ and S values produces Ia = 0.11 mm.

The calibrated SCS urban rainfall–runoff prediction model, when Ia and S are substi-
tuted back to Equation (1), would be:

Q0.004 =
(P− 0.11)
P + 31.36

2
(7)

where

Q0.004 = Runoff amount (mm) of the new model formulated with λ = 0.004.

The urban runoff model calibrated by the SCS is displayed by Equation (7). It is bound
to the condition of P > 0.11 mm, otherwise Q0.004 = 0 mm. Equation (7) has an overall model
bias value of zero which implies that it does not have an over- or under-prediction tendency
on runoff-amount prediction. The correlation between S0.004 and S0.2 can be determined
with SPSS as: S0.2 = 0.901 S0.004

0.87 (R2
adj of 0.97, SE of 0.174, and p < 0.001). Subsequently,

the equivalent S0.2 can be calculated as 18.11 mm leading to the derivation of CN0.2 = 93.35
with the SCS CN formula: CN0.2 = 25,400

S0.2+254 . The 99% BCa CI of S0.004 ranges from 22.7
to 33.7 mm (Table 2). Those values can also be used to calculate its equivalent upper and
lower CN0.2 limits in the same manner; therefore, the best collective CN0.2 = 93.35 (α = 0.01,
99% CI ranges from 92.96 to 94.91) for the urban watershed under this study (The CN0.2
value derivation and SCS CN model calibration steps were summarised and listed in a
step-wise instruction format in Appendix A (or authors’ previous publication [6])).

3.4. Asymptotic Curve Number Modelling

Using the AFM, the derived CN0.2 values versus rainfall depths graph (Figure 2)
resembles the standard behaviour pattern, hence Equation (4) was adopted to derive CN∞
as the best representative CN0.2 value for the Sungai Kayu Ara watershed and to verify the
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modelling result in this section. Using the least-square-fitting method, the fitting parameter
k was identified to be 19.23 and CN∞ is 90.27. Rounding to the nearest positive integer,
CN∞ = CN0.2 = 90. This CN value is in proximity to the equivalent CN0.2 value of 93.35
which was derived by the calibrated SCS runoff model in Section 3.3.
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From the SCS CN formula, the calculated S0.2 value is 27.39 mm and Ia = 0.20× 27.39 mm
= 5.48 mm. As such, the AFM runoff predictive model can be formulated from Equation (1) to
benchmark the accuracy of the runoff prediction of the original (unsorted) rainfall–runoff dataset
against Equations (6) and (7), with the descriptive and inferential statistics of the runoff predictive
model’s residual listed in Table 3.

Table 3. Runoff Models’ BCa 99% residual analyses comparison.

Equation (6) Equation (7) AFM Model

CN0.2
E

N/A
0.832

93.35
0.823

90.27
0.784

RSS 1945.06 2052.37 2507.72
Residual Standard Deviation: 4.62 4.75 4.630

Standard Deviation CI: [3.61, 5.70] [3.64, 5.84] [3.55, 5.70]
Skewness −0.52 0.72 0.554

Mean Residual: 0.008 0.000 −2.460
Residual CI: [−1.31, 1.23] [−1.31, 1.29] [−3.78, −1.19]

Residual: Range 26.84 27.98 28.10
Note: Smaller residual standard deviation and residual range imply a better model. Narrower residual interval
shows a model with less error distribution while a residual interval that does not span across zero indicates a
model with either an over- or under-prediction tendency.

3.5. Runoff Models Comparison

Inferential statistics results of the runoff models’ residual analyses were also generated
and tabulated in Table 3. Equation (7), which is the calibrated runoff model (using λ = 0.004),
was benchmarked with the linear intercept model of Equation (6) and AFM. The non-calibrated
SCS runoff model of Equation (2) was ruled out as it is not statistically significant, hence it
was excluded from the model comparison. The model’s prediction efficiency index (E) as well
as its residual sum of squared error (RSS) and descriptive statistics were quantified to extract
further comparisons.

From Table 3, the model residual of Equations (6) and (7) have skewness values near
to zero, implying that each respective residual distribution is almost normally distributed;
therefore, the mean residual can be a good indicator of the prediction accuracy of those
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models. The mean residual’s BCa 99% confidence interval range of all three models spanned
across zero to indicate the possibility of producing zero residual prediction is significant
(α = 0.01), hence all models (except AFM) can achieve an accurate runoff prediction.

The AFM runoff model has a higher RSS, with lower E index when compared to the
other two models listed in Table 3. The AFM model shows the runoff amount’s under-
prediction tendency, as its mean residual’s confidence interval range fluctuates within a
negative range and it also has the widest residual range compared to the other models.
According to the SCS, there will be no runoff until a rainfall depth is larger than Ia, but the
calculated Ia value of the AFM runoff model is larger than six recorded events (6.5%) of
the P-Q dataset, while Equation (7) does not have this issue. Although the AFM runoff
model derived a proximate CN0.2 as the value from Equation (7), a 3.4% increase in the
CN0.2 value from 90.27 (AFM model) to 93.35 (Equation (7)) was able to improve the runoff
model’s E index efficiency by nearly 5% and reduce the RSS by 18% (Table 3).

Up to this point, the linear regression runoff predictive model (Equation (6)) is sta-
tistically significant and outperformed against other models to model runoff conditions
with the entire dataset. The AFM model is the worst model to predict runoff conditions.
To test the robustness of the linear regression runoff predictive model, this study further
assessed the runoff prediction ability of Equation (3) against the AFM technique and the
newly proposed SCS runoff model calibration method of this study with the same dataset,
but regrouped under two different Q/P conditions of >50% and 60%.

4. Further Assessment with Saturation-Excess Runoff Scenarios

Using the same P-Q dataset, the runoff coefficients were calculated to regroup the
dataset. The original P-Q dataset has wide distribution range of Q/P from 6% to 97%. Of
this, thirty-seven (37) events were found to have Q/P > 50% and twenty-four (24) events
were greater than 60%. Thirty-seven (37) and twenty-four (24) P-Q data pairs with runoff
coefficients of >50% and >60% were grouped separately to repeat the aforementioned cali-
bration methodology for the rederivation of all rainfall–runoff models for runoff prediction
re-assessment. This will further assess the reliability and robustness of all compared runoff
predictive models when the watershed becomes increasingly saturated.

4.1. Linear Regression Model

According to the basic linear form of Equation (3), for the given rainfall–runoff dataset,
IBM SPSS established the best fitting linear regression model as:

For Q/P > 50%, Q = 0.654P − 0.216 (8)

For Q/P > 60%, Q = 0.747P − 0.913 (9)

Q and P as defined previously. Equation (8) has R2
adj of 0.936 and SE of 3.549 while

Equation (9) has R2
adj of 0.977 and SE of 2.242. The descriptive statistics are tabulated in Table 4.

Table 4. Inferential statistics of Equations (8) and (9) at α = 0.05.

Model
Q/P > 50% Coeff. p Value Model

Q/P > 60% Coeff. p Value

Constant −0.216 0.834 Constant −0.913 0.254
Gradient 0.654 0.000 Gradient 0.747 0.000

From Table 4, the constant coefficients are not significant (p > 0.05) under both runoff
coefficient scenarios for both equations. When the constant becomes insignificant (x-intercept = 0),
the fitting constant parameter will be discarded. The linear intercept runoff model relies on the
interception on the x-axis (the constant term) to estimate the local depression, initial loss, or the
depression loss of a watershed [30]. In the event when the fitting constant becomes statistically
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insignificant, or local depression, initial loss, or the depression loss becomes zero, the only logically
hydrological implication is that 100% rainfall becomes complete runoff (Q = P) thereafter.

In order to maintain the proposal of [30], the suitable structure of the alternative linear
regression is a regression model through the origin (RTO), with the gradient as the only accept-
able model-fitting parameter. The data were assessed with IBM SPSS again under both runoff
coefficient conditions and identified the best-fitted RTO given by Equations (10) and (11), and
their statistics shown in Tables 5 and 6.

For Q/P > 50%, Q = 0.649P (10)

For Q/P > 60%, Q = 0.724P (11)

Table 5. Descriptive statistics of Equations (10) and (11) at α = 0.05.

Confidence Interval
Model Coeff. Lower Upper p Value

Q/P > 50% Gradient 0.649 0.616 0.681 0.001
Q/P > 60% Gradient 0.724 0.695 0.753 0.001

Table 6. Inferential statistics of Equations (10) and (11) at α = 0.05.

Confidence Interval BCa
Model Coeff. Lower Upper p Value

Q/P > 50% Gradient 0.649 0.605 0.696 0.001
Q/P > 60% Gradient 0.724 0.680 0.756 0.001

According to the assessment statistics in Tables 5 and 6, although both RTO models
are significant (p value < 0.01), neither confidence interval span shows a possible inclusion
of 1.0 as a fitting gradient for both runoff coefficient scenarios. Q = P is not statistically
significant and does not fit the modelling dataset under either condition. As such, the
100% complete runoff scenario becomes impossible and posts a conflict with the proposal
from [30]. The validity of Equation (3) for runoff prediction is now in question.

On the other hand, complacent behaviour patterns were detected for both runoff
coefficient (Q/P > 50% and 60%) scenarios with the AFM. It failed to derive a representative
CN0.2 value as the value reduced according to the increasing rainfall depths and did not
approach any stable value. Both the linear regression (two-parameters) model and the
AFM model failed to model the runoff conditions and calculate the CN0.2 value for the
watershed in this study when Q/P > 50%.

4.2. Calibrated SCS Runoff Model

Although Equation (7) is able to model the Q/P > 50% and Q/P > 60% datasets
with zero bias and an E index of 0.854 and 0.851, respectively, the runoff under-prediction
tendency is increasing with Q/P (%), which defeats the aim of developing an effective urban
flood predictive model. As such, thirty-seven (37) and twenty-four (24) P-Q data pairs
of the Sungai Kayu Ara watershed with Q/P > 50% and >60% were grouped separately
for λ value rederivation in order to perform SCS model calibration and to formulate
statistically significant runoff predictive models again. Optimisation of λ in Equation (1)
was conducted within the median confidence interval because of skewed λ datasets of
both runoff coefficient scenarios. Tables 7 and 8 illustrate the data distribution of λ values
through descriptive statistics analyses conducted with IBM SPSS.
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Table 7. Inferential statistics of derived λ at α = 0.01 for Q/P > 50% scenario.

Q/P > 50% 99% BCa CI of λ
λ Dataset Statistics Lower Upper

Mean 0.043 0.011 0.117
Median 0.009 0.005 0.013

Skewness 5.815
Kurtosis 34.691

Std. Deviation 0.149

Table 8. Inferential statistics of derived λ at α = 0.01 for Q/P > 60% scenario.

Q/P > 60% 99% BCa CI of λ
λ Dataset Statistics Lower Upper

Mean 0.061 0.014 0.171
Median 0.013 0.007 0.026

Skewness 4.724
Kurtosis 22.764

Std. Deviation 0.184

The Q/P > 50% dataset (54% dataset with P < 25.4 mm) gave an optimal λ value of
0.005 and an ideal collective S representation of 19.26 mm to yield Ia = 0.104 mm. The
optimum λ value and best collective representation of S for Q/P > 60% dataset (63% dataset
with P < 25.4 mm) are 0.007 and 12.42 mm, which yield Ia = 0.092 mm. By substituting Ia
and S back into Equation (1), the formulation of the calibrated rainfall–runoff prediction
models are:

For Q/P > 50%, Q0.005 =
(P− 0.104)
P + 19.159

2
(12)

For Q/P > 60%, Q0.007 =
(P− 0.092)
P + 12.325

2
(13)

Q0.005 = Runoff (mm) where λ = 0.005.
Q0.007 = Runoff (mm) where λ = 0.007.

Equation (12) bounds to a constraint where P > 0.104 mm, else Q0.005 = 0, whereas
Equation (13) bounds to P > 0.092 mm, else Q0.007 = 0. These models were formulated with
the extra model bias control factor during the supervised numerical optimisation process
under the guiding control of BCa. Both equations have an overall model BIAS value of
zero. Conceptualisation of the calibrated SCS runoff prediction Equations (12) and (13) with
the optimum λ value hold an identical inherent significant level (α = 0.01). Following the
equivalent CN0.2 derivation process as stated in Section 3.3, Equation (12) yields the equivalent
CN0.2 value of 94.89, while Equation (13) derives the value of 96.50 to represent the respective
ground saturation conditions of the Sungai Kayu Ara watershed. In Tables 7 and 8, the
BCa confidence interval ranges of both scenarios do not consist of the λ value of 0.20, hence
Equation (2) is still invalid to model either runoff conditions. As such, it will be excluded from
runoff model comparison in this section again.

4.3. Model Comparison under Different Saturation-Excess Runoff Scenarios

The newly calibrated runoff models of Equations (12) and (13) were benchmarked against
the RTO linear model Q = P only (since the constant-fitting parameter becomes statistically
insignificant, refer to Table 4 results) under two different runoff coefficient scenarios. The AFM
was excluded as it failed to model the runoff conditions when Q/P > 50% and derive any CN0.2
for the watershed. For further comparison, the model’s prediction efficiency index (E), RSS, as
well as the predictive model BIAS have been formulated, as seen in Table 9.
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Table 9. Runoff predictive model’s comparison.

Q/P > 50% Equation (12) Q = P Q/P > 60% Equation (13) Q = P

E 0.85 0.11 E 0.94 0.59
BIAS 0.000 10.419 BIAS 0.000 7.588
RSS 1051.23 6319.41 RSS 303.25 2056.83

RTO models failed to achieve runoff prediction accuracy with a runoff over-prediction
tendency (positive model bias in Table 9). On the contrary, Equations (12) and (13) managed
to predict runoff with high E index, and the E index value even improved from 0.85 to 0.94
as the ground saturation condition increased from 50% to 60%. In this study, the proposed
calibrated model is the only runoff predictive model that is capable of modelling urban
runoff conditions accurately, even when the watershed becomes increasingly saturated.

5. Discussion
5.1. Hydrological Implication of the New Runoff Predictive Models

The new runoff models (Equations (7), (12) and (13)) were derived to represent different
hydrological conditions of the Sungai Kayu Ara watershed. Equation (7) modelled the overall
runoff condition of the entire dataset. On the other hand, Equations (12) and (13) represent higher
ground saturation conditions where runoff coefficients Q/P are >50% and >60%, respectively.
The runoff and incremental trend of all the three models are shown in Figure 3. Equation (7)
under-predicted runoff amount significantly when compared to Equations (12) and (13), even
though it was under the bias control and guided by BCa.
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Figure 3. Runoff models using all P-Q data (Equation (7)), Q/P > 50% (Equation (12)), Q/P > 60%
(Equation (13)) and runoff depth (mm) increment at Sungai Kayu Ara watershed. By comparing
Equations (7) and (13), CN0.2 increased 3.4% with an average of 44% (nearly 178,000 m3) runoff
amount increment while CN0.2 increased 1.7% from Equations (12) and (13) with an average increment
of 15.7% (about 75,000 m3) in runoff amount. Note: Runoff depth increment of 1 mm = 22,330 m3

runoff volume increase at the study site.

It is noteworthy to highlight that the land-use and land cover of the Sungai Kayu
Ara watershed remained the same throughout this study. However, the CN0.2 value of
this watershed still increased from 93.35 to 94.89 and 96.50 as the watershed became more
saturated. This proves that CN0.2 value cannot be selected from any handbook according
to the land-use and land cover of a watershed only, and it must be derived according to
the rainfall–runoff dataset under different ground saturation conditions in order to reflect
specific hydrological characteristics of a watershed.

The runoff coefficient distribution for Equation (7) diversifies across a wide range from
6% to 97% (47% on average). Equations (12) and (13) quantify scenarios where the Sungai
Kayu Ara watershed becomes more saturated, and the runoff amount from Equation (13)
is the highest. The actual incremental runoff from Equations (7)–(13) is also higher than
the incremental runoff difference between Equations (7) and (12). Equations (12) and (13)
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are as postulated by the “saturation-excess runoff” concept—that the runoff coefficient
of a watershed becomes larger when effective soil water-storage reduces and induces
higher runoff amounts. This proves that runoff predictive models must be formulated with
appropriate datasets to reflect ground saturation conditions accurately. The proposed SCS
model calibration methodology in this study cannot be adopted blindly for urban flash
flood modelling if the Q/P of the dataset is less than 50%.

5.2. Comparison of Rainfall–Runoff Models

The prospects of the Sungai Kayu Ara watershed utilizing a linear regression model
for urban runoff analyses is evaluated in this study. Table 3 tabulated comparisons for
runoff models. During the saturation-excess assessment, linear intercept regression models
had insignificantly fitted constant terms under both runoff coefficient scenarios (Table 4).

According to [30], the constant-fitting parameter is crucial to the x-intercept approach
that represents an estimate of initial loss, local depression, or even watershed depression.
The absence of an initial- or depression loss at the watershed according to its P-Q dataset
is inferred by an insignificant-fitting constant. Further hydrological interpretation shows
a completely saturated watershed with 100% of runoff by any volume of rainfall. The
only reasonable linear regression runoff model takes the form of Q = P, however its RTO
equation-fitting results state otherwise (Tables 5 and 6). Best-regressed RTO linear models
from IBM SPSS show no possibility to model complete runoff conditions. For the Q/P > 50%
dataset, at most Q = 0.696 P where 30.4% of initial loss still exists. For the Q/P > 60% dataset,
at most Q = 0.756 P where 24.4% of initial loss still exists. Q = P is statistically insignificant
(p > 0.05) under both runoff coefficient scenarios. The hydrological implications of the
linear regression model conflicts and detaches from the statistical justification. As such,
hydrological-condition implications based on those two fitting parameters of the linear
regression model become inconsistent and unreliable. The linear regression runoff model
failed to describe the hydrological conditions of the Sungai Kayu Ara watershed when
runoff coefficient is greater than 50%. On the other hand, the AFM did not outperform
against compared models in this study (Table 3). It also failed to model the watershed and
derive the CN0.2 value when the runoff coefficient is greater than 50%.

The original SCS hypothesis where the value of λ = 0.20 was met with repeated
rejections (α = 0.01 level) as the BCa 99% confidence interval span did not show the
possibility of having the value of 0.20 (Tables 2, 7 and 8), concluding that Equation (2) was
not valid and therefore inapplicable for this study. H0 also faced rejection (α = 0.01 level) as
its BCa findings indicated a standard deviation of λ that was not equivalent to zero (Table 2),
showing the nature of λ’s value fluctuations, thus, λ does not meet the requirement of a
constant as was suggested in 1954 by the SCS, and is, rather, a variable. As a matter of fact,
H0 in this study was rejected, and thus, it opens the opportunity for SCS model calibration.
The notion of approaching this matter based on numerical analysis was also utilised in this
study, along with guidance of non-parametric inferential statistics, identifying the ideal
collective representation of λ and S values to formulate a calibrated runoff predictive model
for the Sungai Kayu Ara watershed.

Many researchers in this field suggested different λ values to recalibrate the SCS runoff
predictive model. However, the statistical significance of those new values was not re-
ported [6,27]. This study is also in line with the latest findings in this area which reported
the detection of multiple CN and Ia values within a watershed and suggested the practice of
using multiple CN and Ia values to represent the heterogeneity of a watershed. Those studies
also concluded that the SCS CN model must be calibrated according to local rainfall–runoff
data to improve the runoff prediction accuracy [33–35]. As such, Equation (2) can no longer
be blindly adopted for runoff prediction modelling according to the SCS with Ia = 0.2S. The
latest findings of [34,35] increased the SCS CN model calibration difficulty level for SCS
practitioners because they can only use one Ia value to calibrate Equation (1) [2,9–13]. The
non-parametric inferential statistics model calibration guide proposed by this study offers a
solution for SCS practitioners to select statistically significant key parameters of S and λ values
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from its confidence interval range to calibrate the fundamental SCS CN runoff framework
(Equation (1)) according to their rainfall–runoff dataset.

6. Conclusions

1. The hydrological implications of the linear regression model conflicts and detaches from
the statistical justification and, therefore, implications based on the two main-fitting
parameters of the linear regression model become inconsistent and unreliable. The linear
regression runoff model and the AFM technique failed to describe the hydrological
conditions of this case study when the runoff coefficient (Q/P) is greater than 50%.
On the other hand, λ 6= 0.20, and the simplified SCS runoff model (Equation (2)) is
not statistically significant (α = 0.01). These three models are unsuitable in terms of
modelling the condition of urban runoff in this study;

2. The decimal CN0.2 value can be calculated in order to reflect runoff conditions with
higher accuracy. Unlike the antecedent moisture-condition CN concept, CN0.2 can be
calculated directly and independently to represent the runoff condition of the watershed
when it reaches 50% and 60% ground saturation level. The optimum is λ = 0.004 and
CN0.2 = 93.35 (at α = 0.01 level) to model all P-Q data pairs runoff for the Sungai Kayu
Ara watershed. Although the land-use and land cover remained the same throughout
this study, the CN0.2 value of this case study still increased from 94.89 (λ = 0.005) to
96.50 (λ = 0.007) as the watershed became more saturated. In line with [14], the CN0.2
value was found to be a sensitive parameter. Comparing Equations (7) and (13), the
CN0.2 value increases by 3.4% with an average of 44% increase in runoff amount, which
is almost 178,000 m3 of the runoff increment. Runoff prediction-difference is more
profound toward higher-rainfall-depth storm events. As such, Equation (13) should be
used to assess the urban drainage capacity and for flash flood prediction, while CN0.2
value cannot be decided according to the land-use and land cover conditions only. It can
be derived according to the rainfall–runoff dataset and ground saturation conditions in
order to reflect the specific hydrological characteristics of a watershed with the proposed
method in this study for urban runoff predictions;

3. This study also demonstrated that it is possible to calibrate Equation (1) and to include
rainfall depths less than 1 inch (25.4 mm) in order to formulate a statistically significant
urban runoff predictive model. Otherwise, nearly 61% (56 events with measurable runoff)
of the P-Q data pairs of this study will be discarded for modelling as the corresponding
rainfall values are less than 25.4 mm, out of which, 34% (19 events) with Q/P > 50% and
27% (15 events) with Q/P > 50% would not be available to formulate Equations (12) and (13)
with a sufficient sample size. This study also preserved the parsimonious form of the SCS
runoff model for calibration and it emerged as the simplest two-parameter rainfall–runoff
predictive model in this study. Flood prediction through rainfall–runoff modelling should
be formulated with rainfall–runoff data pairs with runoff coefficients > 50% instead of using
datasets with low runoff coefficients;

4. In general, the proposed methodology in this study is applicable to any urban watershed
with a measurable runoff amount (even with rainfall depth < 25.4 mm) and enough
datasets (at least 20 events) with Q/P > 50% or above. It offers a quick and economical
runoff assessment in developing areas with rapid land-use and cover change without
relying on return period information. Future works may analyse the cost effectiveness
of return period-based infrastructure design at urban scale with a longer period rainfall–
runoff dataset. The SCS CN model has two parameters (λ and S) only. The proposed
model calibration methodology offers a quick quantification of runoff depth from a
storm event, whereby SCS practitioners can estimate flood volume at the watershed of
interest. Instead of selecting the CN value subjectively by looking at the land-use and
land cover, SCS CN model practitioners can derive a range of statistically significant
CN values to estimate probable flood volume, assess drainage capacity, and identify
probable flood prone area(s). In conjunction, GIS software can be used to assess flood
risk, financial losses, and propose needed mitigation strategies;
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5. The authors caution that there are several limitations to the proposed methodology.
The minimum sample size should be at least 20 to achieve meaningful inferential
results. The choice of the statistical software must have the option to conduct boot-
strapping BCa procedures and provide confidence intervals for median values. The
SCS CN lump model must be used with caution when re-creating the specific features
of an actual storm as it does not contain time parameters. It is not a precipitation
runoff model to model runoff from snowmelt or rain on frozen ground conditions.
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Appendix A

The CN0.2 value derivation and SCS CN model calibration steps can be summarized
as below:

1. Given that: Effective rainfall (Pe) = P − Ia and Ia = λS; Equation (1) can be rearranged as:

Q = Pe
2

Pe+S where S = Pe
2

Q − Pe and λ = Ia
S

2. For each P-Q data pair (Pi, Qi), calculate corresponding λi and Si value;
3. Perform bootstrap, BCa procedure, and normality test in SPSS (version 18.0 or an

equivalent statistics software) for (λi, Si);
4. Check the normality test results of Si to see whether it is normally distributed or not:

(a) If yes, refer to the mean BCa confidence interval for Si optimisation.
(b) Otherwise, refer to the median BCa confidence interval for Si optimisation;

5. Check the normality test results of λi to see whether it is normally distributed or not:

(a) If yes, refer to the mean BCa confidence interval for λi optimisation.
(b) Otherwise, refer to the median BCa confidence interval for λi optimisation;

6. Substitute the λoptimum and Soptimum value into Equation (1) to formulate the calibrated
SCS runoff predictive model;

7. Given (Pi, Qi) and λoptimum, compute Sλi values with Sλ =

[
P− (λ−1)Q

2λ

]
−
√

PQ−P2+
[
P− (λ−1)Q

2λ

]2

λ

8. Given (Pi, Qi) and λ = 0.2, compute S0.2i values with Sλ =

[
P− (λ−1)Q

2λ

]
−
√

PQ−P2+
[
P− (λ−1)Q

2λ

]2

λ

again;
9. Correlate S0.2i and Sλi to form a S correlation equation in SPSS (or an equivalent

statistics software);
10. Substitute the S correlation equation into the SCS curve number formula: CN0.2 = 25,400

S0.2+254
to derive CN0.2 value.
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