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Abstract: Are traditional tests of forecast evaluation well behaved when the competing (nested)
model is biased? No, they are not. In this paper, we show analytically and via simulations that, under
the null hypothesis of no encompassing, a bias in the nested model may severely distort the size
properties of traditional out-of-sample tests in economic forecasting. Not surprisingly, these size
distortions depend on the magnitude of the bias and the persistency of the additional predictors. We
consider two different cases: (i) There is both in-sample and out-of-sample bias in the nested model.
(ii) The bias is present exclusively out-of-sample. To address the former case, we propose a modified
encompassing test (MENC-NEW) robust to a bias in the null model. Akin to the ENC-NEW statistic,
the asymptotic distribution of our test is a functional of stochastic integrals of quadratic Brownian
motions. While this distribution is not pivotal, we can easily estimate the nuisance parameters. To
address the second case, we derive the new asymptotic distribution of the ENC-NEW, showing that
critical values may differ remarkably. Our Monte Carlo simulations reveal that the MENC-NEW (and
the ENC-NEW with adjusted critical values) is reasonably well-sized even when the ENC-NEW (with
standard critical values) exhibits rejections rates three times higher than the nominal size.

Keywords: forecasting; random walk; out-of-sample; bias; prediction; mean square prediction error

1. Introduction

“Fortunately for serious minds, a bias recognized is a bias sterilized” Benjamin Haydon.
Diebold and Mariano (1995) [1] and West’s (1996) [2] seminal papers are typically

pinpointed as the Big Bang of the forecast evaluation literature in economics and finance.
Even though both papers propose asymptotically normal tests for forecast evaluation, the
proper environment of each paper is different. The former considers the case of comparing
forecasts (i.e., the forecasts are assumed to be given), while the latter focuses on the case
of comparing models (i.e., the forecasts are constructed through estimated parametric
models). Put simply, the key contribution of West’s asymptotic theory is that it accounts for
parameter uncertainty.

While the asymptotic theory of [2] is quite general and allows a variety of estimation
techniques and loss functions, it is not universal. One of the key assumptions in West’s
theory is a full rank condition over the long-run variance of the loss function when parame-
ters are set at their true values. One of the most iconic cases in which this condition is not
fulfilled is the comparison of two competing nested models: Under the null hypothesis
of no encompassing, both models are identical, and standard tests of forecast evaluation
become degenerate. As pointed out by Clark and West (2006) [3] and West (2006) [4], for
the case of MSPE, this degeneracy is not only important in a theoretical sense, but also in
an empirical one: “[ . . . ] use of standard critical values usually results in very poorly sized tests,
with far too few rejections. As well, the usual statistic has very poor power.” [4] p. 119 (A note of
caution here. We are not arguing that this degeneracy necessarily imply that tests become
undersize. Some of the simulations in [5] suggest both types of size distortions: sometimes
tests are undersized, sometimes they are oversized.).
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Not surprisingly, an important strand of this literature focuses on the case of nested
models. Some of the most influential empirical papers in economic forecasting (such as
Meese and Rogoff (1983, 1987) [6,7] and Goyal and Welsh (2003, 2008) [8,9], among many
others) consider the random walk as one of the most relevant benchmarks. Anecdotally,
and just to emphasize the relevance and popularity of nested models comparisons, to date,
the number of citations of [2] is slightly lower than Clark and West (2007) [10] (1552 and
1615, respectively), even though the latter is exclusively useful for nested models (and
published a decade later).

An interesting approach dealing with nested models is the one of Clark and McCracken
(2001, 2005) [5,11] and McCracken (2007) [12] (henceforth, CM). Let P be the number of forecasts,
R the initial number of observations used to estimate our parameters, T = P + R, and ft+1(β̂t)
the loss function for one-step-ahead forecasts, constructed with a vector of estimated parameters
β̂t. The intuition of CM asymptotics is as follows: when models are nested, traditional tests
of encompassing/accuracy become degenerate under the null hypothesis in the sense that

P−0.5 ∑T
t=R ft+1(β̂t)

plim→ 0. However, CM notice that ∑T
t=R ft+1(β̂t) need not be degenerate.

Based on this intuition, CM derive the asymptotic distribution of some traditional tests, such as
the encompassing test of Harvey, Leybourne, and Newbold (1998) [13] (ENC-t), and a simple
modification of the ENC-t (label as ENC-NEW). CM show that the asymptotic distribution of
these tests is non-standard, but functions of integrals of quadratic Brownian motions. Under
specific conditions, however, these statistics are free of nuisance parameters (See Clark and Mc-
Cracken (2013) [14] for a detailed discussion on these conditions.). For those cases, CM tabulate
their critical values, which depend on how we update our parameters (either rolling, recursive,
or fixed), the number of excess parameters in the nesting model (k2), and the asymptotic limit of
the ratio P/R.

Even though the asymptotic theory of CM is useful in many contexts, it has some im-
portant caveats. In particular, Assumption 3 in [5,12] requires that the generalized forecast
errors form a martingale difference sequence. This condition may be, of course, violated in
the case of misspecification in the null model. As commented by [12]: “The assumption has
the side effect of imposing a type of correct model specification [ . . . ] and thus rules out applications
where the predictive models are misspecified” [12], p. 725. In our opinion, this is a somewhat
overlooked aspect of CM results (Even though they take a completely different approach,
the most related papers addressing misspecification in predictive models are those of Chao,
Corradi and Swanson (2001) [15], Armah and Swanswon (2008) [16], and Corradi and
Swanson (2004, 2006, 2007) [17–19]. These authors propose bootstrap procedures that are
robust to different types of misspecifications. In contrast, we derive the new asymptotics
distributions in the presence of bias and propose a modification to the ENCNEW.). We
show that the use of CM critical values ignoring the effects of these misspecifications may
lead to severe size distortions; in specific, we address the effects of a bias in the predictive
models over the asymptotic distributions (The implication of a bias in the nested model is
that, under the null hypothesis, the forecasting errors of both models are biased. In essence,
we show that a bias in the forecast errors distorts the size properties of traditional tests.).

Why not simply use a correctly specified model, then? First, our view about econometric
forecasting models coincides with Box (1976) [20] in the sense that “All models are wrong,
but some of them are useful.” In this context, as forecasting models are just parsimonious
representations of complex phenomena, it is reasonable to expect some misspecification in
the predictive models. Moreover, the econometric framework of CM considers exclusively
linear models estimated by OLS; thus, any nonlinearity in the true model may introduce
some type of misspecification. Second, if we knew in advance the “correct” model, then “there
may be no compelling reason for performing an out-of-sample version of the particular test ( . . . ) in
the first place.” [17], p. 188. As noticed by Inoue and Killian (2002) [21], in-sample analyses
tend to outperform their out-of-sample counterparts in terms of power (when models are
correctly specified); as a consequence, if we knew for sure that our models are “correct”,
then the framework of CM may not be relevant to begin with: “After all, under the assumption
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of correct specification under the null, why not simply carry out in-sample inference, for the sake of
efficiency?” [16], p. 196.

If there is indeed a bias in the null model, then by construction, the critical values
provided by CM are no longer valid as they rule out this possibility. In this context, we
distinguish between two relevant cases: (i) there is a bias both in-sample and out-of-
sample, and (ii) we find the bias exclusively out-of-sample. A leading case in which (i) is
relevant is the following: If the expected value of the target variable is not zero, and the
benchmark is the zero-forecast from a driftless random walk (DRW), then by construction,
both models are biased under the null hypothesis, and inference may be severely incorrect
when using CM critical values. As the DRW is one of the most important benchmarks in
the economic/financial forecasting literature, we think this is an important extension for
CM work, and we focus on this leading case (Some empirical papers using the DRW as
a benchmark and the ENC-NEW with CM critical values are Pincheira and Hardy (2019,
2021) [22,23], Pincheira et al. (2021) [24,25], to name a few. We emphasize, however, that
these papers consider multiple benchmarks as the nested model (not exclusively the DRW).
In this sense, we are not questioning they main conclusions by any means.). Regarding
(ii), an important case is a shift in the expected value of the target variable: because out-
of-sample analyses require multiple in-sample estimations of the parameters, a structural
break in the expected value of the target variable (outside the estimation window) may
introduce an out-of-sample bias.

Based on CM, we relax Assumption 3 in [5] and derive the new distribution for the
ENC-NEW imposing a bias in the null model (either out-of-sample or both in-sample and
out-of-sample). While this is a subtle change in the set of assumptions, it has important
implications over the asymptotic theory. In particular, the quadratic Brownian motions
in CM arise because of the martingale difference terms: put simply, the orthogonality
condition is assumed to hold both in-sample and out-of-sample. In contrast, in our case,
the quadratic Brownian motions arise because of both the predictors and the martingale
difference terms. Moreover, if the bias appears both in-sample and out-of-sample, the
persistency of the predictors shift the expected value of the integrals of quadratic Brownian
motions, thus a re-centering is required: our MENC-NEW is simply a re-centered version
of the ENC-NEW. Of course, in the absence of a bias, our MENC-NEW reduces to the
ENC-NEW. As expected, we show that this new asymptotic distribution depends on the
magnitude of the bias and the persistency of the predictors. Even though the asymptotic
distribution of the MENC-NEW (and the ENC-NEW with adjusted critical values) is not
pivotal, the nuisance parameters can be easily estimated (one of these nuisance parameters
being, of course, the magnitude of the bias).

To assess the adequacy of our approach, we provide five different sets of Monte
Carlo simulations. The firsts two sets are designed to evaluate the size properties of our
MENC-NEW with both an in-sample and out-of-sample bias. The third and fourth sets
are designed to evaluate the size properties of the ENC-NEW with our adjusted critical
values when there is only an out-of-sample bias (e.g., a structural break). Finally, the last
set of simulations evaluates the power properties of our test. We compare the performance
of our approach against the ENC-NEW (with CM critical values), the ENC-t ([5]), and
the Wild Clark and West (WCW-t) proposed by Pincheira, Hardy, and Muñoz (2021) [26].
Our results are crystal clear in terms of size: (i) A bias in the null model may severely
distort the size properties of the ENC-NEW and the ENC-t. For instance, under the null
hypothesis, some of our simulations show that both tests may exhibit an empirical size
of over 30% when the nominal size is just 10%. (ii) In sharp contrast, our approach is
reasonably well-sized in all our simulations, and it seems to outperform the other tests in
most of our simulations. As expected, our approach dominates the rest of the tests when
the data-generating process considers a greater bias. (iii) Next to our approach, the WCW-t
exhibits the best size properties. However, as Pincheira, Hardy, and Muñoz (2021) [26]
noticed, this advantage comes with a cost: the WCW-t displays significantly less power
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than the competitors. (iv) Even though the ENC-NEW is significantly more oversized than
our test, there are no significant differences between both approaches in terms of power.

The rest of the paper is organized as follows. Section 2 provides a brief literature review
on forecast evaluation in economics and finance. Section 3 considers the case of the DRW
being the benchmark model (thus, a presence of a bias both in-sample and out-of-sample).
In this case, we propose the MENC-NEW as the proper approach. Section 4 considers
that the in-sample bias may be different than the out-of-sample bias. The interesting case
here is an in-sample bias of zero but an out-of-sample bias different from zero (e.g., a shift
in the drift of the target variable). In this case, there is no need for a re-centering term,
although we derive the new asymptotic distribution of the ENC-NEW (thus, it is necessary
to simulate new critical values). Section 5 considers four different Monte Carlo simulations
to evaluate the size properties of our approach compared to traditional tests. At the end of
Section 4 we evaluate the power of our test. Finally, Section 6 concludes.

2. Literature Review

Forecasting is a crucial area of study in financial econometrics: “It is obvious that
forecasts are of great importance and widely used in economics and finance. Quite simply,
good forecasts lead to good decisions.” Diebold and Lopez (1996) [27], page 241. Of course,
a forecast has to be good in order to be useful, but how do we assess the quality of the
forecast? This is the raison d’être of the literature on forecast evaluation. See West (2006) [4]
and Clark and McCracken (2013) [28] for great reviews on forecast evaluation.

Forecast evaluation has a long tradition in economics and finance. For instance, West
(2006) [4] recognizes Wilson (1934) [29] as one of the earlier examples. Other famous
works are Fair and Shiller (1989, 1990) [30,31] and Meese and Rogoff (1983, 1988) [6,7]. The
main intuition in these empirical papers is the following: if a model is a reasonably good
representation of the target variable, then this model should accurately forecast this target
variable. In this sense, forecast evaluation is at the core of empirical time series works.

Diebold and Mariano (1995) [1] (DM) and West (1996) [2] (DM) are two famous seminal
papers addressing formal procedures to evaluate forecasts. In short, DM propose a direct
application of the Central Limit Theorem for stationary series. In some sense, the DM
approach is appealing since it relies on weak assumptions on the loss functions and the
forecasting errors. Moreover, the Central Limit Theorem ensures asymptotic normality, and
consequently, conducting inference in this framework is straightforward. Nevertheless,
an important caveat of DM approach is that they consider forecasts as primitives: they do
not consider the effects of parameter uncertainty. Intuitively, the DM approach is valid for
evaluating forecasts but not for inference about models.

The main contribution of [2] is considering the case of forecasting models. The author
provides a formal procedure for testing predictive ability at the population level. In essence,
West (1996) [2] addresses how estimation error on the model’s parameters may affect the
proper inference about predictive ability. West notices that, under specific conditions,
estimation error vanishes asymptotically; if that is the case, then the approaches of DM and
West are equivalent. Notably, the asymptotic theory of West rules out the comparison of
nested models: West requires a full rank condition over the variance of the loss function.
Intuitively, in nested models, the null hypothesis of equal predictive ability means that
both models are identical; thus the asymptotic distribution of the test becomes degenerate.

The comparisons of nested models are extremely relevant in economics and finance.
A common practice is to compare the predictive performance of a model with a simple
benchmark. One of the most commonly considered benchmarks in the empirical literature
is the random walk, which is typically nested on more complex predictive models. Even
though the random walk is very simple, it is difficult to outperform empirically. As
famously noticed by Meese and Rogoff (1983) [6]: “We find that a random walk model
would have predicted major-country exchange rates during the recent floating-rate period
as well as any of our candidate models” [6], page 3. See Goyal and Welch (2008) [9], Rossi
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(2013) [32], and Meese and Rogoff (1988) [7] for more examples of how difficult it is to
outperform a simple random walk with more complex nesting models.

Due to its relevance, an important strand of the literature focuses on formal procedures
to compare the predictive performance of nested models. [3,10] (CW) propose an adjusted
mean squared prediction error test and show via simulations that this test works reasonably
well with standard normal critical values. Recently, Pincheira, Hardy, and Muñoz (2021) [26]
(PHM) consider a simple modification of the CW test. This modification prevents the core
statistic from becoming degenerate under the null hypothesis. Using the asymptotic theory
of [2], PHM show their test is asymptotically standard normal. The main caveat of their
approach is that their modification erodes some of the power properties of the CW test.

A different approach to deal with nested models is Clark and McCracken (2001,
2005) [5,11] and McCracken (2007) [12]. Using a completely different asymptotic theory,
the authors consider some of the most popular tests on forecast evaluation and derive its
asymptotic distributions for the special case of nested models. The authors show that the
asymptotic distribution of these statistics are no longer standard, but they are functionals
of quadratic Brownian motions. These distributions depend on the estimation scheme
considered to update the parameters of the model (either rolling or recursive), on the
number of excess parameters in the nesting model, and the asymptotic limit of the ratio
P/R. Under some specific conditions, CM show that these distributions are pivotal, and
they provide tables with the relevant critical values. Additionally, CM propose a different
regularization of the encompassing test proposed by [13]: they label this new encompassing
test as ENC-NEW. Notably, the simulations of CM suggest that the ENC-NEW has an edge
in terms of power compared to other traditional tests.

One problem with the approach of CM is that it requires the strong assumption that
the nested model is correctly specified. In essence, this assumption rules out the possibility
of a bias in the benchmark model: CM critical values are no longer valid if that is the
case. To the best of our knowledge, this is the first paper that addresses how this type of
misspecification affects the asymptotic distribution of these tests. First, using the same
asymptotic theory as CM, we analyze how a bias in the null model modifies the asymptotic
distribution of the ENC-NEW. This asymptotic distribution is not pivotal and relies on the
magnitude of the bias and the persistency of the additional predictor in the nesting model.
Second, we show via simulations that ignoring this bias, and using CM critical values,
may lead to severe size distortions. Not surprisingly, these size distortions depend on the
magnitude of the bias and the persistency of the additional predictor.

3. The DRW as the Null Model and the MENC-NEW Test

The theory of CM imposes that the benchmark model is correctly specified. This
section illustrates the effects of failing this condition because of a bias both in-sample and
out-of-sample. The leading case is the DRW as the benchmark model: If the expected value
of the target variable is not zero, then both models are biased under the null hypothesis of
no encompassing. Considering the relevance of the DRW in the forecasting literature, we
focus exclusively on this leading case. With some technical subtleties, the generalization to
a linear parametric benchmark is straightforward and considered in Section 4. In fact, the
results of Section 3 are special cases of our decompositions in Section 4.

Following CM notation, let k2 be the number of parameters in the nesting model, and
W(s) be a (k2 × 1) vector Brownian Motion with covariance kernel equal to the Identity
matrix. Let Yt+1 be our scalar target variable, such that Yt+1 = ∆ + ut+1, where ut+1 is
simply white noise with variance σ2

u , and ∆ captures the expected value of Yt+1. Consider
two competing models for one-step-ahead forecasts. The first one is simply the zero-forecast
from a DRW, with forecast errors denoted by u1,t+1

Yt+1 = u1,t+1 (model 1 : null model)
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The second one is a linear parametric model

Yt+1 = X′tβ
∗ + u2,t+1 (model 2 : alternative model)

Notice that β∗ denotes the (k2 × 1)vector of true (population) parameters, and Xt is
assumed to be a zero-mean covariance stationary vector with k2 predictors. Let β̂t be the
OLS estimator of β∗ constructed with either a rolling, recursive or fixed scheme.

As noticed by [2], under the null hypothesis of no encompassing, β∗ = 0 and both
models are identical ∀t. Therefore, traditional tests of encompassing/accuracy become
degenerate under West’s asymptotic theory. To address this issue, CM proposes a new
statistic (ENC-NEW) and derives its distribution using a different set of asymptotics:

ENC− NEW = P
P−1 ∑t û1,t+1(û1,t+1 − û2,t+1)

P−1 ∑t û2
2,t+1

The limit distribution of the ENC-NEW depends on how parameters are updated:
either

∫ 1
R/T s−1W ′(s)dW(s) (recursive), or T/R

∫ 1
R/T (W(s)−W(s− R

T ))′dW(s) (rolling)
(see [5], page 93). One of the key assumptions in CM is that model 1 is correctly specified
under the null hypothesis. Notice, however, that the DRW is free of parameter uncertainty
(û1,t+1 = u1,t+1), and

Yt+1 = û1,t+1 = u1,t+1 = ∆ + ut+1

In contrast, for the case of model 2

Yt+1 = X′t β̂t + û2,t+1

where û2,t+1 = X′t(β∗ − β̂t) + u2,t+1.
Under the null of no encompassing β∗ = 0, and u1,t+1 = u2,t+1 = ∆ + ut+1. This is

the key difference with CM asymptotic theory: Under the null hypothesis, both models
are misspecified (biased); the reason is that none of them capture the mean of our target
variable. By construction, we will observe this type of misspecification whenever ∆ = EYt+1 6= 0
and the nested model is the zero-forecast from a driftless random walk. We focus on this leading
case as the DRW is one of the most frequently used benchmarks in financial forecasting.

Let us now illustrate the effects of this bias over the asymptotic distribution of the
ENC-NEW. For clarity of exposition, we focus our discussion and most of our proofs on
the recursive scheme (since they are all similar). However, we do provide the main results
for both the rolling and recursive schemes in Theorem 2.

From West (1996), under the null hypothesis, we have P−1 ∑
t

û2
2,t+1 → σ2

2 = Eu2
t+1 +

∆2 = σ2
u + ∆2 as P, R→ ∞ . In what follows, we assume that Xtut+1 (rather than Xtu2,t+1)

is a martingale difference sequence. Now consider the following decomposition of the core
statistic

T−1

∑
t=R

û1,t+1(û1,t+1 − û2,t+1) =
T−1

∑
t=R

u1,t+1(u1,t+1 − û2,t+1) =
T−1

∑
t=R

u1,t+1X′t(β̂t − β∗) =
T−1

∑
t=R

(∆ + ut+1)X′t(β̂t − β∗)

=
T−1

∑
t=R

(∆ + ut+1)X′t
(
∑t−1

j=1 XjX′j
)−1(

∑t−1
j=1 Xjû2,j+1

)
=

T−1

∑
t=R

(∆ + ut+1)X′t
(
∑t−1

j=1 XjX′j
)−1(

∑t−1
j=1 Xj

(
∆ + uj+1

))

=
T−1

∑
t=R

ut+1X′t
(
∑t−1

j=1 XjX′j
)−1(

∑t−1
j=1 Xjuj+1

)
(1)

+ ∆
T−1

∑
t=R

X′t
(
∑t−1

j=1 XjX′j
)−1(

∑t−1
j=1 Xjuj+1

)
(2)
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+ ∆
T−1

∑
t=R

ut+1X′t
(
∑t−1

j=1 XjX′j
)−1(

∑t−1
j=1 Xj

)
(3)

+ ∆2
T−1

∑
t=R

X′t
(
∑t−1

j=1 XjX′j
)−1(

∑t−1
j=1 Xj

)
(4)

This decomposition explicitly shows the effects of parameter uncertainty on the core
statistic. This decomposition shows that the asymptotic distribution of the ENC-t and the
ENC-NEW depend on how parameters are updated (either rolling or recursive). Notice
that (1) is precisely the same term as Lemma A6 in [33] for the numerator of the ENC-NEW
in a recursive scheme. We may interpret (1) as the core statistic when there is no bias; if that
is the case, then ∆ = 0, and consequently (2) = 0, (3) = 0, (4) = 0, and the distribution of
the ENC-NEW is given by Theorem 3.3 of [5]. Nevertheless, (2–4) in the ENC-NEW arise
because ∆ may not be zero. In some sense, we can view Clark and McCracken (2001) [5]
results as the special case in which ∆ = 0. To establish the new asymptotic distribution of
the ENC-NEW, we use the following results.

Lemma 1.

(a) ∑T−1
t=R ( T

t )T
−0.5ut+1X′t(

1
t ∑t−1

j=1 XjX′j)
−1

(T−0.5 ∑t−1
j=1 Xjuj+1) =

∑T−1
t=R ( T

t )T
−0.5ut+1X′t(EXtX′t)

−1(T−0.5 ∑t−1
j=1 Xjuj+1) + op(1)

(b) ∆ ∑T−1
t=R ( T

t )T
−0.5X′t(

1
t ∑t−1

j=1 XjX′j)
−1

(T−0.5 ∑t−1
j=1 Xjuj+1) =

∆ ∑T−1
t=R ( T

t )T
−0.5X′t(EXtX′t)

−1(T−0.5 ∑t−1
j=1 Xjuj+1) + op(1)

(c) ∆ ∑T−1
t=R ( T

t )T
−0.5ut+1X′t(

1
t ∑t−1

j=1 XjX′j)
−1

(T−0.5 ∑t−1
j=1 Xj) =

∆ ∑T−1
t=R ( T

t )T
−0.5ut+1X′t(EXtX′t)

−1(T−0.5 ∑t−1
j=1 Xj) + op(1)

(d) ∆2 ∑T−1
t=R ( T

t )T
−0.5X′t(

1
t ∑t−1

j=1 XjX′j)
−1

(T−0.5 ∑t−1
j=1 Xj) =

∆2 ∑T−1
t=R ( T

t )T
−0.5X′t(EXtX′t)

−1(T−0.5 ∑t−1
j=1 Xj) + op(1)

(e) ∑T−1
t=R

ˆ
u1,t+1(

ˆ
u1,t+1 −

ˆ
u2,t+1) = ∑T−1

t=R ( T
t )T

−0.5ut+1X′t(EXtX′t)
−1(T−0.5 ∑t−1

j=1 Xjuj+1)+

∆ ∑T−1
t=R ( T

t )T
−0.5X′t(EXtX′t)

−1(T−0.5 ∑t−1
j=1 Xjuj+1)+

∆ ∑T−1
t=R ( T

t )T
−0.5ut+1X′t(EXtX′t)

−1(T−0.5 ∑t−1
j=1 Xj)+

∆2 ∑T−1
t=R ( T

t )T
−0.5X′t(EXtX′t)

−1(T−0.5 ∑t−1
j=1 Xj) + op(1)

Proof of Lemma 1. See Appendix A. �

Theorem 1 next establishes the asymptotic distribution of ∑
t

û1,t+1(û1,t+1 − û2,t+1)

Theorem 1.

(a) ∑T−1
t=R ( T

t )T
−0.5ut+1X′t(EXtX′t)

−1(T−0.5 ∑t−1
j=1 Xjuj+1)→

∫ 1
λ s−1W ′1(s)σ

2
udW1(s)

(b) ∆ ∑T−1
t=R ( T

t )T
−0.5X′t(EXtX′t)

−1(T−0.5 ∑t−1
j=1 Xjuj+1)→

∆
∫ 1

λ s−1W ′1(s)
√
(EXtX′t)

−1σu
√

VLP(Xt)dW2(s)

(c) ∆ ∑T−1
t=R ( T

t )T
−0.5ut+1X′t(EXtX′t)

−1(T−0.5 ∑t−1
j=1 Xj)→

∆
∫ 1

λ s−1W ′2(s)
√

VLP(Xt)σu

√
(EXtX′t)

−1dW1(s)

(d) ∆2 ∑T−1
t=R ( T

t )T
−0.5X′t(EXtX′t)

−1(T−0.5 ∑t−1
j=1 Xj)→

∆2
∫ 1

λ s−1W ′2(s)VLP(Xt)(EXtX′t)
−1dW2(s) + Λλ

(e) ∑T−1
t=R û1,t+1(û1,t+1 − û2,t+1)→

∫ 1
λ s−1W ′1(s)σ

2
udW1(s)+

∆
∫ 1

λ s−1W ′1(s)
√
(EXtX′t)

−1σu
√

VLP(Xt)dW2(s)+
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∆
∫ 1

λ s−1W ′2(s)
√

VLP(Xt)σu

√
(EXtX′t)

−1dW1(s)+

∆2
∫ 1

λ s−1W ′2(s)VLP(Xt)(EXtX′t)
−1dW2(s) + Λλ

Proof of Theorem 1. See Appendix B. �

Where VLP(Xt) is the long-run variance of Xt and λ = R/T. As expected, if ∆ = 0
(no bias), the asymptotic distribution of ∑

t
û1,t+1(û1,t+1 − û2,t+1) is simply Theorem 1a∫ 1

λ s−1W ′1(s)σ
2
udW1(s) (the same as CM). In contrast, if ∆ 6= 0, the limit distribution of

∑
t

û1,t+1(û1,t+1 − û2,t+1) is given by Theorem 1e. Compared to CM, this distribution de-

pends on three additional nuisance parameters: the magnitude of the bias ∆, the persistency
of the additional predictors VLP(Xt), and Λλ (which is also related to the persistency of
the predictors). Consequently, our Monte Carlo simulations in Section 5 reveal that the
size distortions of the ENC-NEW with CM critical values are more severe with greater
bias and persistency. Finally, Theorem 1e establishes that the asymptotic distribution of
∑
t

û1,t+1(û1,t+1 − û2,t+1) depend not only on W1, but also on W2; while the former appears

because of Xtut+1 (as in CM), the latter arises because of Xt. Both standard Brownian
motions are assumed to be independent.

Notice that the term Λλ in Theorem 1d,e arises because of the correlation between Xt
and Xj (i.e., the correlation between the predictor in the estimation window and the evalua-
tion window). Put simply, Λλ depends on the covariances E(XtXj). As W1 and W2 are as-

sumed to be independent, we must re-center the term ∆2
∫ 1

λ s−1W′2(s)VLP(Xt)(EXtX′t)
−1dW2(s)

whenever E(XtXj) 6= 0. See White (2014) [34], p.198 for a similar discussion. Notably, our
proposed MENC-NEW is simply a re-centered version of the ENC-NEW, corrected by the
autocovariances that shift the distribution. The re-centering term is simply the expected value
of ∆2

∫ 1
λ s−1W′2(s)VLP(Xt)(EXtX′t)

−1dW2(s). For clarity of exposition, consider the following
example: suppose that k2 = 1, then, the re-centering term is simply given by

Λλ = ∆2(EX2
t )
−1 T−1

∑
t=R

(
1
t
)∑t−1

j=1 E(XtXj)

While the sum of the covariances E(XtXj) are unknown, they can be estimated. Our
proposed MENC-NEW is simply

MENC− NEW = P
P−1 ∑t û1,t+1(û1,t+1 − û2,t+1)− Λ̂λ

P−1 ∑t û2
2,t+1

As Λ̂λ depends on the sum of the covariances, its estimation depends on λ (i.e., how
we split the data). Notice that this re-centering term will be particularly important for
both the recursive and the rolling scheme. Theorem 2 next establishes the asymptotic
distribution of our MENC-NEW for each updating scheme

Theorem 2. The asymptotic distribution of the MENC-NEW =P P−1 ∑t û1,t+1(û1,t+1−û2,t+1)−Λ̂λ

P−1 ∑t û2
2,t+1

is

given by
MENC− NEWP,R→∞(recursive)

→ 1
σ2

u+∆2 {σ2
u
∫ 1

λ s−1W ′1(s)dW1(s)

+∆σu
∫ 1

λ s−1W ′1(s)(EXtX′t)
−0.5√VLP(Xt)dW2(s)

+∆σu
∫ 1

λ s−1W ′1(s)(EXtX′t)
−0.5√VLP(Xt)dW2(s)

+∆2
∫ 1

λ s−1W ′2(s)VLP(Xt)(EXtX′t)
−1dW2(s)}
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MENC− NEWP,R→∞(rolling)
→ λ−1

σ2
u+∆2 {σ2

u
∫ 1

λ [W1(s)−W1(s− λ)]′dW1(s)

+∆σu
∫ 1

λ [W1(s)−W1(s− λ)]′(EXtX′t)
−0.5√VLP(Xt)dW2(s)

+∆σu
∫ 1

λ [W2(s)−W2(s− λ)]′
√

VLP(Xt)(EXtX′t)
−0.5dW1(s)

+∆2
∫ 1

λ [W2(s)−W2(s− λ)]′VLP(Xt)(EXtX′t)
−1dW2(s)}

where R/TT,R→∞ → λ .

Proof of Theorem 2. This is a direct application of Theorem 1 and the definition of the
MENC-NEW. �

Not surprisingly, if we set ∆ = 0 (i.e., no bias), the asymptotic distribution of the
MENC-NEW is either

∫ 1
λ s−1W ′1(s)dW1(s) (recursive) or λ−1

∫ 1
λ [W1(s)−W1(s− λ)]′dW1(s),

which is precisely Theorem 3c in [5]. In other words, Theorem 2 encompasses the case of
unbiasedness.

The main caveat of our approach is that these distributions are not pivotal: to obtain
our critical values, we must simulate the quadratic Brownian motions using estimates of
these nuisance parameters. Notably, relaxing the assumption of ∆ = 0 has the implication
of significantly complicating the asymptotic distribution of our test. Notice that the distri-
bution of the MENC-NEW depends on (i) The number of excess parameters k2. (ii) How we
update our parameters (either recursive or rolling). (iii) The persistency of the additional
predictors (through VLP(Xt)). (iv) The magnitude and sign of the bias (through ∆), (v) The
variances (EXtX′t)

−1 and σ2
u . (vi) How we split our dataset (through λ)). In contrast, the

distribution of the ENC-NEW simply depends on (i), (ii), and (vi); for this reason, CM
are able to provide a set of critical values. We emphasize, however, that ignoring these
additional parameters may distort the empirical size of these tests, as we show in Section 5.

Let us illustrate numerically how the critical values of the ENC-NEW might change
with a bias. Suppose we are interested in a recursive scheme, and we use fifty percent of the
sample to estimate our parameters and fifty percent to evaluate our forecasts ( R

T = 0.5, or
P
R = 1). Suppose the alternative model consider just one predictor Xt (i.e., k2 = 1). Under
the assumption of no bias, CM establishes the asymptotic distribution of the ENC-NEW in
a recursive scheme as

∫ 1
R/T s−1W(s)dW(s), and tabulate the corresponding critical values.

In this case, the critical values for 10%, 5%, and 1% significance levels are 0.984, 1.584, and
3.209, respectively.

Nevertheless, Theorem 1 establishes that the proper asymptotic distribution of the
ENC-NEW with a bias under the null model should be

1
∆+σ2

u
(
∫ 1

λ s−1W ′1(s)σ
2
udW1(s)

+∆
∫ 1

λ s−1W ′1(s)
√
(EXtX′t)

−1σu
√

VLP(Xt)dW2(s)

+∆
∫ 1

λ s−1W ′2(s)
√

VLP(Xt)σu

√
(EXtX′t)

−1dW1(s)

+∆2
∫ 1

λ s−1W ′2(s)VLP(Xt)(EXtX′t)
−1dW2(s) + Λλ)

Suppose the predictor in the alternative model follows an AR(1) process: Xt =
0.5Xt−1 + uX,t, with V(uX,t) = 0.1. If that is the case, VLP(Xt) = 0.1

(1−0.5)2 = 0.4 and

EX2
t = 0.1333. Set ∆ = 0.5 and σ2

u = 0.1. The critical values for 10%, 5%, and 1% signifi-
cance levels in this new scenario are 2.380, 3.760, and 7.676, respectively. In this case, the
bias in the null model shifts the critical values significantly to the right: in this illustration,
the critical values are twice those tabulated by CM. Consequently, using CM critical values
may lead to severely oversized tests. This is supported by our Monte Carlo simulations.
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4. The General Case of a Parametric Nested Benchmark and the Asymptotic
Distribution of the ENC-NEW

This section generalizes our previous result considering a parametric nested bench-
mark (possibly different from the DRW). Here, we allow the possibility of having different
in-sample and out-of-sample biases. As we estimate our parameters by OLS, it is rea-
sonable to think that the bias is present exclusively out-of-sample. For this reason, we
derive the asymptotic distribution of the ENC-NEW considering an in-sample and an
out-of-sample bias (∆IS and ∆oos respectively and possibly ∆IS 6= ∆oos), and then we focus
on the particular (but more relevant) case of ∆IS = 0.

Let X1 and X2 be the (k1 × 1) and (k × 1) vectors of predictors of the nested and
nesting models, respectively. In contrast to the previous section, k = k1 + k2; in other
words, k2 indicates the additional predictors considered in the nesting model. Let J be a k1
× k2 indication matrix, constructed as a (k1 × k1) identity matrix, and zeroes elsewhere.
In contrast to the previous section, additional terms arise in our decomposition because
model 1 is also affected by parameter uncertainty. We focus our discussion and most of
our proofs on the recursive scheme. We do provide, however, the main results for both the
rolling and recursive methods. First, notice that

û1,t+1 = u1,t+1 − X′1t(β̂1t − β∗1) = (ut+1 + ∆oos)− X′1t(β̂1t − β∗1)

û2,t+1 = u2,t+1 − X′2t(β̂2t − β∗2) = (ut+1 + ∆oos)− X′2t(β̂2t − β∗2)

Then, the core statistic from the ENC-NEW is simply given by

T−1

∑
t=R

û1,t+1(û1,t+1 − û2,t+1)

=
T−1

∑
t=R

[(ut+1 + ∆oos)− X′1t(β̂1t − β∗1)][X
′
2t(β̂2t − β∗2)− X′1t(β̂1t − β∗1)]

=
T−1

∑
t=R

(ut+1 + ∆oos)[X′2t(β̂2t − β∗2)− X′1t(β̂1t − β∗1)] (5)

−
T−1

∑
t=R

X′1t(β̂1t − β∗1)[X
′
2t(β̂2t − β∗2)− X′1t(β̂1t − β∗1)] (6)

To establish the distribution of (5) and (6), we need additional results, provided
by Lemmas 2 through 5. While these Lemmas are similar to those of CM, they are not
immediate from their results.

Lemma 2. sup
t

T0.5| 1t ∑t−1
j=1 Xl j| = Op(1), with l = 1, 2.

Proof Lemma 2. See Appendix C. �

Lemma 3.

(a)
∑T−1

t=R {
1
t ∑t−1

j=1 X1juj+1}
′{ 1

t ∑t−1
j=1 X1jX′1j}

−1
X1tX′2t{

1
t ∑t−1

j=1 X2jX′2j}
−1{ 1

t ∑t−1
j=1 X2juj+1}

=
T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′
{EX1X′1}

−1EX1tX′2t{EX2X′2}
−1

{
1
t

t−1
∑

j=1
X2juj+1

}
+ op(1)

(b)
∑T−1

t=R {
1
t ∑t−1

j=1 X1juj+1}
′{ 1

t ∑t−1
j=1 X1jX′1j}

−1
X1tX′1t{

1
t ∑t−1

j=1 X1jX′1j}
−1{ 1

t ∑t−1
j=1 X1juj+1}

=
T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′
{EX1X′1}

−1

{
1
t

t−1
∑

j=1
X1juj+1

}
+ op(1)
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(c)
∑T−1

t=R {
1
t ∑t−1

j=1 X1juj+1}
′{ 1

t ∑t−1
j=1 X1jX′1j}

−1
X1tX′1t{

1
t ∑t−1

j=1 X1jX′1j}
−1{ 1

t ∑t−1
j=1 X1j}

=
T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′
{EX1X′1}

−1

{
1
t

t−1
∑

j=1
X1j

}
+ op(1)

(d)
∑T−1

t=R {
1
t ∑t−1

j=1 X1juj+1}
′{ 1

t ∑t−1
j=1 X1jX′1j}

−1
X1tX′2t{ 1

t ∑t−1
j=1 X2jX′2j}

−1{ 1
t ∑t−1

j=1 X2j}

=
T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′
{EX1X′1}

−1EX1tX′2t{EX2X′2}
−1

{
1
t

t−1
∑

j=1
X2j

}
+ op(1)

(e)
∑T−1

t=R {
1
t ∑t−1

j=1 X1j}
′{ 1

t ∑t−1
j=1 X1jX′1j}

−1
X1tX′2t{ 1

t ∑t−1
j=1 X2jX′2j}

−1{ 1
t ∑t−1

j=1 X2juj+1}

=
T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1j

}′
{EX1X′1}

−1EX1tX′2t{EX2X′2}
−1

{
1
t

t−1
∑

j=1
X2juj+1

}
+ op(1)

(f)
∑T−1

t=R {
1
t ∑t−1

j=1 X1j}
′{ 1

t ∑t−1
j=1 X1jX′1j}

−1
X1tX′1t{

1
t ∑t−1

j=1 X1jX′1j}
−1{ 1

t ∑t−1
j=1 X1j}

=
T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1j

}′
{EX1X′1}

−1

{
1
t

t−1
∑

j=1
X1j

}
+ op(1)

(g)
∑T−1

t=R {
1
t ∑t−1

j=1 X1j}
′{ 1

t ∑t−1
j=1 X1jX′1j}

−1
X1tX′2t{ 1

t ∑t−1
j=1 X2jX′2j}

−1{ 1
t ∑t−1

j=1 X2j}

=
T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1j

}′
{EX1X′1}

−1EX1tX′2t{EX2X′2}
−1

{
1
t

t−1
∑

j=1
X2j

}
+ op(1)

Proof of Lemma 3. The proofs for Lemma 3a,b follow from Lemma A2 and A3b in CM.
While the proofs for Lemmas 3c through 3g are not immediate from CM, they follow the
same arguments and strategies. Since the proofs are very similar, Appendix D shows our
proofs exclusively for Lemma 3c. �

Lemma 4.
T−1

∑
t=R

X′1t(β̂1t − β∗1)[X
′
2t(β̂2t − β∗2)− X′1t(β̂1t − β∗1)] is op(1)

Proof Lemma 4. See Appendices E and F. �

Lemma 5.

T−1
∑

t=R
û1,t+1(û1,t+1 − û2,t+1)

=
T−1
∑

t=R
ut+1X′2t[(EX2X′2)

−1 − J(EX1X′1)
−1 J′]

t−1
∑

j=1
X2jut+1

+∆IS
T−1
∑

t=R
ut+1X′2t[(EX2X′2)

−1 − J(EX1X′1)
−1 J′]

t−1
∑

j=1
X2j

+∆oos
T−1
∑

t=R
X′2t[(EX2X′2)

−1 − J(EX1X′1)
−1 J′]

t−1
∑

j=1
X2jut+1

+∆IS∆oos
T−1
∑

t=R
X′2t[(EX2X′2)

−1 − J(EX1X′1)
−1 J′]

t−1
∑

j=1
X2j + op(1)

Proof of Lemma 5. See Appendix G. �

Theorem 3. Let SuX = σu

√
(EX2tX′2t)

−1,

(a) ∑T−1
t=R ut+1X′2t[(EX2X′2)

−1 − J(EX1X′1)
−1 J′]∑t−1

j=1 X2jut+1 →∫ 1
λ s−1W ′1(s)SuX [(EX2X′2)

−1 − J(EX1X′1)
−1 J′] SuXdW1(s)
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(b) ∆IS ∑T−1
t=R ut+1X′2t[(EX2X′2)

−1 − J(EX1X′1)
−1 J′]∑t−1

j=1 X2j →
∆IS
∫ 1

λ s−1W ′2(s)
√

VLP(X2t) [(EX2X′2)
−1 − J(EX1X′1)

−1 J′] SuXdW1(s)
(c) ∆oos ∑T−1

t=R X′2t[(EX2X′2)
−1 − J(EX1X′1)

−1 J′]∑t−1
j=1 X2jut+1 →

∆oos
∫ 1

λ s−1W ′1(s)SuX [(EX2X′2)
−1 − J(EX1X′1)

−1 J′]
√

VLP(X2t)dW2(s)
(d) ∆oos∆IS ∑T−1

t=R X′2t[(EX2X′2)
−1 − J(EX1X′1)

−1 J′]∑t−1
j=1 X2j →

∆oos∆IS
∫ 1

λ s−1W ′2(s)
√

VLP(X2t)[(EX2X′2)
−1 − J(EX1X′1)

−1 J′]
√

VLP(X2t)dW2(s) + Λλ

(e) ∑T−1
t=R û1,t+1(û1,t+1 − û2,t+1)→

∫ 1
λ s−1W ′1(s)SuX [(EX2X′2)

−1 − J(EX1X′1)
−1 J′]

SuXdW1(s) + ∆IS
∫ 1

λ s−1W ′2(s)
√

VLP(X2t) [(EX2X′2)
−1 − J(EX1X′1)

−1 J′] SuXdW1(s)+

∆oos
∫ 1

λ s−1W ′1(s)SuX [(EX2X′2)
−1 − J(EX1X′1)

−1 J′]
√

VLP(X2t)dW2(s)+

∆oos∆IS
∫ 1

λ s−1W ′2(s)
√

VLP(X2t) [(EX2X′2)
−1 − J(EX1X′1)

−1 J′]
√

VLP(X2t)dW2(s)+Λλ+ op(1)
(f) If there is no in-sample bias (i.e.,∆IS = 0), then

T−1

∑
t=R

û1,t+1(û1,t+1 − û2,t+1)
∫ 1

λ
s−1W ′1(s)S

′
uX [(EX2X′2)

−1 − J(EX1X′1)
−1 J′] SuXdW1(s)

+ ∆oos

∫ 1

λ
s−1W ′1(s)S

′
uX [(EX2X′2)

−1 − J(EX1X′1)
−1 J′]

√
VLP(X2t)dW2(s)

Proof of Theorem 3. Theorem 3e is simply the combination of Theorems 3a through 3d.
Theorem 3f is equivalent to Theorem 3e imposing ∆IS = 0. The proof for Theorems 3a–3d
is direct from Lemmas 3 through 5. �

Three things from Theorem 3 are worth mentioning. First, the re-centering term
of the MENC-NEW is relevant in the distribution because of the term ∆oos∆IS ∑T−1

t=R X′2t
[(EX2X′2)

−1 − J(EX1X′1)
−1 J′]∑t−1

j=1 X2j. The reason is that the correlation between X2j and
X2t may not be zero; in other words, we may find a correlation between the predictor in the
estimation and evaluation window. Second, if there is no in-sample bias (i.e., ∆IS = 0) then
the re-centering term is not required (thus, we could simply use the ENC-NEW with different
critical values). In essence, the term ∆oos ∑T−1

t=R X′2t[(EX2X′2)
−1 − J(EX1X′1)

−1 J′]∑t−1
j=1 ut+1X′2j

does not require a re-centering term since X2jut+1 (the in-sample term) and X2t (out-of-sample
predictor) are assumed to be uncorrelated. Finally, the first term in the distribution of Thereom
3f is akin to CM if we are willing to assume that errors are not autocorrelated and homoscedastic.
Notice, however, that even if that is the case, our distribution is different because of the out-of-
sample bias. In contrast to CM, these additional terms depend on the long-run variance of X2t
(VLP(X2t)), on an additional Brownian motion W2 and, of course, the out-of-sample bias ∆oos.
Theorem 4a next establishes the asymptotic distribution of the MENC-NEW in the general case
in which ∆IS, ∆oos 6= 0. In Theorem 4b, we consider the special (although more interesting) case
in which ∆IS = 0, ∆oos 6= 0; in this case, we establish the new asymptotic distribution of the
ENC-NEW, as the re-centering term is not required.

Theorem 4.

(a) The asymptotic distribution of our MENC-NEW= P P−1 ∑t û1,t+1(û1,t+1−û2,t+1)−Λ̂λ

P−1 ∑t û2
2,t+1

is simply

given by
MENC− NEWP,T→∞(Recursive)

1
σ2

u+∆2
oos

[
∫ 1

λ s−1W ′1(s)SuX [(EX2X′2)
−1 − J(EX1X′1)

−1 J′] SuXdW1(s)

+∆IS
∫ 1

λ s−1W ′2(s)
√

VLP(X2t) [(EX2X′2)
−1 − J(EX1X′1)

−1 J′] SuXdW1(s)
+∆oos

∫ 1
λ s−1W ′1(s)SuX [(EX2X′2)

−1 − J(EX1X′1)
−1 J′]

√
VLP(X2t)dW2(s)

+∆oos∆IS
∫ 1

λ s−1W ′2(s)
√

VLP(X2t) [(EX2X′2)
−1 − J(EX1X′1)

−1 J′]
√

VLP(X2t)dW2(s)]

MENC− NEWP,T→∞(Rolling)→



Mathematics 2022, 10, 171 13 of 33

λ−1

σ2
u+∆2

oos
[
∫ 1

λ (W1(s)−W1(s− λ))′SuX [(EX2X′2)
−1 − J(EX1X′1)

−1 J′] SuXdW1(s)

+∆IS
∫ 1

λ (W2(s)−W2(s− λ))′
√

VLP(X2t) [(EX2X′2)
−1 − J(EX1X′1)

−1 J′] SuXdW1(s)
+∆oos

∫ 1
λ (W1(s)−W1(s− λ))′SuX [(EX2X′2)

−1 − J(EX1X′1)
−1 J′]

√
VLP(X2t)dW2(s)

+∆oos∆IS
∫ 1

λ (W2(s)−W2(s− λ))′
√

VLP(X2t) [(EX2X′2)
−1

−J(EX1X′1)
−1 J′]

√
VLP(X2t)dW2(s)]

(b) If there is no in-sample bias (i.e.,∆IS = 0), then the asymptotic distribution of the ENC-NEW
is simply

ENC− NEWP,T→∞(recursive)

1
σ2

u+∆2
oos

[
∫ 1

λ s−1W ′1(s)SuX [(EX2X′2)
−1 − J(EX1X′1)

−1 J′] SuXdW1(s)

+∆oos
∫ 1

λ s−1W ′1(s)SuX [(EX2X′2)
−1 − J(EX1X′1)

−1 J′]
√

VLP(X2t)dW2(s)]

ENC− NEWP,T→∞(rolling)→

λ−1

σ2
u + ∆2

oos

[∫ 1

λ
(W1(s)−W1(s− λ))′Sux [(EX2X′2)

−1 − J(EX1X′1)
−1 J′] SuXdW1(s)

]

+
λ−1∆oos

σ2
u + ∆2

oos

[∫ 1

λ
(W1(s)−W1(s− λ))′Sux [(EX2X′2)

−1 − J(EX1X′1)
−1 J′]

√
VLP(X2t)dW2(s)

]

Proof of Theorem 4. The proofs of Theorem 4a,b are immediate from Theorem 3e,f and the
definition of the MENC-NEW and the ENC-NEW. �

As expected from Theorem 3, even in the case of ∆IS = 0, we will see that the
out of sample bias shift the asymptotic distribution of the ENC-NEW because of the
term ∆oos ∑T−1

t=R X′2t[(EX2X′2)
−1 − J(EX1X′1)

−1 J′]∑t−1
j=1 X2jut+1. Akin to CM, the distribu-

tion of the ENC-NEW depends on how parameters are estimated (either rolling or recur-
sive), on the number of excess parameters k2, and how we split our database (through
λ = lim

P,T→∞
R/T). Nevertheless, the new asymptotic distribution of the ENC-NEW depend

on more nuisance parameters than CM: it depends on the magnitude of the out-of-sample
bias ∆oos, on the persistency of the predictors in the nesting model (VLP(X2t)), and it is
necessary to simulate a second Brownian motion because of W2. In Section 5 next, we
show that ignoring these additional terms may severely distort the empirical size of the
ENC-NEW.

5. Monte Carlo Simulations

In this section, we consider four different sets of simulations to study the size properties
of our test compared to some traditional out-of-sample tests: the ENC-NEW and the ENC-t
with CM critical values, and the “Wild Clark and West” (WCW) of [26] (henceforth PHM).

The data generating process (DGP) in Section 5.1 is designed to study the effects of
a bias both in-sample and out of sample (e.g., the benchmark model is the DRW). The
experiment in Section 5.2 is akin to Section 5.1, but this time we set our parameters to match
the empirical specifications of [22–24] using the Chilean peso and lead prices. In these two
experiments, we consider the MENC-NEW according to Theorem 2.

Sections 5.3 and 5.4 consider two different DGPs that introduce an out-of-sample bias.
In these cases, the benchmark model the random walk (with drift). As a consequence, there
is no in-sample bias, and no re-centering term is required (according to Theorem 3). We
use the ENC-NEW with corrected critical values in these two cases, following Theorem 4
(ENC-NEW*).

Finally, Section 5.5 studies the power properties of the MENC-NEW. To this end, we
impose the alternative hypothesis over the DGP of Section 5.2.
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5.1. Size Properties of the MENC-NEW: The Benchmark Model Is the DRW and EYt 6= 0

To illustrate the effects of a bias in the nested model, we consider a simple DGP for
both the target variable Yt and the predictor Xt:

Yt+1 = α + βXt + εt+1 (7)

Xt+1 = ρXt + ut+1 (8)

where εt+1 and ut+1 are drawn simply by independent standard normal distributions.
The initial value Y1 for each simulation is set at the unconditional expected value of Yt+1
(EYt = α). We consider two competing one-step-ahead forecasts. The first model is simply
a zero-forecast (e.g., the DRW), and the second model uses exclusively Xt as a predictor
with no drift (i.e., Y f

t (1) = γXt).
To evaluate the empirical size of each test, we set β = 0. In this simple DGP, we

introduce the bias through the parameter α, and we modify the persistency of the predictor
Xt+1 through ρ. If α = 0, then the proper critical values for this setup are those of CM.
We argue, however, that severe distortions may appear because of α 6= 0, especially for
highly persistent predictors. To illustrate the severity of these size distortions, we consider
different sets of values for these two parameters α and ρ. We set α to either 0.3, 0.5, 0.7 or 1,
and ρ to either 0.6 or 0.8. Additional simulations with different values of these parameters
are available upon request. While this is an extremely simple DGP, it clearly illustrates the
size distortions over traditional tests of out-of-sample evaluation.

We consider sample sizes of T = 100, 150, and 200. As the asymptotic distribution of
most of these tests depends on how we split this sample, we consider P/R = 2 and 4, using
a recursive scheme of estimation (Additional results considering P/R = 0.4, 1, and 3 are
available upon request with similar conclusions.). We consider a total of 5000 Monte Carlo
simulations for each exercise.

To obtain the critical values suggested by Theorem 2, we closely follow the simulations
in CM. In each of the 5000 simulations, we generate 10,000 Brownian motions through
simple random walks, each using an independent sequence of 10,000 i.i.d increments,
drawn from a normal distribution, with a mean of 0 and a variance of 1/10,000. Then, we
obtain the integrals by summing the weighted quadratic of the random walks for the entire
evaluation window (from R + 1/T through T/T). In every Monte Carlo simulation, we
estimate the nuisance parameters of the MENC-NEW with the synthetic sample data (such
as the bias and the long-run variance of Xt), according to Theorem 2. Finally, the critical
values are simply the 90th and 95th percentiles of our 10,000 simulated stochastic integrals
for 10% and 5% significance levels, respectively.

To evaluate the empirical size of the ENC-t and ENC-NEW, we consider the critical
values available in CM for the recursive scheme with the corresponding P/R and k2 = 1.
In a recent paper, PHM propose a new asymptotically normal test label as the Wild Clark
and West (WCW). The authors show that parameter uncertainty in their framework is
asymptotically irrelevant. The strategy of PHM is to introduce an independent random
variable θt in the ENC-t core statistic that prevents degeneracy under the null hypothesis of
no encompassing. PHM propose a gaussian distribution for θt ( θt ∼ N(1, φ2)) such that

WCW − t =
√

P− 1
P−1 ∑T

t=R+1 ê1,t+1(ê1,t+1 − θt ê2,t+1)√
Ŝ f f

where ê1,t+1 and ê2,t+1 are the forecasting errorrs of the nested and nesting models, respec-
tively, and Ŝ f f is a consistent estimate of the long-run variance of ê1,t+1(ê1,t+1 − θt ê2,t+1). In
this case, we consider the HAC estimator proposed by Newey and West (1987,1994) [35,36].
While PHM do not provide an optimal value for the tuning parameter φ, they give some
recommendations. In particular, we set φ =

√
V(ê2,t) ∗ 0.1, as suggested by the authors

(see PHM, page 6).
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Tables 1 and 2 display our results for nominal sizes 10% and 5%, using P/R = 2, and 4
respectively. Each panel considers different parametrizations of our DGP. Three things about
Tables 1 and 2 are worth mentioning. First, consistent with Theorem 2, the ENC-t and the
ENC-NEW become severely oversized with an increasing bias and higher persistency on the
predictor. Notably, the last panel of Table 2 reports an empirical size about three times higher than
the nominal size for both statistics. The average size of the ENC-NEW across all exercises goes
from 18.2% (11.5%) to 30.8% (21.6%) with a nominal size of 10% (5%). Second, the MENC-NEW
is reasonably well-sized in most of our exercises. Notice that the size properties of our test
improve significantly with larger samples; this is reasonable since the asymptotic distribution of
our test relies on nuisance parameters estimated in each simulation. The average size of our
test goes from 10.3% (5.4%) to 12.9% (7.5%) across all exercises. Moreover, if we focus on the
simulations with the larger sample T = 200, our results range from 9.5% (4.9%) to 12.3% (6.9%).
Finally, while the WCW-t is generally well-sized in these exercises, we make a note of caution.
While we see improvements in size compared to the ENC-t and ENC-NEW, PHM show that
these improvements come with a cost: the WCW tends to exhibit less power than other tests.
Our results in Section 5.5 generally support this idea: the power of the WCW is sometimes less
than a half than our test.

Table 1. Empirical Size with P/R = 2.

Nominal Size 10% Nominal Size 5%

ENC-NEW ENC-t WCW-t MENC-
NEW ENC-NEW ENC-t WCW-t MENC-

NEW

α = 0.3 ρ = 0.8
T = 100 0.192 0.195 0.134 0.136 0.119 0.122 0.069 0.074
T = 150 0.188 0.188 0.133 0.128 0.119 0.121 0.069 0.072
T = 200 0.187 0.184 0.114 0.123 0.119 0.116 0.061 0.065

Ave 0.189 0.189 0.127 0.129 0.119 0.120 0.066 0.070
α = 0.5 ρ = 0.6

T = 100 0.183 0.187 0.116 0.107 0.114 0.117 0.060 0.057
T = 150 0.182 0.185 0.113 0.103 0.115 0.122 0.057 0.056
T = 200 0.182 0.181 0.105 0.100 0.116 0.112 0.053 0.050

Ave 0.182 0.184 0.111 0.103 0.115 0.117 0.057 0.054
α = 0.7 ρ = 0.6

T = 100 0.233 0.227 0.112 0.109 0.157 0.156 0.064 0.064
T = 150 0.230 0.227 0.104 0.105 0.154 0.162 0.055 0.062
T = 200 0.230 0.220 0.101 0.097 0.154 0.148 0.047 0.051

Ave 0.231 0.225 0.106 0.104 0.155 0.155 0.055 0.059
α = 1.0 ρ = 0.6

T = 100 0.291 0.280 0.113 0.114 0.208 0.198 0.062 0.067
T = 150 0.279 0.270 0.106 0.105 0.204 0.198 0.055 0.067
T = 200 0.276 0.261 0.098 0.096 0.201 0.186 0.050 0.053

Ave 0.282 0.270 0.106 0.105 0.204 0.194 0.056 0.062

Notes: Each entry report the percentage of rejections under the null hypothesis β = 0. The table’s left (right) side
reports our results with a nominal size of 10% (5%). ρ is related to the persistency of the predictor and α with
the magnitude of the bias. For each exercise we consider 5000 Monte Carlo simulations. T stands for the sample
size. We use a recursive scheme to update our parameters. P and R stand for the number of observations in the
evaluation and estimation windows, respectively. We determine the critical values (CV) for the MENC-NEW
according to Theorem 2. CV for the WCW are standard normal, while CV for the ENC-t and the ENC-NEW are
those tabulated in [5] for k2 = 1, P/R = 2 and a recursive method.
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Table 2. Empirical Size for P/R = 4.

Nominal Size 10% Nominal Size 5%

ENC-NEW ENC-t WCW-t MENC-
NEW ENC-NEW ENC-t WCW-t MENC-

NEW

α = 0.3 ρ = 0.8
T = 100 0.205 0.199 0.124 0.137 0.122 0.118 0.061 0.079
T = 150 0.201 0.195 0.120 0.131 0.121 0.122 0.064 0.078
T = 200 0.192 0.187 0.104 0.119 0.116 0.114 0.054 0.069

Ave 0.199 0.194 0.116 0.129 0.120 0.118 0.060 0.075
α = 0.5 ρ = 0.6

T = 100 0.198 0.192 0.114 0.111 0.120 0.114 0.056 0.061
T = 150 0.193 0.193 0.106 0.105 0.121 0.121 0.054 0.059
T = 200 0.191 0.187 0.096 0.098 0.117 0.109 0.044 0.049

Ave 0.194 0.191 0.105 0.105 0.119 0.115 0.051 0.056
α = 0.7 ρ = 0.6

T = 100 0.278 0.270 0.113 0.134 0.187 0.176 0.057 0.081
T = 150 0.276 0.261 0.107 0.126 0.193 0.183 0.056 0.077
T = 200 0.274 0.256 0.095 0.110 0.180 0.165 0.045 0.062

Ave 0.276 0.262 0.105 0.123 0.187 0.175 0.053 0.073
α = 1.0 ρ = 0.6

T = 100 0.321 0.301 0.103 0.120 0.218 0.209 0.052 0.067
T = 150 0.302 0.288 0.095 0.114 0.220 0.206 0.052 0.064
T = 200 0.301 0.284 0.089 0.095 0.209 0.189 0.043 0.052

Ave 0.308 0.291 0.096 0.110 0.216 0.201 0.049 0.061

Notes: Each entry report the percentage of rejections under the null hypothesis β = 0. The table’s left (right) side
reports our results with a nominal size of 10% (5%). ρ is related to the persistency of the predictor and α with
the magnitude of the bias. For each exercise we consider 5000 Monte Carlo simulations. T stands for the sample
size. We use a recursive scheme to update our parameters. P and R stand for the number of observations in the
evaluation and estimation windows, respectively. We determine the critical values (CV) for the MENC-NEW
according to Theorem 2. CV for the WCW are standard normal, while CV for the ENC-t and the ENC-NEW are
those tabulated in [5] for k2 = 1, P/R = 4 and a recursive method.

5.2. Size Properties of the MENC-NEW with a DGP

In this section, we use the same DGP as Section 5.1, but we set the parameters in
our simulation to match the econometric setup of [22–24] (PH). Based on the present-
value model for exchange rate determination (Campbell and Shiller (1987) [37] and Engel
and West (2005) [38]), PH show that the Chilean exchange rate has the ability to predict
base-metal prices. Table 2 in PH suggest the following econometric specification:

∆ln(CPt) = β[∆ln(ERt−1) + ∆ln(ERt−2)] + et

where ERt stands for the Chilean peso and CPt for a generic commodity price (in this case,
we use lead prices). PH use this econometric specification to determine whether this model
can outperform the zero-forecast model (e.g., they evaluate the null hypothesis H0 : β = 0).
We argue that some distortions may appear if E[∆ln(CPt)] 6= 0, as both models are biased
under the null hypothesis.

Let Yt = ∆ln(CPt) and Xt = [∆ln(ERt−1) + ∆ln(ERt−2)]. Using the annualized
monthly returns of the Chilean peso and lead prices from September 1999 through August
2020, and using the same DGP of Section 5.1 (under the null hypothesis β = 0), we estimate
ρ, σ2

ε = V(εt+1), σ2
u = V(ut+1), and δ = Corr(εt+1, ut+1):

Yt = α + βXt + εt+1 (9)

Xt = 0.53Xt−1 + ut+1 (10)

where (
εt
ut

)→ N(
σ2

ε δσuσε

δσuσε σ2
u

) with δ = −0.36, σε = 1.05, and σu = 0.50. To intro-

duce the bias, we consider two different values for α (0.3 and 0.6). Akin to Section 5.1,
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we compare out-of-sample the zero-forecast against a model that uses exclusively Xt

(Y f
t (1) = γXt). We estimate recursively by OLS the parameter γ. Tables 3 and 4 exhibit

our results for P/R = 1 and 2, respectively. Additional exercises are available upon request.
Notice that the only difference in each panel is the magnitude of the bias.

Table 3. Empirical Size for P/R = 1.

Nominal Size 10% Nominal Size 5%

ENC-NEW ENC-t WCW-t MENC-
NEW ENC-NEW ENC-t WCW-t MENC-

NEW

Bias = 0.3
T = 100 0.127 0.136 0.142 0.105 0.075 0.082 0.075 0.059
T = 150 0.120 0.134 0.132 0.100 0.074 0.081 0.073 0.054
T = 200 0.121 0.125 0.121 0.097 0.064 0.073 0.059 0.043

Ave 0.123 0.132 0.132 0.101 0.071 0.079 0.069 0.052
Bias = 0.6

T = 100 0.177 0.186 0.133 0.105 0.113 0.120 0.065 0.061
T = 150 0.175 0.183 0.123 0.103 0.112 0.119 0.058 0.052
T = 200 0.169 0.172 0.113 0.091 0.106 0.108 0.056 0.044

Ave 0.174 0.180 0.123 0.100 0.110 0.116 0.060 0.052

Notes: Each entry report the percentage of rejections under the null hypothesis. The table’s left (right) side reports
our results with a nominal size of 10% (5%). We introduce the bias in this GDP through the parameter α. For each
exercise, we consider 5000 Monte Carlo simulations. T stands for the sample size. We use a recursive scheme to
update our parameters. P and R stand for the number of observations in the evaluation and estimation windows,
respectively. We determine the critical values (CV) for the MENC-NEW according to Theorem 2. CV for the WCW
are standard normal, while CV for the ENC-t and the ENC-NEW are those tabulated in [5] for k2 = 1, P/R = 1 and
a recursive method.

The main conclusions of Tables 3 and 4 are similar to those in Tables 1 and 2. First,
consistent with Theorem 2, the ENC-t and ENC-NEW exhibit substantial size distortions
when the bias increases. The average size of both tests is ~12–13% (7%) when α = 0.3.
Nevertheless, when the bias increases (α = 0.6), the average size of both tests is ~17–18%
(11%). Notably, the MENC-NEW seems to be reasonably well-sized in all our exercises.
Specifically, the empirical size of our test ranges between 8.5 and 10.5% (4.3–6.1%), with an
average empirical size across all our exercises of 9.8% (5.1%). Akin to the previous section,
the size of our test seems to improve with the sample size; this is reasonable since we need
to estimate some nuisance parameters to determine our critical values. Finally, the WCW
exhibit mixed results compared to the ENC-t and ENC-NEW. In particular, the WCW is
less oversized for α = 0.6, but it tends to underperform for α = 0.3.

5.3. Size Properties of the ENC-NEW with Adjusted Critical Values: The Effects of an
Out-of-Sample Bias

In this DGP we introduce an out-of-sample bias by shifting the expected value of
the target variable Yt. The key point is that this shift happens in the evaluation window
t > R. As the parameters are recursively estimated in each period, the OLS estimator will
not fully accommodate this shift in small samples. As a consequence, we will observe an
out-of-sample bias in both models under the null hypothesis. In contrast to Section 5.1,
there is no need to re-center the ENC-NEW, as suggested by Theorem 3. Nevertheless, the
asymptotic distribution of the ENC-NEW is now given by Theorem 4b, and it is necessary
to obtain new critical values.
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Table 4. Empirical Size for P/R = 2.

Nominal Size 10% Nominal Size 5%

ENC-NEW ENC-t WCW-t MENC-
NEW ENC-NEW ENC-t WCW-t MENC-

NEW

Bias = 0.3
T = 100 0.120 0.127 0.128 0.098 0.069 0.073 0.070 0.056
T = 150 0.127 0.134 0.129 0.101 0.069 0.079 0.060 0.051
T = 200 0.113 0.121 0.121 0.090 0.062 0.069 0.061 0.043

Ave 0.120 0.127 0.126 0.096 0.067 0.074 0.064 0.050
Bias = 0.6

T = 100 0.174 0.175 0.120 0.097 0.105 0.114 0.058 0.057
T = 150 0.180 0.183 0.112 0.100 0.115 0.124 0.058 0.054
T = 200 0.176 0.177 0.101 0.085 0.101 0.104 0.049 0.045

Ave 0.177 0.178 0.111 0.094 0.107 0.114 0.055 0.052

Notes: Each entry report the percentage of rejections under the null hypothesis β = 0. The table’s left (right) side
reports our results with a nominal size of 10% (5%). We introduce the bias in this GDP through the parameter α.
For each exercise, we consider 5000 Monte Carlo simulations. T stands for the sample size. We use a recursive
scheme to update our parameters. P and R stand for the number of observations in the evaluation and estimation
windows, respectively. We determine the critical values (CV) for the MENC-NEW according to Theorem 2. CV for
the WCW are standard normal, while CV for the ENC-t and the ENC-NEW are those tabulated in [5] for k2 = 1,
P/R = 2 and a recursive method.

To illustrate the effects of this bias, we introduce this shift immediately after the
estimation window at t = R + 1 through a change in the drift. Let α1 and α2 be the drifts
before and after the shift, respectively:

Yt = α1 + βXt−1 + εt, t ≤ R

Yt = α2 + βXt−1 + εt, t > R + 1

where εt is an independent standard normal random variable and Xt is a stationary
AR(1) process

Xt = αx + ρXt−1 + vt, ∀t

We consider two competing models for the target variable Yt

Yt = c1 + v1,t (M1)

Yt = c2 + γXt−1 + v2,t (M2)

where c1, c2, and γ are regression parameters, and v1,t,v2,t stand for the forecast errors.
Notice that M1 forecasts Yt using its historical sample mean, and it is identical to M2
whenever γ = 0. As the parameters in M1 and M2 are estimated in-sample in each
recursive window by OLS, we should expect no in-sample bias whatsoever. Nevertheless,
the OLS estimator will not fully capture the out-of-sample change on the drift in small
samples. According to Theorem 3, if there is no in-sample bias, then the re-centering term
of the MENC-NEW is unnecessary. In this case, we may simply consider the ENC-NEW
with corrected critical values (as suggested by the asymptotic distribution in Theorem 4b).
We consider different parametrizations for this DGP. In particular, we allow different levels
of persistency on the predictor Xt (ρ = 0.4 and 0.8), and different changes on the drift
parameter (α1 = 0 α2 = 0.3, α1 = 0 α2 = 0.3, and α1 = 0 α2 = 0.3). The idea of using different
changes on the drift is to manage the magnitude of the out-of-sample bias.

Similar to Sections 5.1 and 5.2, we consider 5000 Monte Carlo simulations using a
recursive scheme with P/R = 1 and T = 100, 150, and 200. To evaluate the empirical
size of each test, we set β = 0. To simulate the corrected critical values of the ENC-
NEW, we consider the asymptotic distribution suggested by Theorem 4b. Akin to the
previous section, in each of the 5000 simulations, we generate 10,000 Brownian motions,
each using an independent sequence of 10,000 i.i.d increments, drawn from a normal
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distribution, with mean 0 and variance 1/10,000. Then, we obtain the integrals by summing
the weighted quadratic of the random walks for the entire evaluation window (from R
+ 1/T through T/T). We estimate the respective nuisance parameters in each simulation
using the simulated data, according to Theorem 4b. The critical values are the 90th and
95th percentiles of our 10,000 simulated stochastic integrals for 10% and 5% significance
levels, respectively.

Each panel in Table 5 exhibits our results using different parameterizations of our DGP.
Three features in Table 5 are worth mentioning. First, the ENC-NEW with corrected critical
values (ENC-NEW*) is generally well-sized in all exercises. In particular, the average size of
the ENC-NEW* goes from 8.8% (4.4%) to 11.5% (6.1%), where the most oversized exercise
exhibits a rejection of 11.6% (6.6%), and the average size across all exercises is 10.0% (5.16%).
Second, the ENC-NEW and the ENC-t are again significantly more oversized. For instance,
the average size of the ENC-t goes from 13.0% (7.3%) to 14.9% (9.0%), with an average size
across all exercises of 13.7% (7.87%). Finally, consistent with Theorem 4, the worsts results
for the ENC-NEW and ENC-t are those in simulations with a stronger persistency in the
predictor and a bigger positive shift in the drift (first panel). In these exercises, the ENC-t
ranges from 14.5% (8.8%) through 15.6% (9.3%), with an average size of 14.9% (9.0%). In
sharp contrast, the ENC-NEW with corrected critical values has an empirical size ranging
from 11.3% (5.0%) to 11.6% (6.6%), with an average size of 11.5% (6.1%).

Table 5. Empirical Size with an out-of-sample bias and P/R = 1.

Nominal Size 10% Nominal Size 5%

ENC-NEW ENC-t WCW-t ENC-
NEW* ENC-NEW ENC-t WCW-t ENC-

NEW*

ρ = 0.8 α1= 0 α2= 0.3 αX = 0.2
T = 100 0.142 0.145 0.141 0.116 0.086 0.088 0.077 0.066
T = 150 0.146 0.156 0.136 0.115 0.086 0.093 0.074 0.060
T = 200 0.141 0.145 0.121 0.113 0.088 0.088 0.067 0.058

Ave 0.143 0.149 0.133 0.115 0.087 0.090 0.073 0.061
ρ = 0.8 α1= 0.1 α2= 0.3 αX = 0.2

T = 100 0.130 0.126 0.141 0.104 0.073 0.072 0.078 0.054
T = 150 0.128 0.135 0.135 0.099 0.073 0.076 0.072 0.048
T = 200 0.125 0.129 0.127 0.098 0.073 0.072 0.072 0.049

Ave 0.128 0.130 0.134 0.100 0.073 0.073 0.074 0.050
ρ = 0.4 α1= 0.2 α2= −0.3 αX = 0.4

T = 100 0.120 0.136 0.137 0.094 0.069 0.077 0.074 0.048
T = 150 0.112 0.126 0.132 0.080 0.060 0.071 0.071 0.040
T = 200 0.121 0.131 0.128 0.090 0.068 0.071 0.069 0.045

Ave 0.118 0.131 0.132 0.088 0.066 0.073 0.071 0.044

Notes: Each entry report the percentage of rejections under the null hypothesis β = 0. The table’s left (right) side
reports our results with a nominal size of 10% (5%). We introduce the out-of-sample bias in this GDP through the
parameters α1 (the initial drift of Yt) and α2 (the drift of Yt after the change). The parameter ρ is related to the
persistency of the predictor Xt. αX denotes the drift of the predictor. For each exercise, we consider 5000 Monte
Carlo simulations. T stands for the sample size. We use a recursive scheme to update our parameters. P and R
stand for the number of observations in the evaluation and estimation windows, respectively. We determine the
corrected critical values (CV) for the ENC-NEW according to Theorem 2 (ENC-NEW*). CV for the WCW are
standard normal, while CV for the ENC-t and the ENC-NEW are those tabulated in [5] for k2 = 1, P/R = 1 and a
recursive method.

5.4. Size Properties of the ENC-NEW with Adjusted Critical Values: Persistency in the Drift

In this DGP, we introduce an out-of-sample bias by drifting the expected value of
the target variable Yt. The key point is that the drift in Yt follows a persistent, although
stationary, AR(1) process. As the parameters are recursively estimated in each period,
the OLS estimator will not be able to accommodate this shift in small samples, and as
a consequence, we will observe an out-of-sample bias in both models under the null
hypothesis. In contrast to Section 5.1, there is no in-sample bias, and there is no need
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to re-center the ENC-NEW, as suggested by Theorem 3. Nevertheless, the asymptotic
distribution of the ENC-NEW is now given by Theorem 4b.

Consider the following DGP for the target variable Yt and the predictor Xt

Yt = αy,t + βXt−1 + ut

Xt = αx + ρXt−1 + εt

where ut and εt are independent standard normal random variables. We consider two
competing models

Yt = c1 + v1,t (M1)

Yt = c2 + γXt−1 + v2,t (M2)

where c1, c2, and γ are simply regression parameters, and v1,t,v2,t stand for the forecast
errors. Notice that M1 forecasts Yt using its historical sample mean, and it is identical to
M2 whenever γ = 0. The interesting thing about this DGP is that we allow the drift of Yt to
follow a persistent (although stationary) AR(1) process

αy,t = αα + ρααy,t−1 + et

where et is an independent standard normal random variable. As the parameters in M1
and M2 are estimated in-sample in each recursive window by OLS, we should expect no
in-sample bias whatsoever. Nevertheless, the OLS estimator will not capture the out-of-
sample change on the drift. As the drift is persistently changing in each period, it may
introduce an out-of-sample bias. According to Theorem 4b, if there is no in-sample bias,
then the re-centering term of the MENC-NEW is unnecessary. In this case, we may simply
consider the ENC-NEW with corrected critical values (as suggested by the asymptotic
distribution in Theorem 4b).

Tables 6 and 7 report our results for P/R = 1 and 2, respectively (Additional results
are available upon request.). Consistent with our previous simulations, the ENC-NEW
with corrected critical values is reasonably well-sized, especially with large sample sizes.
The size of the ENC-NEW* ranges between 7.3% (3.0%) to 13.1% (7.2%), with an average
size across all exercises of 10.5% (5.2%). In sharp contrast, the ENC-NEW and the ENC-t
are severely oversized in all our simulations: some exercises exhibit an empirical size
four times bigger than its nominal size. For instance, the last panel of Table 7 shows an
average empirical size of 31.2% (22.8%) and 31.2% (23.3%) for the ENC-NEW and ENC-t,
respectively. Moreover, the average size of the ENC-NEW across all exercises is 26.3%
(18.6%), more than two (three) times its nominal size. Finally, the WCW-t seems to be
correctly sized for most of our exercises, with an empirical size ranging from 9.1% (4.6%) to
13.1% (6.8%).

5.5. Power Properties of the MENC-NEW

In this section, we provide some simulations evaluating the power properties of the
MENC-NEW compared to the ENC-NEW, ENC-t, and WCW-t. We use the same DGP of
Section 5.2, but this time we impose the alternative hypothesis setting β 6= 0. Tables 8 and 9
next exhibit our power results introducing a bias of α = 0.15, 0.30, and 0.60, considering
P/R = 1 and 2, respectively. In both tables, we impose the alternative by setting β = 0.6.
Additional simulations using different values for β deliver a similar message, and they are
available upon request.
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Table 6. Empirical size for P/R = 1.

Nominal Size 10% Nominal Size 5%

ENC-NEW ENC-t WCW-t ENC-
NEW* ENC-NEW ENC-t WCW-t ENC-

NEW*

ρ = 0.4 ρα= 0.9 αα= 0.01 αx = 0.3
T = 100 0.219 0.235 0.120 0.125 0.145 0.157 0.060 0.065
T = 150 0.207 0.220 0.112 0.106 0.137 0.141 0.056 0.049
T = 200 0.215 0.218 0.107 0.104 0.149 0.151 0.058 0.044

Ave 0.214 0.224 0.113 0.112 0.144 0.150 0.058 0.053
ρ = 0.5 ρα= 0.95 αα= 0.01 αx = 0.3

T = 100 0.264 0.276 0.128 0.131 0.189 0.204 0.063 0.072
T = 150 0.260 0.271 0.108 0.110 0.186 0.193 0.054 0.053
T = 200 0.270 0.274 0.115 0.105 0.197 0.201 0.058 0.052

Ave 0.265 0.274 0.117 0.115 0.191 0.199 0.058 0.059
ρ = 0.6 ρα= 0.9 αα= 0.05 αx = 0.4

T = 100 0.303 0.302 0.131 0.115 0.222 0.229 0.068 0.064
T = 150 0.289 0.292 0.113 0.090 0.215 0.214 0.060 0.042
T = 200 0.300 0.294 0.108 0.085 0.225 0.221 0.057 0.040

Ave 0.297 0.296 0.117 0.097 0.221 0.221 0.062 0.049

Notes: Each entry report the percentage of rejections under the null hypothesis β = 0. The table’s left (right)
side reports our results with a nominal size of 10% (5%). ρα and αα denote the persistency and the drift of αy,t,
respectively. The parameter ρ is related to the persistency of the predictor Xt. αX denotes the drift of the predictor.
For each exercise, we consider 5000 Monte Carlo simulations. T stands for the sample size. We use a recursive
scheme to update our parameters. P and R stand for the number of observations in the evaluation and estimation
windows, respectively. We determine the corrected critical values (CV) for the ENC-NEW according to Theorem
2 (ENC-NEW*). CV for the WCW are standard normal, while CV for the ENC-t and the ENC-NEW are those
tabulated in [5] for k2 = 1, P/R = 1 and a recursive method.

Table 7. Empirical Size for P/R = 2.

Nominal Size 10% Nominal Size 5%

ENC-NEW ENC-t WCW-t ENC-
NEW* ENC-NEW ENC-t WCW-t ENC-

NEW*

ρ = 0.4 ρα= 0.9 αα= 0.01 αx = 0.3
T = 100 0.216 0.236 0.111 0.121 0.145 0.156 0.053 0.063
T = 150 0.210 0.219 0.096 0.104 0.140 0.145 0.047 0.050
T = 200 0.220 0.218 0.096 0.099 0.148 0.155 0.048 0.042

Ave 0.215 0.224 0.101 0.108 0.144 0.152 0.049 0.052
ρ = 0.5 ρα= 0.95 αα= 0.01 αx = 0.3

T = 100 0.273 0.291 0.107 0.126 0.192 0.208 0.056 0.064
T = 150 0.272 0.285 0.092 0.103 0.186 0.203 0.046 0.050
T = 200 0.278 0.286 0.096 0.099 0.197 0.207 0.047 0.047

Ave 0.274 0.287 0.098 0.109 0.192 0.206 0.050 0.054
ρ = 0.6 ρα= 0.9 αα= 0.05 αx = 0.4

T = 100 0.316 0.319 0.116 0.115 0.226 0.239 0.062 0.059
T = 150 0.309 0.314 0.101 0.086 0.225 0.227 0.052 0.040
T = 200 0.310 0.303 0.091 0.073 0.234 0.232 0.049 0.030

Ave 0.312 0.312 0.103 0.091 0.228 0.233 0.054 0.043

Notes: Each entry report the percentage of rejections under the null hypothesis β = 0. The table’s left (right)
side reports our results with a nominal size of 10% (5%). ρα and αα denote the persistency and the drift of αy,t,
respectively. The parameter ρ is related to the persistency of the predictor Xt. αX denotes the drift of the predictor.
For each exercise, we consider 5000 Monte Carlo simulations. T stands for the sample size. We use a recursive
scheme to update our parameters. P and R stand for the number of observations in the evaluation and estimation
windows, respectively. We determine the corrected critical values (CV) for the ENC-NEW according to Theorem
2 (ENC-NEW*). CV for the WCW are standard normal, while CV for the ENC-t and the ENC-NEW are those
tabulated in [5] for k2 = 1, P/R = 2 and a recursive method.
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Table 8. Raw power with nominal sizes 10% and 5%, and P/R = 1.

Nominal Size 10% Nominal Size 5%

ENC-NEW ENC-t WCW-t MENC-
NEW ENC-NEW ENC-t WCW-t MENC-

NEW

Bias = 0.15
T = 100 0.925 0.883 0.419 0.923 0.878 0.801 0.364 0.871
T = 150 0.985 0.963 0.467 0.984 0.969 0.919 0.440 0.967
T = 200 0.997 0.991 0.501 0.997 0.994 0.976 0.489 0.993

Ave 0.969 0.946 0.462 0.968 0.947 0.899 0.431 0.944
Bias = 0.3

T = 100 0.905 0.856 0.395 0.885 0.848 0.765 0.338 0.823
T = 150 0.970 0.945 0.453 0.963 0.947 0.890 0.417 0.933
T = 200 0.993 0.984 0.493 0.991 0.988 0.955 0.471 0.982

Ave 0.956 0.928 0.447 0.947 0.928 0.870 0.409 0.913
Bias = 0.6

T = 100 0.807 0.751 0.330 0.738 0.739 0.659 0.267 0.630
T = 150 0.909 0.873 0.395 0.861 0.868 0.802 0.343 0.792
T = 200 0.962 0.931 0.450 0.928 0.936 0.885 0.407 0.892

Ave 0.892 0.851 0.392 0.842 0.847 0.782 0.339 0.771

Notes: Each entry report the percentage of rejections under the alternative hypothesis β = 0.6. The table’s left
(right) side reports our results with a nominal size of 10% (5%). We introduce the bias in this GDP through the
parameter α. For each exercise, we consider 5000 Monte Carlo simulations. T stands for the sample size. We use
a recursive scheme to update our parameters. P and R stand for the number of observations in the evaluation
and estimation windows, respectively. We determine the critical values (CV) for the MENC-NEW according to
Theorem 2. CV for the WCW are standard normal, while CV for the ENC-t and the ENC-NEW are those tabulated
in [5] for k2 = 1, P/R = 1 and a recursive method.

Table 9. Raw power with nominal sizes 10% and 5%, and P/R = 2.

Nominal Size 10% Nominal Size 5%

ENC-NEW ENC-t WCW-t MENC-
NEW ENC-NEW ENC-t WCW-t MENC-

NEW

Bias = 0.15
T = 100 0.938 0.929 0.450 0.934 0.896 0.870 0.409 0.893
T = 150 0.985 0.980 0.485 0.985 0.973 0.961 0.465 0.971
T = 200 0.997 0.997 0.507 0.996 0.994 0.989 0.501 0.994

Ave 0.973 0.969 0.481 0.972 0.954 0.940 0.458 0.953
Bias = 0.3

T = 100 0.914 0.906 0.432 0.900 0.865 0.835 0.385 0.837
T = 150 0.976 0.968 0.473 0.969 0.954 0.937 0.440 0.941
T = 200 0.995 0.992 0.502 0.994 0.989 0.978 0.488 0.982

Ave 0.962 0.955 0.469 0.954 0.936 0.917 0.438 0.920
Bias = 0.6

T = 100 0.830 0.814 0.364 0.748 0.757 0.728 0.303 0.655
T = 150 0.918 0.905 0.416 0.864 0.875 0.847 0.373 0.795
T = 200 0.969 0.958 0.468 0.938 0.946 0.925 0.438 0.902

Ave 0.906 0.892 0.416 0.850 0.859 0.833 0.372 0.784

Notes: Each entry report the percentage of rejections under the alternative hypothesis β = 0.6. The table’s left
(right) side reports our results with a nominal size of 10% (5%). We introduce the bias in this GDP through the
parameter α. For each exercise, we consider 5000 Monte Carlo simulations. T stands for the sample size. We use
a recursive scheme to update our parameters. P and R stand for the number of observations in the evaluation
and estimation windows, respectively. We determine the critical values (CV) for the MENC-NEW according to
Theorem 2. CV for the WCW are standard normal, while CV for the ENC-t and the ENC-NEW are those tabulated
in [5] for k2 = 1, P/R = 2 and a recursive method.

First, consistent with [26] (PHM), the size improvements of the WCW-t come with a
cost: a deterioration in power. As commented by PHM: “In terms of power, results have been
rather mixed, although CW has frequently exhibited some more power. All in all, our simulations
reveal that asymptotic normality and size corrections come with a cost: the introduction of a random
variable erodes some of the power of WCW.” [26], page 3. In particular, the power of WCW-t
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ranges from 33.0% (26.7%) to 50.7% (50.1%), with an average power of 44.5% (40.7%).
Second, the ENC-NEW, ENC-t, and MENC-NEW exhibit significantly more power than
WCW-t, generally more than double. For instance, the average power of the MENC-NEW
is 92.2% (88%). Finally, while the power of the ENC-NEW and the MENC-NEW are very
similar, we do observe a small edge on the ENC-NEW. This is, of course, reasonable as the
ENC-NEW and ENC-t are extremely oversized in this environment, according to the results
of Section 5.2. Not surprisingly, the differences in power become more important with a
higher bias (e.g., last panel): the advantage of the ENC-NEW in terms of power coincides
with the ENC-NEW being particularly more oversized. We see the results of Tables 8 and 9
encouraging since the differences in power are, most of the time, neglectable, even though
the size of the ENC-NEW is sometimes more than double than the nominal size.

6. Concluding Remarks

In this paper, we show analytically and via simulations that a bias in the null model
may severely distort the asymptotic distribution of some traditional tests of forecast evalua-
tion in nested models comparisons. These distortions are more severe with an increasing
bias and a higher persistency on the additional predictors. We address two relevant cases:
(i) The presence of a bias in-sample and out-of-sample (e.g., the driftless random walk as the
benchmark model). (ii) The presence of a bias exclusively out-of-sample (e.g., a shift in the
expected value of the target variable). To deal with the former case, we consider a simple
modification of the ENC-NEW (MENC-NEW) robust to a bias in the null model. In essence,
the MENC-NEW introduces a re-centering term in the ENC-NEW that appears because
of the additional predictors’ bias and persistency. In both cases, the relevant asymptotic
distribution is not pivotal; akin to CM, they are functionals of stochastic integrals, but they
also depend on the magnitude of the bias and the persistency of the predictors.

Based on CM, we derive the new distribution for the ENC-NEW imposing a bias in
the null model (either out-of-sample or both in-sample and out-of-sample). While this is a
subtle change in the set of assumptions, it has important implications over the asymptotic
theory. In particular, the quadratic Brownian motions in CM arise because of the martingale
difference terms: put simply, the orthogonality condition is assumed to hold both in-sample
and out-of-sample. In contrast, in our case, the quadratic Brownian motions arise because of
both the predictors and the martingale difference terms. Moreover, if the bias appears both
in-sample and out-of-sample, the persistency of the predictors shift the expected value of the
integrals of quadratic Brownian motions, thus a re-centering is required: our MENC-NEW
is simply a re-centered version of the ENC-NEW. Of course, in the absence of a bias, our
MENC-NEW reduces to the ENC-NEW. As expected, we show that this new asymptotic
distribution depends on the magnitude of the bias and the persistency of the predictors. Even
though the asymptotic distribution of the MENC-NEW (and the ENC-NEW with adjusted
critical values) is not pivotal, the nuisance parameters can be easily estimated (one of these
nuisance parameters being, of course, the magnitude of the bias).

Our Monte Carlo simulations reveal that our MENC-NEW (and the ENC-NEW with
adjusted critical values) is reasonably well-sized even when the ENC-NEW and ENC-t
(with CM critical values) exhibits rejections three to four times higher than the nominal
size. The severity of the size distortion is, of course, related to the magnitude of the bias, as
demonstrated by our decompositions.

Our results are important since the “correct specification” assumption in CM is often
overlooked in empirical works. We show that ignoring this type of misspecification (bias)
may severely change the asymptotic distribution of traditional tests. We suggest four
interesting avenues for future research: First, it is important to study the effects of other
cases of misspecification. For instance, a usual finding in the empirical literature is that
forecasts are often auto-inefficient, in the sense that Corr(Xt, ut+1) 6= 0. This type of
misspecification may also affect the asymptotic distribution of out-of-sample tests and,
consequently, distort the size and power properties. Second, in our view, the main caveat
of our approach is that the asymptotic distribution of our test is not pivotal. In this sense,
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the empirical researcher must simulate its critical values to conduct inference correctly.
An interesting contribution may be the development of asymptotically normal tests, or at
least an approach free of nuisance parameters, in order to simplify the forecast evaluation.
Third, the extension of our approach to a direct multi-step-ahead framework, along the
lines of [11]. Fourth, akin to CM, all our derivations are based on non-linear least squares
(where the least square estimator is, of course, a special case). It may be interesting to study
how the asymptotic distribution of these tests is affected by different estimation methods
(e.g., ridge regressions).
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Appendix A. Proof Lemma 1

Lemma 1e is simply the combination of Lemma 1a through 1d. We show first our
result for Lemma 1(a).

Proof Lemma 1(a). From (1):
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It suffices then to show that the last term on the RHS is op(1). From Lemma A1(b) in [33]
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follows from the fact that Xjuj+1 is a martingale difference, Theorem 7.19 in [34], from Corollary 29.19 of
Davidson (1994) [39] and Theorem 3.1 of Hansen (1992) [40]. Then, the proof is complete since T−0.5 is
op(1). �

As expected, the previous proof is akin to Lemma A2 from [33]. The remainder of the
proof is similar with one crucial difference: (2–4) depend on Xt rather than the martingale
difference sequence Xtut+1. In other words, these terms depend not only on the generalized
forecast errors, but also on the additional predictor Xt. The proofs for Lemma 1b through
1d are very similar and follow the same arguments, hence we only show our proofs for
Lemma 1b.

Proof Lemma 1(b). From the proof of Lemma 1a, it follows that
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Moreover, again, we only need to prove that the last term on the RHS is op(1). From
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is Op(1) follows from the fact that Xt is covariance stationary, Theorem 7.17 in [34], Corol-
lary 29.19 of [39], and Equation (3) in [40] (mixing sequences). Then, the proof is complete
since T−0.5 is op(1). �

Notice that this result is similar to Lemma A2 in [33], with one crucial difference: we
apply the FCLT for stationary ergodic series (to Xt), rather than the FCLT for a martingale
difference sequence.

Appendix B. Proof Theorem 1

Proof Theorem 1(a). Let R
T → λ when T, R→ ∞ . Since Xjuj+1 is a martingale difference,

from Theorem 7.19 in White (2014), the Invariance Principle (FCLT) for martingale differ-
ences applies (See McLeish (1974) [41] and Hall (1977) [42]). From Corollary 29.19 of [39] it
follows that
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This result is akin to Lemma A6 in [33] for the numerator of the ENCNEW with
a recursive scheme. We may interpret this term as the asymptotic distribution of the
ENCNEW when no bias is present.

Proof Theorem 1(b). That T−0.5 ∑t−1
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from Proof of Theorem 1a. From the continuous mapping theorem
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As Xt is covariance stationary, it is also global covariance stationary (See Definition 7.14
in [34]). According to Theorem 7.17 in [34], we may apply the FCLT for stationary ergodic
series. Then, from Corollary 29.19 of [39] and Equation (3) in [40] (mixing sequences), it
follows that
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Proof Theorem 1(c). This proof is similar to that of Theorem 1b. We use the Donsker
principle for stationary ergodic series (Theorem 7.17 in [34]) so that
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−1VLP(X)0.5σuW2(s)

Follows directly from the proof of Theorem 1c. From Corollary 29.19 of [39] and
Equation (3) in [40]

∆2
T−1
∑

t=R

(
T
t

)
T−0.5X′t(EXtX′t)

−1
(

T−0.5 ∑t−1
j=1 Xj

)
→ ∆2

∫ 1
λ s−1W ′2(s)VLP(X)(EXtX′t)

−1dW2(s) + Λλ

�

Proof Theorem 1(e). Theorem 1e is simply the combination of Theorem 1a through 1d. �

Appendix C

Proof of Lemma 2. First notice that sup
t

T0.5| 1t ∑t−1
j=1 Xl j| ≤ T

R sup
t
|T−0.5 ∑t−1

j=1 Xl j|

As T/R is bounded, it is sufficient to show that sup
t
|T−0.5 ∑t−1

j=1 Xl j| is op(1). Then, by

the FCLT it follows that T−0.5 ∑t−1
j=1 Xl j →

√
VLP(Xl)W(s) .

Then, as noticed by CM, from Lemma 2.1 in Corradi, Swanson and Olivetti (2001) [43]
it follows that

sup
t
|T−0.5

t−1

∑
j=1

Xl j| → sup
λ≤ t

T≤1

∣∣∣∣√VLP(Xl)W(s)
∣∣∣∣ = Op(1)

The proof is complete. �

Appendix D

Proof of Lemma 3. With minor technical subtleties, this proof is similar to Lemma A2 in
CM. The first step is to show that.

T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′{
1
t

t−1
∑

j=1
X1jX′1j

}−1

X1tX′1t

{
1
t

t−1
∑

j=1
X1jX′1j

}−1{
1
t

t−1
∑

j=1
X1j

}

=
T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′{
EX1X′1

}−1X1tX′1t
{

EX1X′1
}−1

{
1
t

t−1
∑

j=1
X1j

}
+ op(1)
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First, we add and substract twice E(X1tX′1t)
−1

T−1

∑
t=R

{
1
t

t−1

∑
j=1

X1juj+1

}′{
1
t

t−1

∑
j=1

X1jX′1j

}−1

X1tX′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1j

}
=

T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′
{EX1X′1}

−1X1tX′1t{EX1X′1}
−1

{
1
t

t−1
∑

j=1
X1j

}

+
T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′
[

{
1
t

t−1
∑

j=1
X1jX′1j

}−1

− {EX1X′1}
−1]X1tX′1t

{ 1
t

t−1
∑

j=1
X1jX′1j

}−1

−{EX1X′1}
−1
]{

1
t

t−1
∑

j=1
X1j

}

+
T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′
{EX1X′1}

−1X1tX′1t

{ 1
t

t−1
∑

j=1
X1jX′1j

}−1

− {EX1X′1}
−1

{ 1
t

t−1
∑

j=1
X1j

}

+
T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′
[

{
1
t

t−1
∑

j=1
X1jX′1j

}−1

− {EX1X′1}
−1]X1tX′1t{EX1X′1}

−1

{
1
t

t−1
∑

j=1
X1j

}

Then, we only need to show that the following term is op(1)

T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′
[

{
1
t

t−1
∑

j=1
X1jX′1j

}−1

− {EX1X′1}
−1]X1tX′1t

{ 1
t

t−1
∑

j=1
X1jX′1j

}−1

− {EX1X′1}
−1

{ 1
t

t−1
∑

j=1
X1j

}

+
T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′
{EX1X′1}

−1X1tX′1t

{ 1
t

t−1
∑

j=1
X1jX′1j

}−1

− {EX1X′1}
−1

{ 1
t

t−1
∑

j=1
X1j

}

+
T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′
[

{
1
t

t−1
∑

j=1
X1jX′1j

}−1

− {EX1X′1}
−1]X1tX′1t{EX1X′1}

−1

{
1
t

t−1
∑

j=1
X1j

}

Moreover, each of the three terms are op(1). The proof for each term follows the same
argument; thus, we show its exclusively for the first term. Taking absolute value

∣∣∣∣∣∣T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′{ 1
t

t−1
∑

j=1
X1jX′1j

}−1

−
{

EX1X′1
}−1

X1tX′1t

{ 1
t

t−1
∑

j=1
X1jX′1j

}−1

−
{

EX1X′1
}−1

{ 1
t

t−1
∑

j=1
X1j

}∣∣∣∣∣∣
≤ k4 P

T (
1
P

T−1
∑

t=R
|X1tX′1t |)(sup

t
|T0.25 1

t

t−1
∑

j=1
X1juj+1|)(sup

t
|T0.25 1

t

t−1
∑

j=1
X1j |)(sup

t
T0.25|

{
1
t

t−1
∑

j=1
X1jX′1j

}−1

−
{

EX1X′1
}−1|)(sup

t
T0.25|

{
1
t

t−1
∑

j=1
X1jX′1j

}−1

−
{

EX1X′1
}−1|)

Given that X1t is assumed to be stationary, 1
P ∑T−1

t=R |X1t X ′1t | is bounded. That

sup
t
|T0.25 1

t ∑t−1
j=1 X1ju j+1 , sup

t
T0.25 |

{
1
t ∑t−1

j=1 X1j X ′1j

}−1
−
{

EX1X ′1
}−1 | are op(1) follow

directly from Lemmas A1 (a) and (b) in CM. Finally, from Lemma 4, sup
t

T0.5 | 1t ∑t−1
j=1 X j |

= Op(1), then sup
t

T0.25 | 1t ∑t−1
j=1 X j | = op(1) and the first part of the proof is complete.

Now we show that

T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′
{EX1X′1}

−1X1tX′1t{EX1X′1}
−1

{
1
t

t−1
∑

j=1
X1j

}

=
T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′
{EX1X′1}

−1

{
1
t

t−1
∑

j=1
X1j

}
+ op(1)

First, we add and subtract EX1tX′1t
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T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′{
EX1X′1

}−1X1tX′1t
{

EX1X′1
}−1

{
1
t

t−1
∑

j=1
X1j

}

=
T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′{
EX1X′1

}−1
{

1
t

t−1
∑

j=1
X1j

}
+

T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′{
EX1X′1

}−1
(X1tX′1t

−EX1tX′1t)
{

EX1X′1
}−1

{
1
t

t−1
∑

j=1
X1j

}

Then, we show that
∑T−1

t=R {
1
t ∑t−1

j=1 X1juj+1}
′{EX1X′1}

−1(X1tX′1t − EX1tX′1t){EX1X′1}
−1{ 1

t ∑t−1
j=1 X1j} is

op(1):

T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′{
EX1X′1

}−1(X1tX′1t − EX1X′1
){

EX1X′1
}−1

{
1
t

t−1
∑

j=1
X1j

}

= T−0.5
T−1
∑

t=R
{
(

T
t

)2
[

T−0.5
t−1
∑

j=1
X′1j
{

EX1X′1
}−1

⊗
t−1
∑

j=1
X′1juj+1

{
EX1X′1

}−1vec
[
T−0.5(X1tX′1t − EX1tX′1t

)]]
}

As ∑T−1
t=R

{
( T

t )
2
[T−0.5 ∑t−1

j=1 X′1j{EX1X′1}
−1 ⊗ ∑t−1

j=1 X′1juj+1{EX1X′1}
−1vec[T−0.5(X1t X′1t − EX1t X′1t)]]

}
is

bounded and T−0.5 is op(1), the proof is complete. �

Appendix E

Proof of Lemma 4. While this result is similar to Lemma A3 in [33], it is not immediate

from their paper. Notice that ∑T−1
t=R X′1t(

ˆ
β1t − β∗1)[X

′
2t(

ˆ
β2t − β∗2)− X′1t(

ˆ
β1t − β∗1)] is simply

−
T−1

∑
t=R

X′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1j(uj+1 + ∆IS)

} X′2t

{
1
t

t−1

∑
j=1

X2jX′2j

}−1{
1
t

t−1

∑
j=1

X2j(uj+1 + ∆IS)

}
− X′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1j(uj+1 + ∆IS)

}
Then, we separate into eight terms

−
T−1

∑
t=R

X′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1juj+1

} X′2t

{
1
t

t−1

∑
j=1

X2jX′2j

}−1{
1
t

t−1

∑
j=1

X2juj+1

}
− X′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1juj+1

} (A1)

−
T−1

∑
t=R

X′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1juj+1

} X′2t

{
1
t

t−1

∑
j=1

X2jX′2j

}−1{
1
t

t−1

∑
j=1

X2juj+1

}
− ∆X′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1j

} (A2)

−
T−1

∑
t=R

X′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1juj+1

} ∆X′2t

{
1
t

t−1

∑
j=1

X2jX′2j

}−1{
1
t

t−1

∑
j=1

X2j

}
− X′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1juj+1

} (A3)

−
T−1

∑
t=R

X′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1juj+1

} ∆ISX′2t

{
1
t

t−1

∑
j=1

X2jX′2j

}−1{
1
t

t−1

∑
j=1

X2j

}
− ∆ISX′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1j

} (A4)

− ∆IS

T−1

∑
t=R

X′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1j

} X′2t

{
1
t

t−1

∑
j=1

X2jX′2j

}−1{
1
t

t−1

∑
j=1

X2juj+1

}
− X′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1juj+1

} (A5)

− ∆IS

T−1

∑
t=R

X′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1j

} X′2t

{
1
t

t−1

∑
j=1

X2jX′2j

}−1{
1
t

t−1

∑
j=1

X2juj+1

}
− ∆ISX′1t
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1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1j

} (A6)

− ∆IS

T−1

∑
t=R

X′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1j

} ∆ISX′2t

{
1
t

t−1

∑
j=1

X2jX′2j

}−1{
1
t

t−1

∑
j=1

X2j

}
− X′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1juj+1

} (A7)
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− ∆IS
2

T−1

∑
t=R

X′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1j

} X′2t

{
1
t

t−1

∑
j=1

X2jX′2j

}−1{
1
t

t−1

∑
j=1

X2j

}
− X′1t

{
1
t

t−1

∑
j=1

X1jX′1j

}−1{
1
t

t−1

∑
j=1

X1j

} (A8)

In Appendix F, we show that (A1), (A2+A3), (A4), (A5), (A6+A7), and (A8) are
op(1) and the proof is complete. �

Appendix F

Proof that (A1), (A2+A3), (A4), (A5), (A6+A7), and (A8) in Appendix E are op(1).

Proof that (A1) is op(1). This is immediate from Lemma A3 in [33]. Using Lemma 4, notice
that (A1) equals to

−
T−1
∑

t=R
X′1t
{

EX1tX′1t
}−1

{
1
t

t−1
∑

j=1
X1juj+1

}
X′2t
{

EX2tX′2t
}−1

{
1
t

t−1
∑
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X2juj+1
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∑
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X′1t
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t
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∑

j=1
X1juj+1
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{
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}−1

{
1
t
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j=1
X1juj+1

}
+ op(1)

= −
T−1
∑
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{
1
t

t−1
∑

j=1
X1juj+1

}′{
EX1tX′1t
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}
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X1juj+1
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}−1EX1tX′2t
{

EX2tX′2t
}−1

{
1
t

t−1
∑

j=1
X2juj+1

}

+
T−1
∑

t=R

{
1
t

t−1
∑

j=1
X1juj+1

}′{
EX1tX′1t
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}
+ op(1)

Notice that EX1tX′2t = JEX2tX′2t

= −
T−1
∑
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1
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X1juj+1
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X1juj+1

}
+op(1)

As X1t = JX2, the proof is complete. �

Proof that (A2) and (A3) are op(1). Using Lemma 4, rewrite (A2) as

−
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∑
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Again, from Lemma 4, we write (A3) as
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= −∆
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}
+op(1)

As X1t = JX2t, and adding (A2) and (A3), the proof is complete. �

Proof that (A4) is op(1). Notice from Lemma 4 that (A4) is equal to
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As X1t = JX2t, (A4) is op(1) and the proof is complete. �

Proof that (A5) is op(1). From (A5), using Lemma 4,
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As X1t = JX2t, it follows that (A5) is op(1) and the proof is complete. �

Proof that (A6) and (A7) are op(1). From Lemma 4, notice that (A6) is equal to
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Now, based on Lemma 4, write (A7) as
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As X1t = JX2t, we add (A6) and (A7), and the proof is complete. �



Mathematics 2022, 10, 171 31 of 33

Proof that (A8) is op(1). Notice from Lemma 4 that (A8) is equal to
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As X1t = JX2t, the proof is complete. �

Appendix G

Proof of Lemma 5. From (5) ∑T−1
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First, notice that X1juj+1 = JX2juj+1. Then, use the fact that, under the null hypothesis
u2j+1 = u1j+1 = ut+1 + ∆oos. Finally, combining these results with Lemma A10 in CM it
follows that
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Second, following similar arguments
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The proof is complete. �
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