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Abstract: In this work, an alternate Schwarz domain decomposition method is proposed to solve a
Rayleigh–Bénard problem. The problem is modeled with the incompressible Navier–Stokes equations
coupled with a heat equation in a rectangular domain. The Boussinesq approximation is considered.
The nonlinearity is solved with Newton’s method. Each iteration of Newton’s method is discretized
with an alternating Schwarz scheme, and each Schwarz problem is solved with a Legendre collocation
method. The original domain is divided into several subdomains in both directions of the plane.
Legendre collocation meshes are coarse, so the problem in each subdomain is well conditioned, and
the size of the total mesh can grow by increasing the number of subdomains. In this way, the ill
conditioning of Legendre collocation is overcome. The present work achieves an efficient alternat-
ing Schwarz algorithm such that the number of subdomains can be increased indefinitely in both
directions of the plane. The method has been validated with a benchmark with numerical solutions
obtained with other methods and with real experiments. Thanks to this domain decomposition
method, the aspect ratio and Rayleigh number can be increased considerably by adding subdomains.
Rayleigh values near to the turbulent regime can be reached. Namely, the great advantage of this
method is that we obtain solutions close to turbulence, or in domains with large aspect ratios, by
solving systems of linear equations with well-conditioned matrices of maximum size one thousand.
This is an advantage over other methods that require solving systems with huge matrices of the order
of several million, usually with conditioning problems. The computational cost is comparable to
other methods, and the code is parallelizable.

Keywords: turbulence; Rayleigh–Bénard convection; Legendre collocation; domain decomposition
method; alternating Schwarz

PACS: 47.11.kb; 47.20.Bp
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1. Introduction

Different scales, complex domains, and boundary layers are computational challenges
for laminar and turbulent flow models [1–9]. One of these flows is Rayleigh–Bénard con-
vection, in which a layer of fluid is heated from below. The first to systematically study
this phenomenon was H. Bénard [10], who observed a pattern of hexagons when heating
exceeded a threshold. Lord Rayleigh [11] explained this phenomenon by identifying the
destabilizing mechanism as buoyancy. However, this explanation does not correspond
to what happens in Bénard’s experiments. Pearson [12] discovered the second destabi-
lizing mechanism, which is changes in surface tension. In this case, the problems are
called Benard–Marangoni. This mechanism is relevant in crystal growth processes [13,14]
or ferrofluids in a magnetic field [15]. If the heating is increased further, different states
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occur: stationary, periodic, or chaotic states, up to turbulence. Some of these phenomena
have been studied in REfs. [16–21], and the monograph [22] provides detailed information
about the understanding of this problem. If the mechanism is buoyancy, the problem is
called Rayleigh–Bénard, which is the one we address in this work and is also addressed
in Refs. [23–27]. The model equations are the incompressible Navier–Stokes equation and
the heat equation under the Boussinesq approximation in a bounded domain [28]. Three
parameters appear in the model governing the convective motion: the Rayleigh number
R (ratio between the buoyancy and viscous force), the Prandtl number Pr (ratio between
the kinematic viscosity and thermal diffusivity), and the aspect ratio Γ (ratio between the
length and the depth of the fluid layer). In geophysical contexts studying the interior of the
stars and planets, Pr is large and the convective flow is dominated by plumes [29,30]. This
is context of this work.

In the case of order one aspect ratio, this problem has been numerically solved with
different numerical techniques, mainly finite elements, spectral elements, and collocation
methods [26,30]. The collocation methods are high-order methods that allow one to find
precise numerical solutions for this problem with coarse meshes [31–34]. The resulting
algebraic systems for these methods are ill conditioned when the mesh size [32,34] is
increased. The condition number of the matrices resulting from the discretization is large.
The maximum size of the mesh is restricted, and it is not possible to obtain solutions
with many oscillations that appear in domains with a large aspect ratio or solutions with
different scales that arise when the Rayleigh number increases until reaching turbulent
states. The same problem can be found in other numerical techniques, i.e., finite differences,
finite elements, or spectral elements for fine meshes. The linear systems that appear in
the procedure are huge and usually poorly conditioned. One way to avoid this drawback
is to use a domain decomposition strategy; examples of this procedure applied to some
partial differential equations can be found in Refs. [2,35–40]. The domain is divided into
several subdomains, and the problem is numerically solved in each subdomain with
a coarse mesh. In this way, ill conditioning is avoided because the numerical method
is used on a coarse mesh. Domain decomposition is widely used for fluid dynamics
problems. Alternating Schwarz is the most common domain decomposition technique
used to solve incompressible Navier–Stokes. The use of this technique for incompressible
Navier–Stokes with different numerical methods can be found in Refs. [41–50]. Schwarz
domain decomposition methods have been broadly used as a parallelization strategy
of fluid flows [4,5,51–53]. The model equations are nonlinear. A way to deal with the
nonlinearity is the use of a Newton method. Newton’s method is a powerful nonlinear
solver used successfully in many engineering communities. Recent research has introduced
improvements and variants on Newton’s method. In Ref. [54], inexact Newton–Krylov and
quasi-Newton algorithms for nonlinear elasticity equations are presented. In Ref. [55], a
spatial additive Schwarz preconditioned exact Newton method as nonlinear preconditioner
for Newton’s method is applied to multiphase flows. In Ref. [56], the advanced Jacobian-
Free Newton–Krylov method in a steam generator is studied. Refs. [57,58] modify the
Newton increment to ensure global convergence. Newton’s method considered in this
work is the standard method that also provides good results for this type of problems (see
Refs. [59–63]).

A partial alternating Schwarz method for Navier–Stokes–Boussineq with aspect ratio
one, low Prandtl number, and 4× 4 subdomains solved with the method of approximate
particular solutions can be found in Ref. [64]. In Ref. [30], this problem is solved with
a spectral element method for the 3D and the 2D problem for different values of the
parameters, showing that the 3D Rayleigh–Bénard problem is quasi two-dimensional for
an infinite Prandtl number.

In this work we, achieve an efficient algorithm for the alternating Schwarz method
to solve each step of the Newton scheme used to deal with the nonlinearity solved with
a Legendre collocation method of a 2D Rayleigh–Bénard problem with infinite Prandtl
number [63]. In Ref. [3], the convergence of this methodology was theoretically proven
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in an infinite domain when an overlap is considered for a linear approximation to the
problem, and some numerical tests were included. The present work achieves an efficient
algorithm to solve the fully nonlinear problem with an alternating Schwarz–Newton–
Legendre collocation method. The number of subdomains can be indefinitely increased in
both directions of the plane. The numerical solutions have been validated by comparing
them with solutions obtained with other methods and with physical experiments [29].
Thanks to this domain decomposition, the aspect ratio and the Rayleigh number can be
increased considerably by adding domains in any direction. Values of the Rayleigh number
for near turbulent regimes can be reached and domains with large aspect ratio can be
considered. The great advantage of this method is that we get solutions close to turbulence,
or in domains with large aspect ratios, by solving systems of linear equations with well-
conditioned matrices of maximum size one thousand. This is the main advantage over
other methods that require solving systems with huge matrices of the order of several
million, usually badly conditioned that require the use of preconditioners. The method is
parallelizable, and, even without parallelizing, the computational cost is affordable.

The article is organized in the following manner. Section 2 provides the mathematical
formulation of the Rayleigh–Bénard problem. The numerical method that includes the
domain decomposition method is explained in Section 3. The numerical results and a
discussion appear in Section 4. Finally, in Section 5, the conclusions are presented.

2. Formulation of the Problem

A two-dimensional (2D) fluid layer of depth d (z coordinate) lies between two parallel
plates of length L (x coordinate). The upper plate is at temperature T0 and the bottom
plate is at T1 such that T1 > T0. A usual way to non-dimensionalize in Rayleigh–Bénard
problems is the following: x = x′/d, z = z′/d, t = κt′/d2, u = du′/κ, p = d2 p′/(ρ0κν),
and θ = (θ′− T0)/∆T, where the primes correspond to the quantities with their dimensions,
x′, z′ space coordinates, t′ time, p′ pressure, u′ velocity, and θ′ temperature, κ is the
thermal diffusivity, ρ0 is the mean density, ν is the viscosity, and ∆T = T1 − T0. The
Rayleigh and Prandtl numbers are defined as R = d3δg∆T/(νκ) and Pr = ν/κ, where g
is the gravity constant and δ is the thermal expansion coefficient. The domain becomes
Ω = {(x, z) ∈ R : 0 < x < Γ, 0 < z < 1} = (0, 1) × (0, Γ), where Γ = L/d is the
aspect ratio.

The dimensionless forms of the momentum, mass, and energy balance equations that
model the problem are [63]:

1
Pr

(∂tu + u · ∇u) = ∆u−∇p + Rθez, (1)

∇ · u = 0, (2)

∂tθ + u · ∇θ = ∆θ, (3)

where ez is the upwards vertical unit vector. The boundary conditions come from mantle
convection related models [65,66]. They correspond to a rigid bottom wall, and free-slip,
non-deformable surfaces at the top and lateral walls, the environment temperature is
fixed at the upper plate, and the lateral walls are insulated, and at the bottom, a constant
temperature is imposed,

u = 0, on z = 0; ∂zux = uz = 0, on z = 1; ∂xuz = ux = 0, on x = 0, Γ; (4)

θ = 0, on z = 1; ∂xθ = 0, on x = 0, Γ; θ = 1, on z = 0. (5)

The boundary conditions for pressure are obtained using the normal component of the
momentum equations on x = 0, Γ and z = 1, and the continuity equation at z = 0
(see [67,68]). The positivity of the inf-sup constant is guarantueed because these conditions
eliminate the parasite modes for pressure [31].
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The Prandlt number Pr is infinite, as usual in mantle convection related
problems [63,65,66,69]. We look for stationary solutions, therefore time dependence is
not considered, and the problem is:

−∆u +∇p− Rθez = 0 in Ω, (6)

∇ · u = 0 in Ω, (7)

−∆θ + u · ∇θ = 0 in Ω, (8)

B(u, θ, p) = g on ∂Ω, (9)

where B(u, θ, p) = g denotes the boundary conditions defined in (4) and (5).

3. Numerical Method

Problem (6)–(9) is nonlinear. The nonlinearity is solved with a Newton iteration [67].
Each step of the Newton method is a linear problem in which a Schwarz alternating domain
decomposition method is introduced as explained below, and each Schwarz iteration at
each subdomain is discretized with a Legendre collocation method [70].

3.1. Newton Iterative for the Nonlinearity

The nonlinearity is solved with an iterative Newton-like method. The iteration n
satisfies (un, pn, θn) = (un−1 + ũn, pn−1 + p̃n, θn−1 + θ̃n), where (ũn, p̃n, θ̃n) are the pertur-
bation fields at the n iteration, and (u0, p0, θ0) is an initial guess approximated solution.
Introducing these fields into Equations (6)–(9), the following system of equations for the
perturbation fields is obtained (the tildes and the subscripts for the perturbations have
been dropped):

−∆u +∇p− Rθez = ∆un−1 −∇pn−1 + Rθn−1ez in Ω, (10)

∇ · u = −∇ · un−1 in Ω, (11)

−∆θ + u · ∇θn−1 + un−1 · ∇θ = ∆θn−1 − un−1∇θn−1 in Ω, (12)

B(u, θ, p) = −B
(

un−1, θn−1, pn−1
)
+ g on ∂Ω. (13)

This is the linear problem to be solved at each step of the Newton method. The numerical
solution fields are then un = u0 + ∑n

i=1 ũi, pn = p0 + ∑n
i=1 p̃i, θn = θ0 + ∑n

i=1 θ̃i.

3.2. Alternating Schwarz Domain Decomposition

In this section, we introduce an alternating Schwarz domain decomposition method
to solve a step of the Newton method (10)–(13). The computational domain Ω is split
into np×mp subdomains of the same size, where mp is the number of vertical partitions
and np the number of horizontal partitions; Ω is a rectangle, and each subdomain is a
rectangle of the same size. In Ref. [3], it is proven that two adjacent domains have to share
an overlapping area for the algorithm to converge. Partitions marking the position of each
subdomain are performed with double points to handle the overlap. A partition with 2np
points on the horizontal interval of the domain, [0, Γ], and another with 2mp points on
the vertical interval of the domain, [0, 1], are calculated. These partitions are denoted as
{γx
−1 = 0, γx

1 , γx
2 , . . . , γx

2(np−1), γx
2np = Γ} and {γz

−1 = 0, γz
1, γz

2, . . . , γz
2(mp−1), γz

2mp =

1}, respectively. Note that neither γx
0 , nor γz

0, nor γx
2np−1, nor γz

2mp−1 are considered
due to future calculations. These values depend not only on mp and np, but also on the
Legendre–Gauss–Lobatto (LGL) collocation points. Therefore, they will be calculated in the
next section. Then, each subdomain Ωq,p is defined as Ωq,p = (γx

2p−3, γx
2p)× (γz

2q−3, γz
2q),

p = 1, . . . , np, q = 1, . . . , mp. Each subdomain has length Γx and height Γz. An example of
these partitions is shown in Figure 1 with mp = 2 and np = 2.
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Figure 1. Example of domain Ω split in four subdomains with overlap.

Now, the problem has to be adapted to each subdomain Ωq,p. The equations inside
each subdomain are kept the same. The boundary conditions at the edges of the subdo-
main, which are also boundaries of the original domain, (∂Ωq,p ∩ ∂Ω), remain the same.
The interfaces are the boundaries of the subdomains, which are inside the original domain
(∂Ωq,p ∩Ω). The new interface conditions are given by the continuity of the fields un, pn,
and θn. The previous values in the exact same point of the adjacent rectangle are consid-
ered. The following system of equations is solved at each subdomain and each step of the
iterative Schwarz method:

−∆us
q,p +∇ps

q,p − Rθs
q,pez = −∇pn−1

q,p + ∆un−1
q,p + Rθn−1

q,p ez in Ωq,p, (14)

∇ · us
q,p = −∇ · un−1

q,p in Ωq,p, (15)

−∆θs
q,p + us

q,p · ∇θn−1
q,p + un−1

q,p · ∇θs
q,p = ∆θn−1

q,p − un−1
q,p · ∇θn−1

q,p in Ωq,p, (16)

B
(

us
q,p, θs

q,p, ps
q,p

)
= −B

(
un−1

q,p , θn−1
q,p , pn−1

q,p

)
+ g on ∂Ωq,p ∩ ∂Ω, (17)

IB
(

us
q,p, θs

q,p, qs
q,p

)
= h on ∂Ωq,p ∩Ω. (18)

The interface boundary conditions IB and h on ∂Ωq,p ∩Ω are:

us
q,p = us−1

q′ ,p′ + un−1
q′ ,p′ − un−1

q,p , (19)

θs
q,p = θs−1

q′ ,p′ + θn−1
q′ ,p′ − θn−1

q,p , (20)

ps
q,p = ps−1

q′ ,p′ + pn−1
q′ ,p′ − pn−1

q,p , (21)

where q = 1, . . . , mp, p = 1, . . . , np, (us
q,p, ps

q,p, θs
q,p) are the unknown fields at each

subdomain Ωq,p, (q′, p′) are the subscripts of the adjacent subdomains, which contain the
interface (p′ = p− 1, p or p + 1 and q′ = q− 1, q or q + 1), s denotes the iteration index in
the Schwarz algorithm, and n means the Newton iteration. Note that the continuity of the
Newton iterations is considered at the interface, i.e., un

q,p = un
q′ ,p′ , where un

q,p = un−1
q,p + us

q,p

and un
q′ ,p′ = un−1

q′ ,p′ + us−1
q′ ,p′ , and similarly for the rest of the fields. These continuity conditions

improve iteration errors.

3.3. Legendre Collocation

At each subdomain, the problem is numerically solved with a Legendre collocation
method. The Legendre polynomials are defined on the interval [−1, 1], therefore, for
computational convenience, each subdomain Ωq,p is transformed into (−1, 1)× (−1, 1)
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through the following change of variables x′ =
1

Γx (2x− γx
2p − γx

2p−3) and z′ =
1
Γz (2x−

γz
2q − γz

2q−3). These changes of coordinates introduce the corresponding scaling factors

in the equations and boundary conditions as follows: ∂′x =
2

Γx ∂x and ∂′z =
2
Γz ∂z. Then,

the unknown fields in each subdomain Ωq,p are expanded in a truncated series of Legen-
dre polynomials

f ' f NM =
N−1

∑
l=0

M−1

∑
k=0

a f
lkLl(x)Lk(z). (22)

The corresponding expansions for the four different fields at the different subdomains are
introduced into the equations, the boundary, and the interface conditions, and they are
evaluated at the Legendre–Gauss–Lobatto collocation points (xl

p, zk
q) with l = 1, 2, . . . , N

and k = 1, 2, . . . , M. The Schwarz method requires an overlap between adjacent sub-
domains. The values of N, M, and the number of overlap points are known a priori.
With all these numbers we can calculate the partitions for the Schwarz method of the
interval [0, Γ], {γx

−1 = 0, γx
1 , γx

2 , . . . , γx
2(np−1), γx

2np = Γ} and the interval [0, 1], {γz
−1 =

0, γz
1, γz

2, . . . , γz
2(mp−1), γz

2mp = 1}. Problem (14)–(17) is defined for each subdomain inde-
pendently. The interface condition requires evaluating the fields at the exact same points in
two different subdomains.

The symmetry of the LGL collocation points is very useful for this purpose. If we
couple two sets of N LGL collocation points in such a way that the first point of one of
them matches the (N − overlap)th point of the other, it will occur that the (1 + overlap)th
point of the first set matches the last point of the other set, as shown in Figure 2. This
process allows building subdomains with overlap shared points. With this information,

the partition values can be calculated as follows: γx
1 =

Γ · xN−overlap

(np− 1)xN−overlap + 1
, Γx =

Γ
(np− 1)xN−overlap + 1

, γz
1 =

xM−overlap

(mp− 1)xM−overlap + 1
and Γz =

1
(mp− 1)xM−overlap + 1

,

where xp is the pth LGL collocation point. Note that Γx + (np − 1)γx
1 = Γ and Γz +

(mp− 1)γz
1 = 1, as it should be. The other partition values can be calculated recursively

knowing these four values, as γx
2p−1 = pγx

1 , γz
2q−1 = qγz

1, γx
2(p+1) = γx

2p−1 + Γx and
γz

2(q+1) = γz
2q−1 + Γz for p = 0, . . . , np− 1 and q = 0, . . . , mp− 1. The solution strategy is

mixed with the approximation method.

Figure 2. Example of overlap between Legendre collocation nodes in adjacent domains; N = 16,
overlap = 4.

3.4. Algorithm

A pseudocode for the algorithm can be summarized as follows:

1. Define input parameters: R; Γ; number of subdomains mp× np; size of the mesh at
each subdomain N (x direction), M (z direction); number of points of overlap, o;



Mathematics 2022, 10, 3718 7 of 25

2. Introduce fixed parameters in this work: maximum number of Newton iterations,
stopN = 40; maximum number of Schwarz iterations, stopS = 5;

3. Introduce the initial solution in the whole domain: ux0, uz0, t0, p0;
4. Calculate the part of the solution at each subdomain;
5. Initialize the Newton iteration counter Nc = 0;
6. while Nc < stopN or errorN > 10−7

(a) Nc = Nc + 1
(b) Initialize the Schwarz iteration counter Sc = 0
(c) While Sc < stopS or errorS > 10−7:

i. Sc = Sc + 1;
ii. For q = 1 : mp and p = 1 : np ((q, p) indicates the subdomain):

A. Introduce the corresponding Legendre expansions (22) into equa-
tions and boundary conditions (14)–(21), and evaluate at the
Legendre–Gauss–Lobatto points, the result is a system of linear
algebraic equations;

B. Solve the linear system of equations to get the Newton pertur-
bations at each subdomain (q, p): Ux{q, p}, Uz{q, p}, T{q, p},
P{q, p};

iii. End;
iv. Calculate the Schwarz errors, errorS:

errorSux =

(||ux{1, 2}(:, 1 + o) + Ux{1, 2}(:, 1 + o)− ux{1, 1}(:, N)−Ux{1, 1}(:, N)||∞ +

||ux{2, 1}(1 + o, :) + Ux{2, 1}(1 + o, :)− ux{1, 1}(M, :)−Ux{1, 1}(M, :)||∞ +

||ux{2, 1}(1, :) + Ux{2, 1}(1, :)− ux{1, 1}(M− o, :)−Ux{1, 1}(M− o, :)||∞ +

||ux{1, 2}(:, 1) + Ux{1, 2}(:, 1)− ux{1, 1}(:, N − o)−Ux{1, 1}(:, N − o)||∞)/4

errorSuz =

(||uz{1, 2}(:, 1 + o) + Uz{1, 2}(:, 1 + o)− uz{1, 1}(:, N)−Uz{1, 1}(:, N)||∞ +

||uz{2, 1}(1 + o, :) + Uz{2, 1}(1 + o, :)− uz{1, 1}(M, :)−Uz{1, 1}(M, :)||∞ +

||uz{2, 1}(1, :) + Uz{2, 1}(1, :)− uz{1, 1}(M− o, :)−Uz{1, 1}(M− ov, :)||∞ +

||uz{1, 2}(:, 1) + Uz{1, 2}(:, 1)− uz{1, 1}(:, N − o)−Uz{1, 1}(:, N − o)||∞)/4

errorSθ =

(||θ{1, 2}(:, 1 + o) + T{1, 2}(:, 1 + o)− θ{1, 1}(:, N)− T{1, 1}(:, N)||∞ +

||θ{2, 1}(1 + o, :) + T{2, 1}(1 + o, :)− θ{1, 1}(M, :)− T{1, 1}(M, :)||∞ +

||θ{2, 1}(1, :) + T{2, 1}(1, :)− θ{1, 1}(M− o, :)− T{1, 1}(M− o, :)||∞ +

||θ{1, 2}(:, 1) + T{1, 2}(:, 1)− θ{1, 1}(:, N − o)− T{1, 1}(:, N − o)||∞)/4

errorSp =

(||p{1, 2}(:, 1 + o) + P{1, 2}(:, 1 + o)− p{1, 1}(:, N)− P{1, 1}(:, N)||∞ +

||p{2, 1}(1 + o, :) + P{2, 1}(1 + o, :)− p{1, 1}(M, :)− P{1, 1}(M, :)||∞ +

||p{2, 1}(1, :) + P{2, 1}(1, :)− p{1, 1}(M− o, :)− P{1, 1}(M− o, :)||∞ +

||p{1, 2}(:, 1) + P{1, 2}(:, 1)− p{1, 1}(:, N − o)− P{1, 1}(:, N − o)||∞)/4

errorS = errorSux + errorSuz + errorSθ + errorSp

(d) End;
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(e) Update the solution at each subdomain (q, p): ux0{q, p} = ux0{q, p}+Ux{q, p};
uz0{q, p} = uz0{q, p} + Uz{q, p}; t0{q, p} = t0{q, p} + T{q, p}; p0{q, p} =
p0{q, p}+ P{q, p};

(f) Calculate the Newton error: Nerror = ||Ux||∞ + ||Uz||∞ + ||T||∞ + ||P||∞ at
iteration Nc.

7. End;
8. Save the results.

4. Numerical Results

Different values of the overlap can be considered with similar results, therefore overlap
is fixed to 4 points. Different mesh sizes, N and M, between 10 and 18, are considered.
Different values of the maximum number of iterations can be taken for the Newton and
Schwarz methods. A balance between computational cost and accuracy is obtained by
considering a maximum of 40 iterations for Newton’s method and a maximum of 5 itera-
tions for Schwarz’s method. The iterative initial value for Newton method is a numerical
solution calculated with Legendre collocation with expansions 18× 14 in a domain with
aspect ratio Γ = 3.495 and R = 1300 adapted to the new multi-domain.

4.1. Validation

Legendre collocation is an ill conditioned method, and the maximum mesh size that
can be used in a double precision calculation for parameter values in a laminar regime
with a small aspect ratio is N ×M = 50× 50. Some of these values of the parameters are
R = 1300 and Γ = 3.495. For this case, we have compared the numerical solutions obtained
with Legendre collocation in a single domain with the maximum size of the expansion,
N×M = 50× 50, with numerical solutions obtained with the Newton alternating Schwarz–
Legendre collocation method with different numbers of subdomains and different sizes of
the Legendre expansions. Table 1 shows the relative L2 norm of the difference between the
horizontal component of the velocity solution, ux, obtained with Legendre collocation with
a mesh 50× 50 in a single domain, and the solution obtained with the Newton–Schwarz
method with different numbers of subdomains on the horizontal axis, np, a single domain
on the vertical axis, mp = 1, and different Legendre collocation meshes, n. The optimal
result, taking into account a balance between the coarsest mesh and the smallest error, is
obtained with two subdomains on the horizontal axis, one subdomain on the vertical axis,
and a Legendre mesh of size 10× 10. In this case, the total mesh contains only 200 nodes.
Increasing the number of subdomains and/or the size of the mesh at each subdomain
makes the solution worse. The same can be seen in Table 2 for two subdomains on the
vertical axis, i.e., the relative L2 norm of the difference between the horizontal component
of the velocity solution, ux, obtained with Legendre collocation with a mesh 50× 50 in a
single domain, and the solution obtained with the Newton–Schwarz method with different
numbers of subdomains on the horizontal axis, np, two domains on the vertical axis,
mp = 2, and different Legendre collocation meshes n. Cases with a single domain on the
horizontal axis and two subdomains on the vertical do not converge. All other errors are
worse than for a single subdomain on the vertical axis. Table 1 shows the optimal result
taking into account the size of the total mesh, i.e., two subdomains on the horizontal axis,
one subdomain on the vertical axis, and a Legendre mesh of size 10× 10.



Mathematics 2022, 10, 3718 9 of 25

Table 1. Relative L2 norm of the difference between the horizontal component of the velocity solution,
ux, obtained with Legendre collocation with a mesh 50× 50 in a single domain and the solution
obtained with different numbers of subdomains on the horizontal axis, np, a single domain on the
vertical axis, mp = 1, and different Legendre collocation meshes N ×M; R = 1300 and Γ = 3.495.

np 10× 10 14× 10 16× 16 28× 20

1 1.2559 0.0324 0.0128 0.0001
2 0.0024 0.0861 0.0749 0.0305
3 0.0351 0.0948 0.1339 0.0525
4 0.0792 0.2341 0.2314 0.1968
5 0.1357 0.2267 0.1846 0.2793
6 0.2054 0.1668 0.1033 0.3871
7 0.2393 0.1274 0.0469 0.4302
8 0.2243 0.0614 0.1568 0.5125
9 0.1809 0.1111 0.2342 0.5476
10 0.1862 0.1882 0.2801 0.6124

Table 2. Relative L2 norm of the difference between the horizontal component of the velocity solution,
ux, obtained with Legendre collocation with a mesh 50× 50 in a single domain and the solution
obtained with different numbers of subdomains on the horizontal axis, np, two subdomains on the
vertical axis, mp = 2, and different Legendre collocation meshes N ×M; R = 1300 and Γ = 3.495.

np 10× 10 14× 10 16× 16 28× 20

2 0.1165 0.1036 0.0866 0.1591
3 0.1095 0.1493 0.1036 0.1680
4 0.1704 0.1861 0.5280 0.2427
5 0.2013 0.1506 0.0957 0.2887
6 0.1972 0.0939 0.1321 0.3614
7 0.1745 0.0475 0.1818 0.4108
8 0.1387 0.0869 0.2270 0.5032
9 0.1212 0.1530 0.2608 0.5427
10 0.1294 0.2103 0.2868 0.6093

Numerical solutions for larger values of the aspect ratio or larger values of the Rayleigh
number cannot be obtained with a single domain, even with the finest mesh. For those
cases, the results of the domain decomposition method have been compared with the
numerical solutions obtained by means of a finite elements method with a fine mesh with
COMSOL. The solutions obtained with both methods can be seen in Figures 3–10 for
different values of the parameters. Figure 3 shows solutions obtained with finite elements
for R = 1300 and Γ = 3.495. In Figure 4, solutions for the same values of the parameters
obtained with alternating Schwarz domain decomposition are presented. This solution
has been calculated with two subdomains on the x axis, one subdomain on the z axis,
and a collocation mesh of size N ×M = 10× 10. Three rolls are observed in both cases.
The difference of the maximum value of the temperature field between both solutions
is 0.035.

Figure 5 shows solutions obtained with finite elements method for R = 1300 and
Γ = 27.96. In Figure 6, solutions for the same values of the parameters obtained with
the Schwarz can be seen. This solution has been calculated with 14 subdomains on the
horizontal direction, two subdomains on the vertical direction and a collocation mesh of
size N ×M = 16× 10. Twenty-five rolls are observed in both solutions. The difference of
the maximum value for the temperature field between both solutions is 0.3.
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Figure 3. Isotherms and velocity field of the numerical solution obtained with finite elements;
R = 1300 and Γ = 3.495.

Figure 4. Isotherms and velocity field of the numerical solution obtained with alternating Schwarz;
R = 1300 and Γ = 3.495.

Figure 5. Isotherms and velocity field of the numerical solution obtained with finite elements;
R = 1300 and Γ = 27.96.
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Figure 6. Isotherms and velocity field of the numerical solution obtained with alternating Schwarz;
R = 1300 and Γ = 27.96.

In Figure 7, solutions obtained with finite elements for R = 5000 and Γ = 3.495 are
shown. In Figure 8, solutions for the same values of the parameters obtained with the
Schwarz method can be seen. This solution has been calculated with eight subdomains on
the x axis, two subdomains on the z axis, and a collocation mesh of size N ×M = 16× 10.
Three rolls are obtained, and the isotherms are mushroom-shaped in both cases. The
difference of the maximum value for the temperature field between both solutions is 0.7.

In Figure 9, solutions obtained with finite elements for R = 5000 and Γ = 27.96 can be
seen. Figure 10 shows solutions for the same values of the parameters obtained with the
Schwarz method. This solution has been calculated with 13 subdomains on the x direction,
three subdomains on the z direction, and a collocation mesh of size N × M = 18× 12.
Twenty-nine rolls are obtained in this case, and the isotherms are mushroom-shaped.
The difference of the maximum value for the temperature field between both solutions
is 0.6.

Figure 7. Isotherms and velocity field of the numerical solution obtained with finite elements;
R = 5000 and Γ = 3.495.
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Figure 8. Isotherms and velocity field of the numerical solution obtained with alternating Schwarz;
R = 5000 and Γ = 3.495.

Figure 9. Isotherms and velocity field of the numerical solution obtained with finite elements;
R = 5000 and Γ = 27.96.

Figure 10. Isotherms and velocity field of the numerical solution obtained with alternating Schwarz;
R = 5000 and Γ = 27.96.
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The same solutions are obtained with the two different numerical methods. There is
an optimal value of the number of subdomains that coincides with the minimum number
of subdomains.

4.2. Numerical Convergence

The error in the Newton iterations for each field is defined as the Newton perturbations,
similarly to the Newton error in Section 3.4, for the first domain:

ErrorF(n) = ||Fn||∞, (23)

where F refers to any of the fields. The error in the Schwarz iterations for each field is
defined similarly to the Schwarz error in Section 3.4 for the first domain and adjacent ones:

ErrorF(s) =

(|| f n−1{1, 2}(:, 1 + 4) + Fs{1, 2}(:, 1 + 4)− f n−1{1, 1}(:, N)− Fs{1, 1}(:, N)||∞ +

|| f n−1{2, 1}(1 + 4, :) + Fs{2, 1}(1 + 4, :)− f n−1{1, 1}(M, :)− Fs{1, 1}(M, :)||∞ +

|| f n−1{1, 2}(:, 1) + Fs{1, 2}(:, 1)− f n−1{1, 1}(:, N − 4)− Fs{1, 1}(:, N − 4)||∞ +

|| f n−1{2, 1}(1, :) + Fs{2, 1}(1, :)− f n−1{1, 1}(M− 4, :)− Fs{1, 1}(M− 4, :)||∞)/4,

where f n−1 refers to any of the field in the (n− 1)th Newton iteration, Fs refers to any of
the fields in the sth Schwarz iteration, and 4 = overlap. Note that f n = f n−1 + Fs as it has
been described in the Newton method, and the Schwarz solution Fs is the perturbation.
Therefore, these errors could be rewritten as

ErrorF(s) =

(|| f n{1, 2}(:, 1 + 4)− f n{1, 1}(:, N)||∞ + || f n{2, 1}(1 + 4, :)− f n{1, 1}(M, :)||∞ +

|| f n{1, 2}(:, 1)− f n{1, 1}(:, N − 4)||∞ + || f n{2, 1}(1, :)− f n{1, 1}(M− 4, :)||∞)/4.

We determine the convergence rate of the Schwarz alternating method as the limit of
the ratio

ErrorF(s + 2)− ErrorF(s + 1)
ErrorF(s + 1)− ErrorF(s)

. (24)

4.2.1. Legendre Collocation

In Tables 3 and 4, we have varied the mesh sizes for two different values of the
parameters and a number of subdomains, and we observe that the errors decrease to a
minimum and increase as the mesh size increases. The optimum in the case of R = 5000
and Γ = 3.495 with eight subdomains on the horizontal axis and 2 = two subdomains on
the vertical axis, is N = 14 and M = 12, which is of the same order as the one used in the
figures N ×M = 16×10 with the same number of subdomains. The optimum in the case
of R = 1300 and Γ = 27.96 with 14 subdomains on the horizontal axis and two subdomains
on the vertical axis, is N = 14 and M = 10, which is of the same order as the one used in the
figures N ×M = 16×10 for the same number of subdomains. The optimal mesh size of the
expansions is a coarse mesh of order 10× 10 in each subdomain. Legendre collocation is a
high-order method on a single domain, but the global multidomain method with Schwarz
and Newton iterations loses this property.
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Table 3. Newton errors of the last iteration for ux obtained with Legendre collocation with different
meshes (N denotes the number of horizontal collocation points and M denotes the number of vertical
collocation points); Ra = 5000, Γ = 3.495, np = 8, and mp = 2.

M\N 10 12 14 16 18

10 0.0010 0.0017 0.0006 0.0010 0.0019
12 0.0010 0.0006 0.0005 0.0011 0.0022
14 0.0006 0.0006 0.0006 0.0013 0.0027
16 0.0007 0.0006 0.0006 0.0017 0.0034
18 0.0006 0.0006 0.0009 0.0022 0.0044

Table 4. Newton errors of the last iteration for ux obtained with Legendre collocation with different
meshes (N denotes the number of horizontal collocation points and M denotes the number of vertical
collocation points); Ra = 1300, Γ = 27.96, np = 14, and mp = 2.

M\N 10 12 14 16 18

10 0.0119 0.0097 0.0101 0.0124 0.0202
12 0.1071 0.0780 0.0638 0.0914 0.0761
14 0.0886 0.0830 0.0781 0.0903 0.0748
16 0.0766 0.0523 0.0540 0.0531 0.0509
18 0.0642 0.0398 0.0341 0.0366 0.0376

4.2.2. Schwarz

In this section, we analyze the behavior of the Schwarz parts of the algorithm, the er-
rors, convergence rate, number of subdomains, and influence of the parameters.

First, we look at the minimum number of subdomains necessary to obtain conver-
gence depending on the parameters present in the problem. Two examples are shown in
Tables 5 and 6. In Table 6, the last error in the Newton iteration for the field ux, for R = 1300
and Γ = 27.96, increases in the number of subdomains in the vertical and horizontal direc-
tions can be seen. A minimum number of subdomains is required to achieve convergence.
The minimum number of subdomains to get convergence is mp = 2 and np = 3, or mp = 3
and np = 3. A single domain in the vertical direction or one or two subdomains in the
horizontal direction never converges. In the case of R = 5000 and Γ = 3, 495, in Table 5,
the minimum number of subdomains corresponds to mp = 1 and np = 8, or mp = 2 and
np = 6, or mp = 3 and np = 2. The number of Schwarz subdomains required increases
with R and Γ, i.e., one domain is enough for R = 103, and around one hundred subdomains
are required for R = 105 or Γ = 100 with the same size of the mesh at each subdomain.

Table 5. Newton errors of the last iteration for ux obtained with Legendre collocation with a mesh
16 × 10 varying the number of horizontal (np) and vertical (mp) subdomains; Ra = 5000 and
Γ = 3.495.

np\mp 1 2 3

1 - - -
2 - - 0.0006
3 - - 0.0003
4 - - 0.0002
5 - - 0.0010
6 - 0.0028 0.0007
7 - 0.0007 0.0009
8 0.0008 0.0010 0.0014
9 0.0018 0.0020 0.0030
10 0.0063 0.0063 0.0074
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Table 6. Newton errors of the last iteration for ux obtained with Legendre collocation with a mesh
16 × 10 varying the number of horizontal (np) and vertical (mp) subdomains; Ra = 1300 and
Γ = 27.96.

np\mp 1 2 3

1 - - -
2 - - -
3 - 0.0104 0.0632
4 - 0.0573 0.0694
5 - 0.0283 0.1036
6 - 0.0770 0.0702
7 - 0.0069 0.0730
8 - 0.0130 0.0778
9 - 0.0253 0.0753
10 - 0.0044 0.0727
11 - 0.0101 0.0777
12 - 0.0209 0.0708
13 - 0.0417 0.0605
14 - 0.0124 0.0981
15 - 0.0327 0.0994
16 - 0.0638 0.0971

Second, we study the influence of the parameters in the Schwarz errors. First, we vary
the Rayleigh number. In Figure 11a, the decimal logarithm of the errors in the velocity,
temperature, and pressure fields for the Schwarz iterations in the case R = 1300, Γ = 3.495,
np = 2, mp = 1, and N × M = 10× 10, can be seen. In that figure, we can check the
convergence of Schwarz’s method for each Newton problem. The errors of the Schwarz
solver reach values between 10−8 and 10−9 for all fields as Newton’s problems progress.
Figure 11b shows the decimal logarithm of the errors in the four fields for the Schwarz
iterations in the case R = 5000, Γ = 3.495, np = 8, mp = 2, and N × M = 16 × 10.
The errors for the Schwarz iterations reach values between 10−5 and 10−6 for all the fields.
In that figure, the convergence of Schwarz for each Newton problem can be seen. We have
increased further the Rayleigh number for a fixed value of the aspect ratio, Γ = 3.495.
Figure 12 shows a solution for R = 104 obtained with 25 subdomains on the horizontal
axis and two subdomains on the vertical axis for a collocation mesh of 12× 10. The three
rolls with the mushroom shaped isotherms still remain. In Figure 13, a solution for R = 105

obtained with 25 subdomains on the horizontal axis and five subdomains on the vertical
axis for a collocation mesh of 16× 12 can be seen. Eleven rolls with plume shaped isotherms
is a new solution in the near turbulent regime. Figure 14a, shows the decimal logarithm
of the errors in the velocity, temperature, and pressure fields for the Schwarz iterations
in the case of R = 104 and Γ = 3.495. These errors take values between 10−4 and 10−3.
Figure 14b shows the decimal logarithm of the errors in the velocity, temperature, and
pressure fields for the Schwarz iterations in the case of R = 105 and Γ = 3.495. In that
figure, the convergence of Schwarz for each Newton problem is tested. The errors for the
Schwarz solver reach values between 10−5 and 10−4. The increase in R needs an increase in
the number of subdomains to reach convergence. There is a loss of accuracy of the method
with R or with the increase in the number of subdomains.

Now we increase the values of the aspect ratio and the Rayleigh number. The decimal
logarithm of the errors in the velocity, temperature, and pressure fields for the Schwarz
iterations in the case of R = 1300, Γ = 27.96, np = 14, mp = 2, and N ×M = 16× 10, can
be seen in Figure 15a. The convergence of the Schwarz method for each Newton problem
is shown in this figure. The errors for the Schwarz solver reach values between 10−5 and
10−4 for all the fields. Figure 15b shows the decimal logarithm of the errors in the four
fields for the Schwarz iterations in the case of R = 5000, Γ = 27.96, np = 13, mp = 3, and
N×M = 18× 12. These errors take values between 10−4 and 10−3. If we compare with the
previous results in the case of Γ = 3.495, the increase in Γ needs an increase in the number
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of subdomains to reach convergence. There is a loss of accuracy of the method with Γ or
with the increase in the number of subdomains.

We have increased further the aspect ratio for a fixed value of the Rayleigh number,
R = 1300. Figure 16 shows a solution for Γ = 50 obtained with 20 subdomains on
the horizontal axis and two subdomains on the vertical axis for a collocation mesh of
16× 10. The number of rolls increases. Figure 17 shows a solution for Γ = 100 obtained
with 35 subdomains on the horizontal axis and two subdomains on the vertical axis for
a collocation mesh of 16× 10. The number of rolls doubles. The number of necessary
subdomains increases with Γ in a nearly logarithmic way. A noteworthy aspect is that the
values of the aspect ratio can be increased as much as required.

The convergence rate for the Schwarz iterations appears in Figure 18a,b. The conver-
gence rate are 0.7 in the first case and 0.9 in the second case. There is a dependence of
the convergence rate with the parameters; it increases with R and Γ, although it always
remains less than 1.
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Figure 11. Graph of the log10 of the errors in the velocity, temperature, and pressure fields for the
Schwarz iterations: (a) R = 1300, Γ = 3.495, np = 2, mp = 1, N × M = 10× 10; (b) R = 5000,
Γ = 3.495, np = 8, mp = 2, N ×M = 16× 10.

Figure 12. Isotherms and velocity field of a numerical solution obtained with alternating Schwarz
domain decomposition; R = 104, Γ = 3.495, np = 25, mp = 2, N ×M = 12× 10.
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Figure 13. Isotherms and velocity field of a numerical solution obtained with alternating Schwarz
domain decomposition; R = 105, Γ = 3.495, np = 25, mp = 5, N ×M = 16× 12.
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Figure 14. Graph of the log10 of the errors in the velocity, temperature, and pressure fields for the
Schwarz iterations: (a) R = 104, Γ = 3.495, np = 25, mp = 2, N × M = 12× 10; (b) R = 105,
Γ = 3.495, np = 25, mp = 5, N ×M = 16× 12.
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Figure 15. Graph of the log10 of the errors in the velocity, temperature, and pressure fields for the
Schwarz iterations: (a) R = 1300, Γ = 27.96, np = 14, mp = 2, N × M = 16× 10; (b) R = 5000,
Γ = 27.96, np = 13, mp = 3, N ×M = 18× 12.
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Figure 16. Isotherms and velocity field of a numerical solution obtained with alternating Schwarz
domain decomposition; R = 1300, Γ = 50, np = 20, mp = 2, N ×M = 16× 10.

Figure 17. Isotherms and velocity field of a numerical solution obtained with alternating Schwarz
domain decomposition; R = 1300, Γ = 100, np = 35, mp = 2, N ×M = 16× 10.
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Figure 18. (a) Convergence rate for the Schwarz iterations: R = 1300, Γ = 3.495; (b) convergence rate
for the Schwarz iterations: R = 5000, Γ = 3.495.

4.2.3. Newton

In this section, we analyze the behavior of the Newton method, the errors, convergence
rate, number of subdomains, and influence of the parameters.
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First, we investigate the influence of the Raylegh number for a fixed value of the
aspect ratio Γ = 3.495. Figure 19a shows the decimal logarithm of the errors in the velocity,
temperature, and pressure fields for the Newton iterations for R = 1300, Γ = 3.495,
np = 2, and mp = 1. Newton’s errors are 10−8 for the temperature field and 10−7 for both
components of the velocity field and the pressure field. This figure shows the convergence
of the nonlinear method. Figure 19b shows the decimal logarithm of the errors in the four
fields for the Newton iterations for R = 5000, Γ = 3.495, np = 8, and mp = 2. The Newton
errors are around 10−3 for all the fields. Figure 20a shows the decimal logarithm of the
errors for the Newton iterations for R = 104 and Γ = 3.495. These errors are between 10−2

and 10−1. The convergence of the nonlinear problem is shown in this figure. Figure 20b
shows the decimal logarithm of the errors for the Newton iterations for R = 105 and
Γ = 3.495. The Newton errors are between 10−2 and 10−1. The method is convergent.
The increase in R needs an increase in the number of subdomains to reach convergence.
There is a loss of accuracy of the method with R or with the increase in the number
of subdomains.

Now we increase the Rayleigh number and the aspect ratio. The decimal logarithm of
the errors in the velocity, temperature, and pressure fields for the Newton iterations for
R = 1300, Γ = 27.96, np = 14, and mp = 2 are shown in Figure 21a. The Newton errors are
around 10−2. Convergence of the nonlinear problem is shown in this figure. In Figure 21b,
the decimal logarithm of the errors in the fields for the Newton iterations for R = 5000,
Γ = 27.95, np = 13, and mp = 3 can be seen. These errors are around 10−2. The method is
convergent. If we compare with the previous results in the case of Γ = 3.495, the increase
in Γ needs an increase in the number of subdomains to reach convergence. There is a loss
of accuracy of the method with Γ or with the increase in the number of subdomains.

Newton’s method has a second-order local rate of convergence in the single-domain
case. This has been shown in the case of the Legendre collocation in a single domain

in Figure 22, where the numerical sequence
|un+2

x − un+1
x |

|un+1
x − un

x |2
, n = 1, 2, . . . for R = 1300,

Γ = 3.495, np = 1, mp = 1, N × M = 50× 50, has been plotted, and the tendency to
1 can be seen. For a single domain, the iterations are just Newton iterations. However,
in the multi-domain case, Schwarz iterations are introduced at each Newton iteration,
and the errors due to those iterations become relevant. In the multi-domain case with
Schwarz iterations, Newton’s method becomes first order, as can be seen in Figure 23, where

the numerical sequence
|un+2

x − un+1
x |

|un+1
x − un

x |
, n = 1, 2, . . . for the same case and two horizontal

subdomains has been plotted, the tendency to 0.17 can be seen.
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Figure 19. Graph of the log10 of the errors in the velocity, temperature, and pressure fields for the
Newton iterations: (a) R = 1300, Γ = 3.495, np = 2, mp = 1, N × M = 10× 10; (b) R = 5000,
Γ = 3.495, np = 8, mp = 2, N ×M = 16× 10.
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Figure 20. Graph of the log10 of the errors in the velocity, temperature, and pressure fields for the
Newton iterations: (a) R = 104, Γ = 3.495, np = 25, mp = 2, N × M = 12 × 10; (b) R = 105,
Γ = 3.495, np = 25, mp = 5, N ×M = 16× 12.
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Figure 21. Graph of the log10 of the errors in the velocity, temperature, and pressure fields for the
Newton iterations: (a) R = 1300, Γ = 27.96, np = 14, mp = 2, N × M = 16× 10; (b) R = 5000,
Γ = 27.96, np = 13, mp = 3, N ×M = 18× 12.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 22. Ratio of the convergence of the Newton’s method for R = 1300, Γ = 3.495, np = 1, mp = 1,
N ×M = 50× 50.
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Figure 23. Ratio of the convergence of the Newton’s method for R = 1300, Γ = 3.495, np = 2, mp = 1,
N ×M = 16× 10.

4.3. Computational Cost

Next, we study the computational cost. We approximate the number of operations
considering only products. We name n = N ×M, Nt = 4n, NS: number of iterations of
the Schwarz solver, NN : number of iterations of the Newton procedure. Each Newton
and Schwarz iteration solves a linear system of size Nt with a computational cost O(N2

t );
then, to calculate the total computational cost, we multiply by the number of subdomains
and the number of Newton and Schwarz iterations, then the total number of operations
is No = np · mp · NS · NN · N2

t . In the smallest case considered in this work, R = 1300,
Γ = 3.495, Nt = 4× 10× 10, NS = 5, NN = 12, np = 2, mp = 1, No = 2 × 107. In the case
of large aspect ratio, Γ = 50, np = 25, mp = 2, NS = 5, NN = 40, then No = 4 × 109. In the
case of large aspect ratio, Γ = 100, np = 50, mp = 2, NS = 5, NN = 40, then No = 6 × 109.
The case of large Rayleigh number R = 105, np = 25, mp = 5, NS = 5, NN = 40, then
No = 1010. In a parallel computation, if we do not take into account the computational
cost penalty due to parallelization, the calculation would run at the same time in each
subdomain, then the number of subdomains would be saved, and the number of operations
would be reduced to Nop = NS · NN · N2

t .
Regarding computing time, the calculations have been performed with a 4 GHz Intel

Core i7 microprocessor. For instance, in the case of R = 1300, Γ = 100, with 50 subdomains
on the x axis and two subdomains on the z axis, with a Legendre mesh of Nt = 4× 16× 10,
the computing time is 612 s. This time could be reduced the order of magnitude associated
with the total number of subdomains in an ideal parallel computation. The order of
reduction is np ·mp, and the time computing is NS × NN the time it takes to solve a linear
system of size Nt.

4.4. Discussion

This method includes several elements, validation, Legendre collocation method,
Schwarz iterations, Newton iterations, turbulence, and computational cost.

From the point of view of validation, the equations have been solved with finite ele-
ments and with the present method. The same solutions are obtained with both methods.
The same states of rolls and thermal plumes are observed in the real physical experi-
ments [29].

We look now at the Legendre collocation method. The optimal mesh size of the
expansions is a coarse mesh of order 10× 10 in each subdomain. Legendre collocation is
a high-order method in a single domain, but the global multi-domain method with the
Schwarz and Newton iterations loses this property.

With respect to the Schwarz method, the Schwarz parts of the method converge,
the errors are on the order of 10−4 or less, and the convergence rate is less than 1 for all the
fields and values of the parameters present in the problem. There is a dependence of the
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convergence rate with the parameters; it increases with R and Γ, although it always remains
less than 1. The minimum distribution of necessary subdomains to reach convergence
depends on R and Γ; it increases with both parameters with a logarithmic dependence.

In relation with the Newton method, it converges, and the final errors increase with
the parameters R and Γ, varying from 10−8 for the lower values R = 1300 and Γ = 3.495,
to 10−2 for the larger values R = 5000 and Γ = 3.495. Newton’s method has a second-
order local rate of convergence in the single-domain case, but, in the multi-domain case
that includes Schwarz iterations, Newton’s method becomes first order. There is a loss of
accuracy with the number of subdomains that can be related with some lack of regularity
at the interfaces for Schwarz.

In relation to turbulence, the model can be near turbulence for the convenient values
of R, but it cannot be turbulent because it is stationary. In Ref. [29], the authors consider
the maximum value R = 105 and plumes are observed in the experiments, but the flow
is not yet turbulent. In other references, such as [71], a power-law relation between
the Reynolds number and the Rayleigh number, Re = R1/2, was found. A flow starts
to be turbulent at approximately Re = 2000, following this power law; in our case, it
corresponds to R = 4 × 106, higher than our highest value R = 105. Turbulence can be
modeled with direct numerical simulation (DNS), which would be our model including
time dependency. As we do not include the time dependency in this work, we only look for
stationary solutions. Now, the highest value of R is 105 which is not yet turbulent. The time
dependent model for turbulence can be easily implemented, and it will be addressed in
future work. Because of this domain decomposition, the aspect ratio and the Rayleigh
number can be increased considerably by adding subdomains in any direction. Then, values
of the Rayleigh number for near turbulent regimes can be reached, and domains with large
aspect ratio can be considered. Namely, the great advantage of this method is that we get
solutions close to turbulence, or in domains with large aspect ratios, by solving systems of
linear equations with well-conditioned matrices of maximum size one thousand. The main
benefit of the developed method compared with finite differences, finite elements, spectral
elements, continuous Galerkin, and discontinuous Galerkin is the small well-conditioned
matrices that appear in this method. The maximum size of the matrix in the systems that
are solved with this method is 103 in the case of a mesh grid 16× 12 for a near turbulent
flow with R = 105. This is the main advantage over other methods that require solving
systems with huge matrices of the order of several million, usually badly conditioned.
In this case, ill conditioning is avoided and there is no need for preconditioners; even
domain decomposition is used as preconditioner for those methods, as, for example, in
Refs. [55,72].

Regarding the computational cost, the size of the collocation mesh is around 100 points,
the problem has four unknowns, then the size of the matrices is 400× 400; the linear solver
needs this size squared operations, i.e., O(105), the Schwarz and Newton iterations are
fixed to 5 and 40, respectively. Then, the computational cost is around the number of
subdomains times 107. The computational cost is comparable to other methods. The
method is parallelizable; the number of subdomains can be eliminated from the count in
this case, but then the computational cost penalty due to parallelization should be included.

5. Conclusions

In this work, an alternating Schwarz domain decomposition method to solve a
Rayleigh–Bénard problem is presented. The problem is modeled with the stationary
version of incompressible Navier–Stokes equations and the heat equation in a rectangular
domain under the Boussinesq approximation. The system of partial differential equations
is nonlinear. The nonlinearity has been solved numerically with a Newton’s method. Each
iteration of Newton’s method has been discretized with an alternating Schwarz scheme,
and each Schwarz iteration is solved with a collocation Legendre method. The Legendre
collocation method is ill conditioned; for this reason it is not possible in a single domain to
increase the mesh size appropriately to obtain solutions with many oscillations or solutions
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with structure at different scales. These solutions appear for large domains or large values
of the Rayleigh number in the turbulent regime. This difficulty has been overcome with
the use of an alternating Schwarz domain decomposition method. The original domain
has been divided into several subdomains in both directions of the plane. Each step of the
Newton and Schwarz iteration problems in each subdomain has been solved by Legendre
collocation with a coarse mesh, then the problem in each subdomain is well conditioned.
The present work achieves an efficient alternating Schwarz algorithm such that the number
of subdomains can be increased indefinitely in both directions of the plane. The method has
been validated with a benchmark with numerical solutions obtained with other methods
and with real experiments. Because of this domain decomposition method, the aspect
ratio and Rayleigh number can be increased considerably by adding subdomains. Then
Rayleigh values close to the turbulent regime can be reached. The great advantage of this
method is that we obtain solutions close to turbulence, or in domains with large aspect
ratios, by solving systems of linear equations with well-conditioned matrices of maximum
size one thousand. This is an advantage over other methods that require solving systems
with huge matrices on the order of several million, usually with conditioning problems.
The computational cost is comparable to other methods, and the code is parallelizable.
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