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Abstract: We axiomatize strictly positive fragments of modal logics with the confluence axiom. We
consider unimodal logics such as K.2, D.2, D4.2 and S4.2 with unimodal confluence ♦�p→ �♦p as
well as the products of modal logics in the set {K, D, T, D4, S4}, which contain bimodal confluence
♦1�2 p→ �2♦1 p. We show that the impact of the unimodal confluence axiom on the axiomatisation
of strictly positive fragments is rather weak. In the presence of > → ♦>, it simply disappears
and does not contribute to the axiomatisation. Without > → ♦> it gives rise to a weaker formula
♦> → ♦♦>. On the other hand, bimodal confluence gives rise to more complicated formulas such as
♦1 p ∧♦n

2> → ♦1(p ∧♦n
2>) (which are superfluous in a product if the corresponding factor contains

> → ♦>).We also show that bimodal confluence cannot be captured by any finite set of strictly
positive implications.

Keywords: modal logic; strictly positive logics; confluence

MSC: 03B45, 06B15

1. Introduction

Strictly positive modal formulas are constructed of propositional variables and the
constant > using only conjunction and diamonds. Strictly positive logics consists of
implications between strictly positive modal formulas. They were studied in the context of
universal algebra [1], knowledge representation [2,3] and proof theory [4–6].

In this paper, we investigate strictly positive fragments of modal logics that include
the confluence axiom ♦�p → �♦p and its bimodal counterpart ♦1�2 p → �2♦1 p. The
confluence axiom is an example of a simple but very useful formula. It appears in very
different areas of modal logic, ranging from epistemic logic to the logic of space-time (cf. [7])
and the logic of forcing [8]. Bimodal confluence is valid in any product of two Kripke frames
and plays an important role in multidimensional modal logic [9]. When♦1 stands for ∃x and
♦2 stands for ∃y, bimodal confluence turns into the principle ∃x∀y φ(x, y)→ ∀y∃x φ(x, y),
which is one of the basic axioms of first-order logic.

For a modal logic L by SPF(L), we denote its strictly positive fragment; that is, the set
of all strictly positive implications in L. The modal calculus K can be easily modified to
work only with strictly positive implications yielding a natural calculus K+. The question
of whether, given a strictly positive implication φ, K+ + φ axiomatises SPF(K + φ) was
thoroughly investigated in [10]. For example, this is true for p→ ♦p and ♦♦p→ ♦p but not
for ♦p→ p. The confluence axiom ♦�p→ �♦p cannot be rewritten as a strictly positive
implication. This raises the question of how this axiom is reflected in strictly positive
fragments of modal logic that contain it. This question is highly non-trivial. For example,
Svyatlovskii showed in [11] that the strictly positive fragment of K4.3 is axiomatised by
♦♦p → ♦p and ♦(p ∧ ♦q) ∧ ♦(p ∧ ♦r) → ♦(p ∧ ♦q ∧ ♦r), which is a rather unexpected
transformation of .3 axiom ♦p ∧♦q→ ♦(p ∧♦q) ∨♦(p ∧ q) ∨♦(q ∧♦p) (undefinable as a
strictly positive implication as well as confluence axioms, see Section 9.1 of [10]).
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In this paper, we show that the impact of the unimodal confluence axiom on the
axiomatisation of strictly positive fragments is rather weak. In the presence of > → ♦>,
it simply disappears and does not contribute to the axiomatisation. Without > → ♦> it
changes into a weaker formula ♦> → ♦♦>. Some may find it unsurprising, but in our
opinion, this is a remarkable property of the unimodal setting. In contrast, we show that
the strictly positive fragment of K2 + ♦1�2 p → �2♦1 p is axiomatised by an infinite set
of formulas of the form ♦1 p ∧♦n

2> → ♦1(p ∧♦n
2>) and ♦2 p ∧♦n

1> → ♦2(p ∧♦n
1>), and

that it cannot be captured by any finite set of strictly positive implications. We also show
that strictly positive fragments of two-dimensional products of modal logics in the set
{K, D, T, D4, S4} also are axiomatised by these two infinite series of formulas, except for
the cases when one or both of the factors contain ♦>, in which case some or all of these
formulas become superfluous and can be omitted.

2. Preliminaries
2.1. Basic Modal Logic

Let PV = {p1, p2, . . . } be a countable set of proposition letters, with typical members
denoted by p, q, etc. Modal formulas over PV are built using the constants > and ⊥,
dual-modal operators ♦ and � and (classical) binary connectives ∨ and ∧ and→.

A normal modal logic is a set L of formulas that contains all classical propositional
tautologies, the formula �(p→ q)→ (�p→ �q), and that is closed under the standard
rules Modus ponens, Uniform substitution and Generalization (given φ infer �φ). The
smallest normal modal logic is denoted by K. For a set of modal formulas Γ and a modal
logic L, L + Γ denotes the smallest normal modal logic containing L ∪ Γ. For a modal
formula, φ, L + φ = L + {φ}.

As usual, a Kripke frame is a pair F = (W, R), where W is a non-empty set of worlds
and R is a binary relation on W (that is R ⊆ W ×W). Sometimes, we refer to the W- and
R-components of Frame as Frame.W and Frame.R. A point u in W is called final in F if u has
no R-successors. A (Kripke) model based on F is a pair M = (F, V), where V is a function
assigning to each proposition letter p a subset V(p) of W. The inductive definition of the
truth value of a formula φ at a point x in a model M is standard. The fact that φ is true at x
in M is denoted by M, x |= φ. In particular, boolean connectives are computed by classical
truth tables within a point, M, x |= ♦φ if there is a point y ∈ R(x) such that M, y |= φ and
M, x |= �φ if for all points y such that (x, y) ∈ R we have M, y |= φ.

A formula φ is said to be true in a model M = (W, R, V), in symbols M |= φ, if φ is true
at all worlds in W; φ is valid in a frame F, in symbols F |= φ, if φ is true in all models based
on F.

Each class of Kripke frames C gives rise to a normal modal logic Log(C) = {φ | F |=
φ for all F in C}. It is known (cf. [12]) that K + ♦�p → �♦p is the logic of all Kripke
frames satisfying Con f = {∀x∀y∀z (R(x, y) ∧ R(x, z)→ ∃v(R(y, v) ∧ R(z, v)))}.

In addition to K, we consider the logics

D = K +> → ♦>, D4 = D +♦♦p→ ♦p,

T = K + p→ ♦p, S4 = T +♦♦p→ ♦p.

Their axioms > → ♦>, p → ♦p and ♦♦p → ♦p are strictly positive implications
and correspond to conditions Ser = {∀x(> → ∃y R(x, y))}, Re f l = {∀x(> → R(x, x))}
and Trans = {∀x∀y∀z(R(x, y) ∧ R(y, z)→ R(x, z))} in the same way as ♦�p → �♦p
corresponds to Con f .

2.2. Strictly Positive Implications

A strictly positive term (or sp-term) is a modal formula constructed from propositional
variables, the constant >, conjunction ∧, and the unary diamond operator ♦. An SP-
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implication takes the form σ → τ , where σ and τ are SP-terms. An SP-logic is a set of
SP-implications that contains formulas

p→ p, p→ >, p ∧ q→ q ∧ p, p ∧ q→ p, (1)

and is closed under uniform substitution (of sp-terms for propositional variables) and rules

σ→ τ τ → $

σ→ $
,

σ→ τ σ→ $

σ→ τ ∧ $
,

σ→ τ

♦σ→ ♦τ
(2)

(see also the Reflection Calculus RC of [4,5]). For an sp-implication φ, K+ + φ denotes the
smallest SP-logic containing φ. By K+

2 , we denote the natural modification of K+ for strictly
positive implications with two modal operators ♦1 and ♦2 with two versions of the third
rule for each of the two diamonds. It is easy to see that the rule

σ1 → τ1 σ2 → τ2

σ1 ∧ σ2 → τ1 ∧ τ2
(3)

is admissible in K+.
For a normal modal logic L, the strictly positive fragment of L is

SPF(L) = {φ | φ is an sp-implication and φ ∈ L}.

It is easy to check that SPF(L) is an SP-logic.
Given an sp-term ρ, we define by induction a Kripke model Mρ = (Tρ, Vρ) based

on a finite tree Tρ = (Wρ, Rρ) with root rρ. For ρ = >, Tρ consists of a single irreflexive
point rρ with Vρ(p) = ∅ for all variables p. For ρ = p, Tρ consists of a single irreflexive
point rρ, Vρ(p) = {rρ}, and Vρ(q) = ∅ for q 6= p. For ρ = ρ1 ∧ ρ2, we first construct
disjointed Mρ1 and Mρ2 , and then merge their roots rρ1 and rρ2 into r such that r ∈ Vρ(q) iff
ri ∈ Vρi (q) , for some i = 1, 2. Finally, for ρ = ♦ρ′, we add a fresh point r to Wρ′ , and set
Rρ = Rρ′ ∪ {(rρ, rρ′)} and Vρ(p) = Vρ′(p) for all variables p. We refer to Mρ as the ρ-tree
model.

Given two Kripke models, M1 = (W1, R1, V1) and M2 = (W2, R2, V2), a map h : W1 →
W2 is a homomorphism from M1 into M2 if it satisfies the following conditions:

• for all x, y in W1, if (x, y) ∈ R1, then (h(x), h(y)) ∈ R2
• for all x in W1 and propositional variables p, x ∈ V1(p) implies h(x) ∈ V2(p)

Proposition 1. For any sp-term t, Kripke model M and point w in M, we have M, w |= t if there
is a homomorphism h : Mt → M with h(rt) = w.

Proposition 2. For any sp-terms s and t, the implication s → t is derivable in K+ if there is a
rooted homomorphism from Mt into Ms.

Propositions 1 and 2 are well known and can be shown by induction on the length
of the sp-term t. Proposition 2 can also be obtained as a consequence of a representation
theorem for semilattices with monotone operators [13], but this is outside of the scope of
this paper, where we prefer to approach the completeness of K+-based calculi syntactically
whenever it is possible.

2.3. The Chase

A tuple-generating dependency [14] is a first-order formula of the form

∀x̄∀ȳ(φ(x̄, ȳ)→ ∃z̄ψ(x̄, z̄)), (4)

where x̄, ȳ and z̄ are disjoint tuples of variables and φ and ψ are possibly empty conjunc-
tions of R-atoms in respective sets of variables. We call φ the body and ψ the head of the
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corresponding TGD. Examples of TGDs include Con f and Con f+ = {∀x∀y(R(x, y) →
∃z∃v(R(x, z) ∧ R(z, v)))}.

For a conjunction χ of R-atoms (with variables and without constants) we introduce
constants cv for all object variables v in χ and set ∆χ = (Wχ, Rχ) where Wχ = {cv |
v occurs in χ} and Rχ = {(cu, cv) | R(u, v) is a conjunct of χ}.

Given a Kripke frame F = (W, R) trigger h for a TGD of the form (4) is a homomor-
phism from ∆φ into F. Trigger h is good if h cannot be extended to a homomorphism from
∆φ∧ψ into F. An application of a good trigger h for F = (W, R) to F is a frame F′ = (W ′, R′)
where W ′ extends W with fresh constants cu for all u ∈ z̄ and R′ extends R with pairs
( f (u), f (v)) for all atoms R(u, v) in ψ where

f (u) =

{
h(u) if u is in x̄, and
cu if u is in z̄.

For a set of TGDs Π by ChaseStep(F, Π) we mean the relational structure, which
is the result of the simultaneous application of all good triggers for F for all TGDs in
Π to F. We define Chase(F, Π) as the union or the inverse limit of infinite chain F →
ChaseStep(F, Π)→ ChaseStep(ChaseStep(F, Π))→ . . . . This version of the chase is similar
to the one defined in [15] and is known in the database literature as ‘standard chase’ (in [16])
or as ‘restricted chase’ (in recent papers). In papers on logic, good triggers are sometimes
called ‘defects’ and the chase construction is then referred to as ‘defect elimination’.

It should be clear that Chase(F, Π) always satisfies Π. For a Kripke model M = (F, V),
we define Chase(M, Π) as (Chase(F, Π), V). Those points of Chase(F, Π) that are already
in F are called non-anonymous, and those that are not are called anonymous. Anonymous
points are often referred to in the database literature as ’labelled nulls’, but we like to think
that Kripke models consist of points. The rank of an anonymous point is the number of the
iteration when it was created. The rank of non-anonymous points is 0 by definition.

Proposition 3. For any SP-implication s → t we have (s → t) ∈ Log{F | F |= Π} iff
Chase(Ms, Π), root |= t.

(⇒) Suppose that Chase(Ms, Π), root 6|= t. Clearly Chase(Ms, Π), root |= s and also
Chase(Ms, Π) |= Π, so there exists a frame F = Chase(Ms, Π) such that F |= Π, F 6|= s→ t.
Therefore, this F refutes s→ t, showing that s→ t is not in Log{F | F |= Π}.

(⇐) Suppose that Chase(Ms, Π), root |= t. Consider an arbitrary Kripke frame F satis-
fying Π, valuation V and its point w such that F, V, w |= s. Hence there is a homomorphism
f from Ms into F sending the root of Ms to w. Now consider (potentially infinite) the
step-by-step construction of Chase(Ms, Π). Following this process in a step-by-step manner
and using the fact that F satisfies Π at each step, we extend f to a homomorphism h from
Chase(Ms, Π) to F. Since Chase(Ms, Π), root |= t, it follows that F, V, w |= t. This shows
that s→ t is in Log{F | F |= Π}.

2.4. Two-Dimensional Products of Modal Logics

In this paper, we also consider modal formulas with two modalities: �1 and �2, and
their dual modalities: ♦1 and ♦2.

The definition of a normal bimodal logic repeats the definition of normal modal logic
except for the axioms �i(p→ q)→ (�i p→ �iq) (i ∈ {1, 2}) and the Generalization rules
(given as φ infer �iφ) (i ∈ {1, 2}). The smallest bimodal logic is denoted by K2. For a set
of bimodal formulas Γ and a bimodal logic L, L + Γ denotes the smallest normal bimodal
logic containing L ∪ Γ.
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Definition 1. For Kripke frames F1 = (W1, R1) and F2 = (W2, R2) we define F1 × F2 = (W1 ×
W2, R′1, R′2), where

(x1, x2)R′1(y1, y2) ⇐⇒ x1R1y1 and x2 = y2,

(x1, x2)R′2(y1, y2) ⇐⇒ x1 = y1 and x2R2y2.

Frame F1 × F2 is called the product of F1 and F2.

Definition 2. For two normal modal logics, L1 and L2, we define the product

L1 × L2 = {A | ∀F1∀F2(F1 |= L1 ∧ F2 |= L2 ⇒ F1 × F2 |= A)}.

Definition 3. Let L1 and L2 be two modal logics with one modality �, then the fusion of these
logics is the following bimodal logic:

L1 ∗ L2 = K2 + L′1 + L′2;

where L′i is the set of all additional axioms in Li where each � is replaced by �i.

We consider the following formulas

com12 = ♦1♦2 p→ ♦2♦1 p,

com21 = ♦2♦1 p→ ♦1♦2 p,

chr = ♦1�2 p→ �2♦1 p.

They correspond to the following TGDs:

Com12 = {∀x∀y∀z(R1(x, y) ∧ R2(y, z)→ ∃v(R2(x, v) ∧ R1(v, z)))},
Com21 = {∀x∀y∀z(R2(x, y) ∧ R1(y, z)→ ∃v(R1(x, v) ∧ R2(v, z)))},
ChRos = {∀x∀y∀z(R1(x, y) ∧ R2(x, z)→ ∃v(R2(x, v) ∧ R1(y, v)))}.

Definition 4. For two unimodal logics L1 and L2 we define the commutator of these logics by

[L1, L2] = L1 ∗ L2 + com12 + com21 + chr.

Theorem 1 ([17]). For logics L1, L2 ∈ {K, D, T, K4, D4, S4}

L1 × L2 = [L1, L2].

3. Two Conditions for TGDs

Consider the following two conditions for a set of TGDs Π:

(P1) given an sp-term s and a propositional variable p, the valuation V(p) in Chase(Ms, Π)
does not contain anonymous points of Chase(Ms, Π) and

(P2) given an sp-term s, every generated submodel rooted at an anonymous point of
Chase(Ms, Π) contains only anonymous points.

It will be explained later how (P1) and (P2) allow us to lift a homomorphism from
Chase(Ms, Π) into Chase(Ms, Π′) for a simpler Π′ (think of Π = Con f and Π′ = Con f+).
What we mean by a ‘simpler Π’ will also be clear later. At this point, only note that,

Proposition 4. Suppose Π is a subset of {Conf, Ser, Refl, Trans}. Then Π satisfies (P1) and (P2).
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In fact, (P1) holds for all TGDs without unary predicates in the head. On the other
hand, Com12 and Com21 violate (P2), and so logic with these two axioms will need a special
approach.

4. Strictly Positive Fragments of Unimodal Logics with Confluence

In this section, we prove the following two theorems:

Theorem 2. SPF(K +♦�p→ �♦p) = K+ +♦> → ♦♦>.

Theorem 3. For each L in the following set of logics {D, T, D4, S4} we have SPF(L +♦�p→
�♦p) = SPF(L) (and so they both are axiomatised by K+ with the strictly positive axioms of L
due to a general result from [10]).

The proof of Theorem 2 is based on the following two lemmas. The following lemma
can be called the completeness of K+ +♦> → ♦♦> with respect to TGD Con f+.

Lemma 1. Suppose that s and t are sp-terms such that there is a rooted homomorphism h from Mt
into Chase(Ms, Con f+). Then s→ t is derivable in K+ +♦> → ♦♦>.

Proof. First note that in K+ +♦> → ♦♦> we can derive ♦p→ ♦p ∧♦♦>:

(1) p→ > [axiom o f K+]
(2) ♦p→ ♦> [rule 3 o f K+ applied (1)]
(3) ♦> → ♦♦> [additional axiom]
(4) ♦p→ ♦♦> [rule 1 o f K+ applied to (2) and (3)]
(5) p→ p [axiom o f K+]
(6) ♦p→ ♦p [rule 3 o f K+ applied to (5)]
(7) ♦p→ ♦p ∧♦♦> [rule 2 o f K+ applied to (4) and (6)]

Then note that Chase(Ms, Con f+) can be obtained from Ms by a sequence of applica-
tions of individual triggers for Con f+ in such a way that all intermediary models are of
the form Ms′ for some term s′. (This is due to the fact that applications of Con f+ preserve
the ‘tree-shapedness’ of models.) Thus there exists a sequence of sp-terms s = s0, s1, . . . , sm
such that Msi is the result of the application of trigger g for Con f+ to Msi−1 for 1 ≤ i ≤ m
and a rooted homomorphism from Mt into Msm . Now we argue that all implications
si−1 → si are derivable in K+ + ♦> → ♦♦>. To derive si−1 → si it is sufficient to take
♦p→ ♦p ∧♦♦>, then substitute the term corresponding to the ‘part of Msi−1 sitting above
g(y)’, which is common for Msi−1 and Msi , and then apply rules 3 and (3) of K+ to derive
‘the part of Msi−1 sitting below g(x)’, which is again common for two models, on both sides
of the resulting implication (here x and y are variables in the antecedent of Con f+). This
argument is illustrated in Figure 1. The implication sm → t is derivable by Proposition 2.
Now it remains to apply m + 1 times the first rule of K+.
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Msi−1

r

q

q′

r

q

q′

Msi

g(x)

g(y)

r′ r′

Figure 1. Suppose that si−1 = ♦(r ∧ ♦(q ∧ ♦q′)) ∧ ♦r′ and si = ♦(r ∧ ♦(q ∧ ♦q′) ∧ ♦♦>) ∧ ♦r′

with Msi−1 , Msi and g as in the figure. Then the term corresponding to the ‘part of Msi−1 sitting
above g(y)’ is q ∧ ♦q′. Therefore, we substitute p := q ∧ ♦q′ in ♦p → ♦p ∧ ♦♦> and infer ♦(q ∧
♦q′) → ♦(q ∧ ♦q′) ∧ ♦♦>. Then by an admissible in K+ rule (3) from the latter formula and the
axiom r → r we infer r ∧ ♦(q ∧ ♦q′) → r ∧ ♦(q ∧ ♦q′) ∧ ♦♦>. Then by rule 3 of K+ we infer
♦(r ∧ ♦(q ∧ ♦q′)) → ♦(r ∧ ♦(q ∧ ♦q′) ∧ ♦♦>) and by rule (3) we infer ♦(r ∧ ♦(q ∧ ♦q′)) ∧ ♦r′ →
♦(r ∧♦(q ∧♦q′) ∧♦♦>) ∧♦r′ which is si−1 → si.

Lemma 2. For each frame F we can define a partial function succ on Chase(F, Con f+) such that

1. its domain contains all non-final points of F and the image of succ.
2. if succ(u) = v, then (u, v) ∈ Chase(F, Con f+).R.

Proof. Each non-final point u of F has a successor v, which gives rise to trigger h for Con f+.
If this trigger is good, we set succ(u) to be cz introduced by an application of this trigger.
Otherwise, we set succ(u) to be h′(z), where h is an extension of h to the head of the
rule. Then we define succ on those points of ChaseStep(F, Con f+) where it has not been
defined so far. Then we deal similarly with ChaseStep(ChaseStep(F, Con f+), Con f+) and
so on.

Proof of Theorem 2. It should be clear that every theorem of K+ +♦> → ♦♦> is a strictly
positive theorem of K +♦�p→ �♦p since ♦> → ♦♦> is a theorem of K +♦�p→ �♦p.
Therefore, it remains to show that every strictly positive theorem of K + ♦�p → �♦p is
a theorem of K+ + ♦> → ♦♦>. Now take a strictly positive implication s → t such that
s → t ∈ K + ♦�p → �♦p. By Proposition 3, it follows that Chase(Ms, Con f ), root |= t.
Therefore, there exists a rooted homomorphism h from Mt into Chase(Ms, Con f ). If Ms
is a singleton, then both Chase(Ms, Con f ) and Chase(Ms, Con f+) are isomorphic to Ms,
and we are done. Otherwise, note that Con f satisfies (P1) and (P2). It follows that
Chase(Ms, Con f+), root |= t. Indeed, we can define a homomorphism h′ from Mt into
Chase(Ms, Con f+) by recursion. We set h′(u) = h(u) for non-anonymous h(u). For anony-
mous h(u) we look at the parent v of u in Ms and set h′(u) = succ(h′(v)) assuming that
h′(v) is already defined. It should be clear that h′ is a homomorphism, since due to (P1)
and (P2), no points above an anonymous u in Mt can be in V(p) for any p. It remains to
apply Lemma 1 to conclude that s→ t is derivable in K+ +♦> → ♦♦>.

The proof of Theorem 3 is similar. We use TGDs Ser = {∀x(> → ∃y R(x, y))},
Re f l = {∀x(> → R(x, x))} and Trans = {∀x∀y∀z(R(x, y) ∧ R(y, z)→ R(x, z))} and the
fact that properties (P1) and (P2) still hold in the setting of L. For example, for s → t ∈
S4.2, (P1) and (P2) hold for Chase(Ms, Trans ∪ Re f l ∪ Con f ), and this allows us to trans-
form a homomorphism h : Mt → Chase(Ms, Trans ∪ Re f l ∪ Con f ) into one h′ : Mt →
Chase(Ms, Trans ∪ Re f l) using the fact that each point in Chase(Ms, Trans ∪ Re f l) has a
successor. We also use the ‘completeness lemma’ for strictly positive counterparts of
{D, T, D4, S4} to go from the existence of h′ to a derivation of s→ t in the corresponding
strictly positive logic:
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Lemma 3. Suppose that Φ is a subset of {> → ♦>,♦♦p → ♦p, p → ♦p} and that Π is the
corresponding subset of {Ser, Re f l, Trans}. Then for any sp-terms s and t, if there is a rooted
homomorphism h from Mt into Chase(Ms, Π), then the implication s→ t is derivable in K+ + Φ.

We consider this lemma as folklore (cf. [1,2,5,10]) and leave it without a proof.

5. Strictly Positive Fragments for Logics with Bimodal Version of Confluence

In this section, we consider logic with bimodal versions of confluence chr = ♦1�2 p→
�2♦1 p. We start by considering this axiom on its own.

We define

chr1+n = ♦1 p ∧♦n
2> → ♦1(p ∧♦n

2>),
chr2+n = ♦2 p ∧♦n

1> → ♦2(p ∧♦n
1>),

Γ1 =
{

chr1+n | n ∈ N
}

Γ2 =
{

chr2+n | n ∈ N
}

Γ1 and Γ2 correspond to the TGDs:

PosChR1 = {∀x1 . . . ∀xn∀y1(R2(x1, x2) ∧ · · · ∧ R2(xn−1, xn) ∧ R1(x1, y1)

→ ∃y2 . . . ∃ynR2(y1, y2) ∧ · · · ∧ R2(yn−1, yn)) | n ∈ N},
PosChR2 = {∀x1 . . . ∀xn∀y1(R1(x1, x2) ∧ · · · ∧ R1(xn−1, xn) ∧ R2(x1, y1)

→ ∃y2 . . . ∃ynR1(y1, y2) ∧ · · · ∧ R1(yn−1, yn)) | n ∈ N}.

The next part of the paper is dedicated to the proof of the following theorem:

Theorem 4. SPF(K2 + chr) = K+
2 + Γ1 + Γ2.

Lemma 4. All formulas in Γ1 and Γ2 are theorems of K2 + chr.

Proof. First take chr1+n = ♦1 p ∧♦n
2> → ♦1(p ∧♦n

2>) and note that

Chase(M♦1 p∧♦n
2>, ChRos), root |= ♦1(p ∧♦n

2>)

(see Figure 2).

p

1 1 1 1

2 2 2

2 2 2

root

Figure 2. Chase(M♦1 p∧♦3
2>, ChRos), root |= ♦1(p ∧♦3

2>).

The argument for chr2+n is similar.
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To illustrate the interplay between Γ1 and Γ2, consider the following inference:

(1) ♦1>∧♦2 p→ ♦2(p ∧♦1>) [chr2+1 ]
(2) ♦1>∧♦2> → ♦2♦1> [substitution p := > in (1)]
(3) ♦1(♦1>∧♦2>)→ ♦1♦2♦1> [introduce ♦1 in (2)]
(4) ♦1 p ∧♦2> → ♦1(p ∧♦2>) [chr1+1 ]
(5) ♦1♦1>∧♦2> → ♦1(♦1>∧♦2>) [substitution p := ♦1> in (4)]
(6) ♦1♦1>∧♦2> → ♦1♦2♦1> [ f rom (5) and (3)]

This deduction exemplifies the following ‘completeness lemma’ for s = ♦1♦1>∧♦2>
and t = ♦1♦2♦1>:

Lemma 5. Suppose that s and t are sp-terms. Then if Mt maps homomorphically into the model
Chase(Ms, PosChR1 ∪ PosChR2) (with preservation of roots), then the implication s → t is
derivable in K+

2 + Γ1 + Γ2.

To prove it, we need more verbose modifications of chr1+n and chr2+n . We define, by
recursion, the terms ui

n for i = 1, 2 and n ≥ 0 by setting u1
0 = u2

0 = p0, u1
n = pn ∧ ♦2u1

n−1
and u2

n = pn ∧♦1u2
n−1 for n > 0. Now we set chr1+n ′ = ♦1 p ∧ u1

n → ♦1(p ∧♦n
2>) ∧ u1

n and
chr2+n ′ = ♦2 p ∧ u2

n → ♦2(p ∧ ♦n
1>) ∧ u2

n. Since one can easily derive in K+ implications
u1

n → ♦n
2> and u2

n → ♦n
1> and then use admissible rule (3), we have

Lemma 6. The formula chr1+n ′ is derivable in K+
2 + chr1+n and the formula chr2+n ′ is derivable in

K+
2 + chr2+n .

The proof of Lemma 5. The proof is similar to the proof of Lemma 1. Recall that a chase
is a sequence of applications of triggers. Further, note that if a model M is obtained by
an application of a trigger for PosChR1 or PosChR2 to a model Ms′ for an sp-term s′, then
there is an sp-term s′′ such that M is isomorphic to Ms′′ . (This is due to the fact that
applications of PosChR1 and PosChR2 preserve the ‘tree-shapedness’ of models.) Thus
there is a sequence of terms s0 = s, s1, s2, . . . , sn, such that Msi is obtained from Msi−1 by
an application of a trigger for PosChR1 or PosChR2 and a homomorphism from Mt into
Msn . We argue that implications si−1 → si are deducible in K+

2 + Γ1 + Γ2. Indeed, we start
with an axiom chr1+n ′ or chr2+n ′ expressing the application of a trigger, and then apply
substitutions and the rules

σ→ τ σ→ $

σ→ τ ∧ $
,

σ→ τ

♦jσ→ ♦jτ

for j = 1, 2 to infer full implication si−1 → si (cf. (2) and (3)). This argument is explained in
Figure 3. Additional variables p0, . . . , pn in chr1+n ′ and chr2+n ′ serve as substitution slots at
object variables xi and yi in the body of TGDs. Implication sn → t is deducible in K+

2 by
Proposition 2. Now it remains to apply n + 1 times the rule

σ→ τ τ → $

σ→ $
.
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Msi−1
Msi

q1 q2 q3

g(x1)

g(x2)

g(x3)

g(y1)

q1 q2 q3

1

2

21

1

1

1

2

21

1

1 2

2

Figure 3. Suppose that si−1 = ♦1(♦1♦1q1 ∧ ♦2(♦1q2 ∧ ♦2q3)) and si = ♦1(♦1(♦1q1 ∧ ♦2♦2>) ∧
♦2(♦1q2 ∧♦2q3)) with Msi−1 , Msi and trigger g as in the figure. To infer si−1 → si, we take chr1+2

′ =

♦1 p∧ (p2 ∧♦2(p1 ∧♦2 p0))→ ♦1(p∧♦2♦2>)∧ (p2 ∧♦2(p1 ∧♦2 p0)), substitute p := ♦1q1, p2 := >,
p1 := ♦1q2, p0 := q3, obtain ♦1♦1q1 ∧♦2(♦1q2 ∧♦2q3)→ ♦1(♦1q1 ∧♦2♦2>)∧♦2(♦1q2 ∧♦2q3) and
apply σ→τ

♦1σ→♦1τ .

Let F = (W, R1, R1) be a frame and x ∈ W. The i-depth of x is the maximum overall
lengths of Ri-path starting in x if its finite and ∞ otherwise. Notation: depthi(F, x). For
example, for a reflexive point x, we have depthi(F, x) = ∞.

Lemma 7. Let F = (W, R1, R2) be an arbitrary frame satisfying PosChR1 and PosChR2. Then
for each x and y in W we have

if (x, y) ∈ R1, then depth2(F, x) ≤ depth2(F, y), and
if (x, y) ∈ R2, then depth1(F, x) ≤ depth1(F, y).

To see this, note that the statements of Lemma 7 simply rephrase PosChR1 and
PosChR2 using the notion of depth.

Given an sp-term t with operators ♦1 and ♦2, a root branch in Mt is a finite sequence
b = b1 . . . bm of 1 and 2 such that if we define, by recursion, the terms un for n ≥ 0 by
setting u0 = > and un = ♦bn un−1 for n > 0, there is a rooted homomorphism from Mum

into Mt. For a term t by |t|i we denote the largest number of i’s in any root branch in Mt
for i ∈ {1, 2}. For example, for t = ♦1(♦2 p ∧♦1q) |t|1 = 2 and |t|2 = 1.

Lemma 8. Let F = (W, R1, R2) be an arbitrary frame satisfying PosChR1 and PosChR2. Sup-
pose that x ∈ W and t is a variable-free term such that |t|1 ≤ depth1(x) and |t|2 ≤ depth2(x).
Then there is a homomorphism from Mt into F, sending the root of t to x.

Proof. The proof is by induction on the length of term t. The case when t = > is obvious.
If t = ♦1s, then depth1(x) ≥ 1, and there exists y with xR1y and

|s|1 = |t|1 − 1 ≤ depth1(x)− 1 = depth1(y).
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Assuming depth2(x) = k, we use PosChR1 and deduce that depth2(y) = k. We apply
the IH and conclude that there is a homomorphism from Ms to F, sending the root of Ms to
y. This homomorphism can be easily extended to Mt by sending the root of Mt to x.

The case when t = ♦2s is similar. If t = s1 ∧ s2, then IH can be applied to s1 and s2.
The desired homomorphism is the union of homomorphisms from Ms1 and from Ms2 .

This argument is illustrated in Figure 4 for t = ♦1♦2♦2♦1♦2>.

1

1

1

1

1

1

1

2 2 2

222

2

Figure 4. Proof of Lemma 8 for t = ♦1♦2♦2♦1♦2>.

The following lemma says that for any term s, the ‘anonymous part’ of Chase(Ms, ChRos)
is commutative in the strong following sense.

Lemma 9. Fix a term s. Suppose that h is a trigger for Com12 into Chase(Ms, ChRos) such that
h(z) is an anonymous point of rank n ≥ 1. Then there is a point v in Chase(Ms, ChRos) of rank
n− 1 such that (h(x), v) ∈ Chase(Ms, ChRos).R2 and (v, h(z)) ∈ Chase(Ms, ChRos).R1. A
similar claim holds for Com21.

To see this, focus on the moment when z is created by trigger h′ for ChRos and take
h′(z) as v.

Suppose that t is an sp-term and x is a point in Mt such that x /∈ V(p) for all propo-
sitional variables p. In this case, by tx we denote such a term that the submodel of Mt
generated by x is isomorphic to Mtx .

The proof of Theorem 4. (⊇) In Lemma 4, we prove that all formulas in Γ1 and Γ2 are
theorems of K2 + chr.

(⊆) Now take a strictly positive implication s → t such that s → t ∈ K2 + chr. By
Proposition 3 it follows that Chase(Ms, ChRos), root |= t. Therefore, there exists a rooted
homomorphism h from Mt into Chase(Ms, ChRos). Suppose that R1(x, y) holds in Mt, h(x)
is not anonymous, but h(y) is anonymous. By the iterative application of Lemma 9 we
obtain that |ty|1 ≤ depth1(Ms, x)− 1 and |ty|2 ≤ depth2(Ms, x). Therefore, by Lemma 8,
there exists a homomorphism hxy from the subtree of Mt generated at x in the direction
of y into Chase(Ms, PosChR1 ∪ PosChR2), sending x to h(x). In a similar way, we define
homomorphisms hxy for pairs (x, y) of points of Mt such that R2(x, y) holds in Mt, h(x) is
not anonymous, but h(y) is anonymous. By applying this argument to all such pairs (x, y)
in Mt, we obtain a homomorphism h′ from Mt into Chase(Ms, PosChR1∪ PosChR2). Again
(P1) and (P2) are used to ensure that no points above an anonymous u in Mt can be in V(p)
for any p. Finally, by Lemma 5, we conclude that s→ t is derivable in K+

2 + Γ1 + Γ2.
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Now let us turn to the product logic K×K, which, in addition to chr, contains axioms
com12 = ♦1♦2 p→ ♦2♦1 p and com21 = ♦2♦1 p→ ♦1♦2 p. Let us define a set of TGDs

Com = Com12∪ Com21.

These axioms are already strictly positive and from a general result of [10] (Theorem
35). Therefore, it follows that SPF(K + com#) = K+ + com# for # ∈ {12, 21}. Now we argue
that indeed

Theorem 5. SPF(K×K) = K+
2 + com12 + com21 + Γ1 + Γ2.

Since TGDs Com create points that do not satisfy (P2), we need a softer condition.
Suppose that Π = Com ∪ ChRos and Π+ = Com ∪ PosChR1∪ PosChR2. Take an sp-term s
and consider Chase(Ms, Π). All anonymous points in Chase(Ms, Π) fall into two groups:
introduced by Com (type 1) and introduced by ChRos (type 2). Relying on Lemma 9, we
claim that

(P2’) given an sp-term s, every generated submodel rooted at an anonymous point of
Chase(Ms, Π) of type 2 contains only anonymous points of type 2.

Like in Theorem 4, we first establish ‘completeness with respect to TGDs’ for K+
2 +

com12 + com21 + Γ1 + Γ2:

Lemma 10. Suppose that s and t are sp-terms. Then if Mt maps homomorphically into the model
Chase(Ms, PosChR1∪ PosChR2∪ Com) (with preservation of roots), then the implication s→ t
is derivable in K+

2 + com12 + com21 + Γ1 + Γ2.

Proof. Suppose that h is a rooted homomorphism from Mt into Chase(Ms, PosChR1 ∪
PosChR2∪ Com). Suppose that β is a point of Mt such that h(β) is an anonymous point of
type 1 in Chase(Ms, PosChR1∪ PosChR2∪Com) introduced by Com12 by trigger g (defined
on {x, y, z}). Suppose that α is the predecessor of β in Mt and γ1, . . . , γm are successors
of β in Mt. Note that this can happen only in case (α, β) ∈ Mt.R2, (β, γi) ∈ Mt.R1 for
1 ≤ i ≤ m, and all h(γi) are equal. We say that a homomorphism h′ from Mt′ into
Chase(Ms, PosChR1∪ PosChR2∪ Com) is obtained by com12-surgery of h at α if

• Mt′ is obtained from Mt by changing

– R2-arrow between α and β into R1-arrow
– R1-arrows between β and γi into R2-arrows for 1 ≤ i ≤ m
– terms ‘sitting’ at γi in Mt into their conjunction.

• h′ coincides with h on all points except β
• h′(β) = g(y) (here g is the trigger, and y is a variable of Com12).

We argue that in this case, the implication t′ → t is derivable in K+
2 + com12. Indeed,

we take the axiom ♦1♦2 p → ♦2♦1 p, apply the substitution p := tγ, inclusion ♦1tγ →
♦1tγ ∧ . . .♦1tγ ’weakening’ from tγ to tγi , and then we ’grow’ the common part of h and h′

by the rules
σ→ τ σ→ $

σ→ τ ∧ $
,

σ→ τ

♦σ→ ♦τ
.

We similarly define com21-surgeries and argue that by a sequence of surgeries, h may
be reduced to a homomorphism h∗ from t∗ into Chase(Ms, PosChR1 ∪ PosChR2 ∪ Com),
which does not use any points of type 1. Thus we can apply Lemma 5 and derive the
implication s → t∗ as well as implications between the terms t′ corresponding to the
intermediate steps of the surgeries. Finally, we apply the rule a few times

σ→ τ τ → $

σ→ $
.

This argument is illustrated in Figure 5.
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p

root

1

2

2

11

1

Figure 5. To derive ♦1(♦2 p ∧ ♦1>) → ♦2♦1(p ∧ ♦1>) in K+
2 + com12 + com21 + Γ1 + Γ2 we first

derive ♦1(♦2 p ∧♦1>)→ ♦1♦2(p ∧♦1>) and then ♦1♦2(p ∧♦1>)→ ♦2♦1(p ∧♦1>).

Proof of Theorem 5. Inclusion from right to left is proved in Lemma 4.
Now, take a strictly positive implication s→ t such that s→ t ∈ K×K. By Proposi-

tion 3, it follows that Chase(Ms, ChRos ∪ Com), root |= t. Therefore, there exists a rooted
homomorphism h from Mt into Chase(Ms, ChRos ∪ Com). Now, we argue that there
exists a homomorphism h′ from Mt into Chase(Ms, PosChR1 ∪ PosChR2 ∪ Com). Sup-
pose that R1(x, y) holds in Mt, h(x) is not anonymous, but h(y) is anonymous of type
2. By the iterative application of Lemma 9, we obtain that |ty|1 ≤ depth1(Ms, x)− 1 and
|ty|2 ≤ depth2(Ms, x). Therefore, by Lemma 8 there exists a homomorphism h′xy from
the subtree of Mt at x in the direction of y into Chase(Ms, PosChR1 ∪ PosChR2 ∪ Com),
sending x to h(x). We similarly deal with points x and y such that R2(x, y) holds in
Mt, h(x) is not anonymous, but h(y) is anonymous of type 2. By applying this argu-
ment to all such pairs (x, y) of points of Mt, we obtain a homomorphism from Mt into
Chase(Ms, PosChR1 ∪ PosChR2 ∪ Com). Finally, by Lemma 10, we conclude that s→ t is
derivable in K+

2 + com12 + com21 + Γ1 + Γ2.

Theorem 6. There is no finite set of formulas Φ such tha SPF(K×K) = K+
2 + Φ.

Proof. This follows from the fact that in

K+
2 + com + chr1+1 + chr2+1 + . . . + chr1+n + chr2+n

the formula chr2+n+1 is not derivable and a standard argument due to Tarski.

Theorem 7. For logics L1, L2 ∈ {D, T, D4, S4}

SPF(L1 × L2) = SPF([L1, L2]) = K+
2 + com + L′1 + L′2.

where L′i is the set of all additional axioms in Li with all ♦ replaced by ♦i.

Proof. The main remaining ingredient of the proof is ‘completeness of K+
2 + com + L′1 + L′2

with respect to the corresponding set of TGDS Π′’ (Π′ because Π stands for Π′ ∪ {ChRos}).
It follows from Theorem 35 of [10], Proposition 3, and Kripke completeness of modal
counterparts of logics in question. Indeed, if h′ is a rooted homomorphism from Mt
into Chase(Ms, Π′), then by Proposition 3 s → t is derivable in K2 + com + L′1 + L′2, and
by Theorem 35 (see also the text at the beginning of Section 2 of this paper) of [10] any
sp-implication in K2 + com + L′1 + L′2 is derivable in K+

2 + com + L′1 + L′2.
Now we proceed as before. We assume that s and t are sp-terms such that there is a

rooted homomophism h from Mt into Chase(Ms, Π). Then using (P2’) for Π and the fact that
there are no final points in Chase(Ms, Π′), we transform h into a rooted homomorphism h′

from Mt into Chase(Ms, Π′). Finally, we apply the corresponding ’completeness statement’
to conclude that s→ t is derivable in K+

2 + com + L′1 + L′2.
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6. Conclusions

In this paper, we develop a technique for axiomatising strictly positive fragments
of normal modal logics with confluence axioms ♦�p → �♦p and ♦1�2 p → �2♦1 p. We
apply it to obtain strictly positive axiomatisation for strictly positive fragments of some
two-dimensional products of modal logics. Possible directions of future research include
axiomatising strictly positive fragments of ≥ 3-dimensional modal logics and strictly
positive fragments of restricted fragments of first-order logic that correspond to products of
modal logics directly [18] or indirectly [19]. In the context of cylindrical correspondence [18],
products of S5 (which are not covered in this paper) are particularly interesting because
then modal operators are interpreted as quantifiers, and the confluence axiom turns into
the principle ∃x∀y φ(x, y)→ ∀y∃x φ(x, y), which plays a crucial role in the axiomatisation
of these fragments.
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