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Abstract: This paper investigates the bipartite synchronization of memristor-based fractional-order
coupled delayed neural networks with structurally balanced and unbalanced concepts. The main
result is established for the proposed model using pinning control, fractional-order Jensen’s inequality,
and the linear matrix inequality. Further, new sufficient conditions are derived using the Lyapunov–
Krasovskii functional with delay-dependent criteria. Finally, numerical simulations are provided
including two numerical examples to show the effectiveness of the theoretical results.
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1. Introduction

Fractional differential calculus (FDC) has a vital mechanism compared to ordinary
differential calculus. Thus, it is practically used to model several problems in engineering
and sciences. The main reason for the success of FDC applications is that they produce
fractional-order models that are often more accurate than the integer-order ones. Indeed, it
has been witnessed that all fractional operators consider the entire history of the process,
thus helping to model the non-local and distributed effects often encountered in the natural
and technical phenomena. Fractional calculus is therefore an excellent tool for describing
the memory and hereditary properties of various materials and processes, including various
applications of real-life engineering problems, such as the diffusion process, heat transfer,
mechanics, electric circuits, medicine and a wide range of fields. For more applications, we
refer the reader to [1–4] and their references therein.

Synchronization signifies multiple engaging collective behaviors obtained in natural
and artificial systems. It is successfully used in pattern recognition, object detection,
image processing, etc. [5,6]. There are many examples, such as local synchronization [7],
global synchronization [8], multi-quasi synchronization, projective synchronization [9], and
bipartite synchronization [10–12]. All nodes which converge to the value and are equal in
every modulus, but not in sign, are called bipartite consensus [13]. This consensus which
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is applied to the synchronization is said to be bipartite synchronization, and this type of
synchronization has attracted the attention of more researchers [10,11,14–16].

In 1971, Leon O. Chua postulated that the memristor is a new circuit element. In-
deed, it offers non-volatile memory potential applications stored in a simple device struc-
ture. In 2008, Chua received great attention for the experimental observation in (Hewlett–
Packard) HP labs. The two-terminal variable resistance of the memristor is known as
memristance [17,18]. A neural network emulates the human brain by placing the mem-
ristor instead of the resistor. It is known as a memristor neural network (MNN). The
memristor holds many advantages, such as lower power, high density, and good scala-
bility. It finds the key to engineering problems, such as power circuits, static function,
and impacting machines. Moreover, several types of neural network have been studied
in the past, a few among them being the Hopfield neural network [19], biological neural
network [6], cellular neural network [20], stochastic neural network [21], complex-valued
neural network [22], Chebyshev neural network [23], BAM neural network [24,25], delayed
neural network [26–29] and coupled delayed neural network [2,11]. Nowadays, many
authors are studying the fractional-order memristor-based neural network (FMNN), but
their solutions are still unveiled. The fractional-order memristor coupled delayed neural
network was studied in [2,30], while the complex-valued memristor-based neural network
was discussed in [9,14,17,31]. The network models are efficiently employed to solve several
problems in image processing, cryptography and secure communication [14,18,32]. Differ-
ent kind of controllers are used within the ordinary and fractional order control systems,
for example, pinning control [11,31,33], adaptive control [31], event-triggered control [34],
and impulsive control [20,24,35,36]. However, the pinning control strategy is mostly used
to reduce large-scale network costs. Moreover, the Laplace transform has been used as a
tool to study the qualitative behavior of the fractional-order differential system. Recently,
the linear matrix inequality (LMI) was used to study the stability behavior of linear and
non-linear fractional differential systems [37].

Motivated by the foregoing results, a fractional-order coupled delayed neural network
(FCDNN) with delay-dependent criteria is considered in this paper, with the pinning
control, fractional-order Jensen’s inequality, and the linear matrix inequality. Furthermore,
new sufficient conditions are derived using the Lyapunov–Krasovskii functional (LKF).
The main contributions of this paper are described as follows:

(a) Constructing a new LKF and examining effects on the stability by considering time
delay information which effectively improves the stability condition.

(b) Deducing delay-dependent synchronization criteria for the FCDNN under both struc-
turally balanced and unbalanced networks.

(c) The pinning controller is used, which is cost efficient, and is found effective compared
to the other controllers.

(d) Obtaining the boundedness of LKF via fractional-order Jensen’s inequality.

The objective of this paper is to provide a different approach that will yield less restrictive
and more efficient delay dependent stability conditions. Based on the above discussion, this
paper’s main outline is derived as follows: In Section 2, we discuss essential preliminaries,
definitions and lemmas, and Section 3 explains the problem formulation of memristor based
FCDNN. Sections 4 and 5 study memristor-based FCDNN with the bipartite leader and leader-
less synchronization through structurally balanced and unbalanced concepts. In Section 6, the
applications of the theory are proved by numerical examples.

Notations: The sign(·) represents the signum or sign function. wp denotes gauge
transformation, ⊗ denotes the Kronecker product [38], lpj denotes the Laplacian matrix,
Ls and Lu are the Laplacian of signed and unsigned matrices, respectively, and c̄o means

convexity closure. A symmetric matrix Π is denoted as Π =

(
a b
∗ d

)
, ∗ represents the

transpose of b and Γ(∗) is the gamma function defined by Γ(q) =
∫ ∞

0 e−ttq−1dt, where the
real part of q is positive.
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2. Preliminaries

This part provides some essential preliminaries that are necessary to address the
important results.

Lemma 1 ([39]). The matrix A is known as M–matrix if it satisfies the following conditions:

(i) All eigenvalues of A are non-negative.
(ii) All off-diagonal elements of A are non-positive.

Definition 1 ([11,13]). The signed network GSN is structurally balanced if the bipartition of the
vertices v1, v2, v1 ∪ v2 = V, v1 ∩ v2 = ∅, V is the set of nodes of GSN , the adjacency matrix apj is
positive if for all vp, vj ∈ vs, s ∈ {1, 2}, and apj is negative if for all vp ∈ vs, vj ∈ vt, s 6= t, where
s, t ∈ {1, 2}. Otherwise it is said to be structurally unbalanced.

Definition 2 ([13]). If a memristor-based FCDNN of GSN is structurally balanced with gauge
transformation then, Was

pjW = au
pj = |as

pj|, where W = diag(w1, w2...wN), wp = {−1, 1}, and
as

pj, au
pj represent the adjacency matrices of signed and unsigned graphs.

Lemma 2 ([11,12]). If D = diag(d1...dN), dp ∈ {−1, 1}, p ∈ {1, 2, ...N} is pinning feedback
gains, the Laplacian Ls = D − As and Lu = D − Au of the signed network GSN such that
lu
pj = Wls

pjW = −|as
pj| for p 6= j and lu

pp = ∑N
k=1,k 6=p |as

pj|, where As and Au are adjacency
matrices of signed and unsigned graphs, respectively, then the H-matrix is defined as

H = (hpj) = Lu + D. (1)

Lemma 3 ([40]). (Jensen’s inequality) Let $(t) ∈ Rn be an integral function, q ∈ (0, 1], R be
positive definite n× n matrix, then the fractional-order integral inequality is defined as follows:

t0 Iq
t ($

T(t)R$(t)) ≥ Γ(q + 1)
(t− t0)q (t0 Iq

t $(t))T R(t0 Iq
t $(t)). (2)

Lemma 4 ([41]). If the following LMI
(

Q T
TT Q1

)
> 0 holds, then either one of the following

conditions will exist,

(i) Q > 0, Q1 − TTQ−1T > 0,
(ii) Q1 > 0, Q− TQ−1

1 TT > 0.

Definition 3 ([1]). The fractional-order integration of the function f (t) is defined as follows:

t0 Iq
t f (t) =

1
Γ(q)

∫ t

t0

f (τ)dτ

(t− τ)1−q , (3)

where q ∈ (0, 1).

Definition 4 ([1]). Caputo’s fractional-order derivative of f (t) is defined as

C
t0

Dq
t f (t) =

1
Γ(n− q)

∫ t

t0

f (n)(s)
(t− s)q−n+1 ds,

where q > 0, n ∈ Z+ satisfying (n− 1) < q < n. Particularly, if 0 < q < 1, then

C
t0

Dq
t f (t) =

1
Γ(1− q)

∫ t

t0

f
′
(s)

(t− s)q ds. (4)
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3. Problem Formulation

Consider the memristor-based FCDNN of signed network GSN expressed by the
following conditions:

C
t0

Dq
t (xp(t)) = −Cxp(t) + A(xp(t)) f (xp(t)) + B(xp(t))g(xp(t− τ(t))) (5)

−σ
N

∑
j=1
|as

pj|(xp(t)− sign(as
pj)xj(t)) + up,

where xp(t), (t ≥ 0) denote the state variable of pth neuron (capacitor’s voltage),
p = {1, 2, ...N}, C = diag(c1, c2, ...cn) is a diagonal matrix of the neurons,
A(xp(t)) = [agj(xpj(t))]n×n and B(xp(t)) = [bgj(xpj(t))]n×n represent the connective
weighted memristor matrices, f (xp(t)) = ( f1(xp1(t)), ... fn(xpn(t)))T and g(xp(t− τ(t))) =
(g1(xp1(t− τ(t))), ...gn(xpn(t− τ(t))))T are bounded feedback functions without and with
delay, respectively, the coupling strength of the node is denoted as σ, τ(t) is called bounded and
differentiable node delay 0 ≤ τ(t) < τ̄, 0 ≤ C

t0
Dq

t τ(t) ≤ µ < 1. Using the concept of a signed
network, some justification for the coupling terms is needed to be given. A coupling adjacency
matrix is symmetric if apj = ajp. However, the coupling term is not necessarily symmetric. The
signed network GSN (5) is strongly connected if apj > 0 is positive. Further, it has a direct
link between j to p. Then a coupling term is as

pj(xp(t)− xj(t)); otherwise -as
pj(xp(t) + xj(t)).

The initial condition of GSN is represented as xp(t) = φp(t), t ∈ [−r, 0], where r = sup
t≥0

τ(t).

φp(t) belongs to the bounded feedback functions on [−r, 0]. The network of leader node (5) is
defined as

C
t0

Dq
t (sp(t)) = −Csp(t) + A(sp(t)) f (sp(t)) + B(sp(t))g(sp(t− τ(t))), (6)

where agj(spj(t)) and bgj(spj(t)) represent the connective weights of memristor matrices.

Remark 1. In memristor-based FCDNN (6), the memristor connective weights of agj(spj(t)),
bgj(spj(t)) are discontinuous, and the solution for differential Equation (6) cannot be found directly.
Filippov developed a solution of the discontinuous right-hand side of an integer-order differential
equation. Based on the definition, the discontinuous right-hand side of a differential equation has the
same values as a certain inclusion.

Definition 5 ([17]). The set-valued map F : R×Rn → Rn is defined as

F(t, x) = ∩δ>0 ∩µ(M)=0 c̄o[ f (t,B(x, δ))/M],

where B(x, δ) is a ball with x as the center and radius δ, c̄o is the convex closure, and µ(M)
denotes the Lebesgue measure. x(t), a vector valued function defined on I ⊂ R, forms a solution
of the Filippov system if it is absolutely continuous on [t1, t2] of I and also satisfies the differential
inclusion dx

dt ∈ F(t, x), t ∈ I. Let A(xp(t)) and B(xp(t)) be memristor connection weights of a
signed network, which are defined as

agj(xpj(t)) =

{
âgj, |xpj(t)| > Tj,
ǎgj, |xpj(t)| < Tj,

bgj(xpj(t)) =

{
b̂gj, |xpj(t)| > Tj,
b̌gj, |xpj(t)| < Tj,

A(sp(t)) and B(sp(t)) are memristor connection weights of the leader node of the network,
which are defined as

agj(spj(t)) =

{
âgj, |spj(t)| > Tj,
ǎgj, |spj(t)| < Tj,

bgj(spj(t)) =

{
b̂gj, |spj(t)| > Tj,
b̌gj, |spj(t)| < Tj,

A(±Tj) = âgj (or) ǎgj, B(±Tj) = b̂gj (or) b̌gj, where switching jumps Tj > 0 and weights âgj, ǎgj,
b̂gj, b̌gj, for g, j = {1, 2, ...n}, are constant.
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Assumption 1. (A1) The neuron activation functions f j, and gj are odd and bounded, f j(±Tj) = 0.
Let F and G be Lipschitz constants and the neuron activation functions satisfy the Lipschitz condition
as follows:

| f j(x)− f j(y)| ≤ Fj|x− y|,
|gj(x)− gj(y)| ≤ Gj|x− y|, (7)

where Fj > 0, Gj > 0, j = {1, 2, ...n}, x, y ∈ R.

Lemma 5 ([27]). Under the assumption f (±Tp) = g(±Tp) = 0, then the following holds:

|co[agjxpj(t)] f (xp(t))− co[agjspj(t)] f (sp(t))| ≤ AFp|xp(t)− sp(t)|,
|co[bgjxpj(t)]g(xp(t))− co[bgjspj(t)]g(sp(t))| ≤ BGp|xp(t)− sp(t)|,

where Fp > 0, Gp > 0, p = {1, 2, ...N}, A = max{|âgj|, |ǎgj|},B = max{|b̂gj|, |b̌gj|}.

Remark 2. Let us consider the memristor of FCDNN of leader node (6). The set valued map is
defined as follows:

co[(agj(spj(t)))] =


âgj, |spj(t)| > Tj,
c̄o{âgj, ǎpj}, |spj(t)| = Tj,
ǎgj|spj(t)| < Tj.

If the network of leader node sp(t) is absolutely continuous on [0, T), then the Filippov
solution of (6) on [0, T) is defined as

C
t0

Dq
t (sp(t)) ∈ −Csp(t) + co[agj(spj(t))] f (sp(t)) + co[bgj(spj(t))]g(sp(t− τ(t))),

for t ≥ 0, where 0 < q < 1, or there exist A ∈ co[agj(spj(t))], B ∈ co[bgj(spj(t))] such that

C
t0

Dq
t (sp(t)) = −Csp(t) +A f (sp(t)) + Bg(sp(t− τ(t))). (8)

Applying the theories of the set valued map and fractional-order differential inclusion in (6),
the Filippov sense of fractional order differential inclusion is written as (8). Additionally, the
Filippov sense in the memristor-based FCDNN (5) of the signed network is written as

C
t0

Dq
t (xp(t)) = −Cxp(t) +A f (xp(t)) + Bg(xp(t− τ(t)))− σ

N

∑
j=1

lu
pjxj(t) + up, (9)

where A ∈ co[agj(xpj(t))], B ∈ co[bgj(xpj(t))].

Definition 6 ([11,12]). Memristor-based FCDNN is said to be a bipartite leader synchroniza-
tion if limt→∞(xp(t) − wpsp(t)) = 0 and is said to be bipartite leaderless synchronization if
limt→∞(xp(t)− wpxj(t)) = 0.

Now, we are defining the pinning controller up(t) = −σdp(xp(t)−wpsp(t)), where dp
is known as the pinning feedback gain. If the vertices are pinned, then dp is positive, other-
wise dp is zero. If wp = 1, p ∈ v1 and if wp = −1, p ∈ v2. Further, if we consider wp = IN ,
the bipartite synchronization changes to the standard leader-following synchronization.

Remark 3. If the network of leader node is rooted, then it contains a spanning tree. Hence the
network of leader node (8) has a directed path to each node of the signed network (9). Moreover, if
the Laplacian matrix of a leaderless node has all its eigenvalues to be positive, except at least one
zero value, then the signed graph has a spanning tree [11–13,42].
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4. Bipartite Leader Synchronization of Memristor-Based FCDNN

In this section, we discuss the bipartite leader synchronization of the memristor-based
FCDNN of leader node (8) and signed network (9). The error system is described as
ep(t) = x̄p(t)− sp(t), where x̄p(t) = wpxp(t), w2

p = 1,

C
t0

Dq
t (ep(t)) = −Cep(t) +AFpep(t) + BGpep(t− τ(t))− σ

N

∑
j=1

lu
pjej(t)− σdpep(t).

If ∑N
k=1,k 6=q ls

pk 6= 0 when as
pk < 0 holds, then the row sum of the matrix, denoted by Ls,

may or may not be zero. It is different from the unsigned Laplacian matrix; by the Lemma 2,
we obtain

C
t0

Dq
t (ep(t)) = −Cep(t) +AFpep(t) + BGpep(t− τ(t))− σ

N

∑
j=1

hpjej(t). (10)

Theorem 1. Assume the hypothesis (A1), and consider the positive definite matrices P, P1, P2 ∈ Rn×n,
a positive real number µ < 1, and a symmetric matrix Q1, if the following LMI condition holds:

Π =


å PBG 0 0
∗ −(1− µ)P1 0 0
∗ ∗ − τ̄q

Γ(q+1) (Q1P2) 0

∗ ∗ ∗ − Γ(q+1)
τ̄q P2

 ≤ 0; (11)

where å = −PC− CT P + P1 + 2PAF− 2ΨP satisfies 0 < Ψ < σ min1≤p≤N Re(λp), λp is an
eigenvalue of matrix H, and Ψ > 0 is a positive number, then the memristor-based FCDNN of the
error system (10) is the bipartite leader, synchronized.

Proof. Take the Lyapunov–Krasovskii candidate:

V(t) =
3

∑
k=1

Vk(t),

V1(t) =
N

∑
p=1

ξpeT
p (t)Pep(t),

V2(t) =
N

∑
p=1

ξp

∫ t

t−τ(t)
eT

p (s)P1ep(s)ds,

V3(t) =
N

∑
p=1

ξp

∫ 0

−τ̄
(−θ)q−1

∫ t

t+θ
(C

t−τ̄ Dq
t ep(s))T P2(

C
t−τ̄ Dq

t ep(s))dsdθ,

Now, using the Caputo fractional-order derivative,
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C
t0

Dq
t V1(t) ≤ 2

N

∑
p=1

ξpeT
p (t)P{−Cep(t) +AFpep(t) + BGpep(t− τ(t))− σ

N

∑
j=1

hpjej(t)}

C
t0

Dq
t V2(t) =

N

∑
p=1

ξp{eT
p (t)P1ep(t)− (1− C

t0
Dq

t τ(t))eT
p (t− τ(t))P1ep(t− τ(t))}

C
t0

Dq
t V3(t) ≤

N

∑
p=1

ξp{
τ̄q

Γ(q + 1)
(C

t−τ̄ Dq
t ep(t))T P2(

C
t−τ̄ Dq

t ep(t))

− 1
Γ(q)

∫ 0

τ̄
(−θ)q−1(C

t+θ−τ̄ Dq
t+θep(t + θ))T P2(

C
t+θ−τ̄ Dq

t+θep(t + θ)),

=
N

∑
p=1

ξp
{ τ̄q

Γ(q + 1)
(C

t−τ̄ Dq
t ep(t))T P2(

C
t−τ̄ Dq

t ep(t))
}

−
∫ t

t−τ̄

1
(t− θ)1−qΓ(q)

(C
θ−τ̄ Dq

θ ep(θ))
T P2(

C
θ−τ̄ Dq

θ ep(θ))dθ.

Now, consider∫ t

t−τ̄

1
(t− θ)1−qΓ(q)

(C
θ−τ̄ Dq

θ ep(θ))
T P2(

C
θ−τ̄ Dq

θ ep(θ))dθ

≥ Γ(q + 1)
τ̄q (

1
Γ(q)

∫ t

t−τ̄
(t− θ)q−1(C

θ−τ̄ Dq
θ ep(θ)dθ))T P2

×( 1
Γ(q)

∫ t

t−τ̄
(t− θ)q−1(C

θ−τ̄ Dq
θ ep(θ)dθ))

=
Γ(q + 1)

τ̄q (
1

Γ(q)

∫ t

t−τ̄
(t− θ)q−1(C

θ−τ̄ Dq
θ ep(θ)− yp(θ)dθ)T P2

×( 1
Γ(q)

∫ t

t−τ̄
(t− θ)q−1(C

θ−τ̄ Dq
θ ep(θ)− yp(θ))dθ)

=
Γ(q + 1)

τ̄q (ep(t)− ep(t− τ̄)− t−τ̄ Iq
t yp(t))T P2

×(ep(t)− ep(t− τ̄)− t−τ̄ Iq
t yp(t)),

where yp(θ) =
1

Γ(1−q)

∫ θ−τ̄
t−τ̄ (u− θ)−q ėp(u)du, e(t) = (e1(t), e2(t), ...eN(t))T , e(t− τ(t)) =

(e1(t− τ(t)), e2(t− τ(t)), ...eN(t− τ(t)))T .
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C
t0

Dq
t V(t) ≤ 2

N

∑
p=1

ξpeT
p (t)P{−Cep(t) +AFpep(t) + BGpep(t− τ(t))− σ

N

∑
j=1

hpjej(t)}

+
N

∑
p=1

ξp{eT
p (t)P1ep(t)− (1− C

t0
Dq

t τ(t))eT
p (t− τ(t))P1ep(t− τ(t))}

+
n

∑
p=1

ξp{
τ̄q

Γ(q + 1)
(C

t−τ̄ Dq
t ep(t))T P2(

C
t−τ̄ Dq

t ep(t))

− Γ(q + 1)
τ̄q (ep(t)− ep(t− τ̄)− t−τ̄ Iq

t yp(t))T P2(ep(t)− ep(t− τ̄)− t−τ̄ Iq
t yp(t))

≤ −2eT(t)(Ξ⊗ PC)e(t) + 2eT(t)(Ξ⊗ PAF)e(t) + 2eT(t)(Ξ⊗ PBG)e(t− τ(t))

− 2eT(t)[σ(ΞH)⊗ P]e(t) + 2ΨeT(t)(Ξ⊗ P)e(t)− 2ΨeT(t)(Ξ⊗ P)e(t)

+ eT(t)(Ξ⊗ P1)e(t)− eT(t− τ(t))(1− µ)(Ξ⊗ P1)e(t− τ(t))

− τ̄q

Γ(q + 1)
ΩT

1 (t)(Ξ⊗Q1P2)Ω1(t)−
Γ(q + 1)

τ̄q ΩT
2 (t)(Ξ⊗ P2)Ω2(t)

≤ zT
p (t)Πzp(t)− 2eT(t)([Ξ(σH −ΨIN)]⊗ P)e(t)− τ̄q

Γ(q + 1)
ΩT

1 (t)(Ξ⊗ (TTQ−1T)P2)Ω1(t), (12)

here zp(t) = col (ep(t), ep(t − τ(t)), Ω1(t), Ω2(t)), y(θ) = (y1(θ), y2(θ), ...yN(θ))
T ,

Ω1(t) = C
t−τ̄ Dq

t ep(t), Ω2(t) = ep(t)− ep(t− τ̄)− t−τ̄ Iq
t yp(t), by Lemmas 2 and 4, H ma-

trix is a non-singular M-matrix, also σH − ΨIN is a non-singular M-matrix such that
[Ξ(σH −ΨIN)] > 0 , where Ξ = diag(ξ1, ξ2, ...ξN). Hence, by using the LMI (11), the error
system is globally asymptotically stable. Therefore, the desired result is achieved.

5. Bipartite Leaderless Synchronization of Memristor Based FCDNN
In this section, we discuss the bipartite leaderless synchronization (self-synchronization)

of the memristor-based FCDNN of signed networks (9). Here, the external force is not
required for leaderless consensus. Hence, the pinning value is zero. Let x̄p(t) = wpxp(t),
which also gives xp = wp x̄p(t). Then, from (9), it follows that

C
t0

Dq
t (x̄p(t)) = −Cx̄p(t) +Awp f (wp x̄j(t)) + Bwpg(wp x̄p(t− τ(t)))− σ

N

∑
j=1

lu
pj x̄j(t),

C
t0

Dq
t (x̄p(t)) = −Cx̄p(t) +A f (x̄p(t)) + Bg(x̄p(t− τ(t)))− σ

N

∑
j=1

lu
pj x̄j(t). (13)

Here, ep(t) = x̄p(t)− x̄r(t), Lu
pj = lu

pj − lu
rj. Recall that ∑N

j=1 lu
pj = 0.

C
t0

Dq
t (ep(t)) = −Cep(t) +AFpep(t) + BGpep(t− τ(t))− σ

N

∑
j=1

Lu
pjej(t). (14)

Theorem 2. Under Assumption (A1), if µ < 1 is a positive real number, P, P1, P2 ∈ Rn×n > 0
are positive definite matrices, Q1 is a symmetric matrix, and the following LMI condition holds:

Π1 =


å1 PBG 0 0
∗ −(1− µ)P1 0 0
∗ ∗ − τ̄q

Γ(q+1) (Q1P2) 0

∗ ∗ ∗ − Γ(q+1)
τ̄q P2

 ≤ 0; (15)

where å1 = −PC− CT P + P1 + 2PAF, then the memristor-based FCDNN of error system (14)
is bipartite leaderless, synchronized.

The proof is similar to Theorem 1.
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6. Numerical Examples

For the sake of confirmation and validation, two numerical examples are discussed in
this section.

Example 1. Consider the leader node of the network (8) with the memristor values as

A =

(
−0.40 −0.32
−1.30 0.70

)
,B =

(
−0.82 −0.50
−1.35 0.64

)
and C =

(
1 0
0 1

)
;

and f (xp(t)) = g(xp(t− τ(t))) = (tanh(xp1(t)), tanh(xp2(t)))T , p = {1, 2, 3...8}. The arbi-
trary trajectories of the leader node of network (8) are shown in Figure 1. Consider the memristor of
FCDNN with the following parameters. The memristor connective weights are taken from [27] as

a11(x1) =

{
2, |x1(t)| < 1,
−2, |x1(t)| > 1,

a12(x1) =

{
−1, |x1(t)| < 1,
1, |x1(t)| > 1,

a13(x1) =

{
0.5, |x1(t)| < 1,
−0.5, |x1(t)| > 1,

a21(x2) =

{
1.5, |x2(t)| < 1,
−1.5, |x2(t)| > 1,

a22(x2) =

{
1, |x2(t)| < 1,
−1, |x2(t)| > 1,

a23(x2) =

{
2, |x2(t)| < 1,
−2, |x2(t)| > 1,

a31(x3) =

{
1.5, |x3(t)| < 1,
−1.5, |x3(t)| > 1,

a32(x3) =

{
2, |x3(t)| < 1,
−2, |x3(t)| > 1,

a33(x3) =

{
1, |x3(t)| < 1,
−1, |x3(t)| > 1,

b11(x1) =

{
1, |x1(t)| < 1,
−1, |x1(t)| > 1,

b12(x1) =

{
0.5, |x1(t)| < 1,
−0.5, |x1(t)| > 1,

b13(x1) =

{
1.5, |x1(t)| < 1,
−1.5, |x1(t)| > 1,

b21(x2) =

{
2, |x2(t)| < 1,
−2, |x2(t)| > 1,

b22(x2) =

{
1.5, |x2(t)| < 1,
−1.5, |x2(t)| > 1,

b23(x2) =

{
1, |x2(t)| < 1,
−1, |x2(t)| > 1,

b31(x3) =

{
2, |x3(t)| < 1,
−2, |x3(t)| > 1,

b32(x3) =

{
3, |x3(t)| < 1,
−3, |x3(t)| > 1,

b33(x3) =

{
1.5, |x3(t)| < 1,
−1.5, |x3(t)| > 1.

Figure 1. Orbit trajectory of leader node.

Further, consider the coupling strength σ = 30 and q = 0.9, by the bipartite consensus
v1 = {1, 2, 3, 5}, v2 = {4, 6, 7, 8}, w = {1, 1, 1,−1, 1,−1,−1,−1}, d4 = 30, with the activa-
tion function f (xp(t)) = g(xp(t− τ(t))) = tanh(xpj(t)) which satisfies F = G = 1. Hence from
Lemma 2, we obtain λp = 0.5134. Let τ(t) = log(1 + et), then
C
t0

Dq
t τ(t) = lim

w→0
1

wq ∑∞
r=0(−1)r Γ(q+1)log(1+et−rw)

Γ(r+1)Γ(1−r+q) ≤ µ = 0.5 < 1. Hence all the hypotheses

of Theorem 1 are satisfied and with the support of the MATLAB LMI toolbox, Inequality (11) is val-

idated with feasible positive definite matrices of the form, P =

 0.1386 −0.0033 0.0048
−0.0033 0.1186 0.0081
0.0048 0.0081 0.1105

;
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P1 =

 1.3577 −0.0550 −0.0668
−0.0550 1.2878 −0.1290
−0.0668 −0.1290 1.2170

; P2 =

1.1279 0 0
0 1.1279 0
0 0 1.1279

. Figure 2 repre-

sents directed signed graph with eight vertices, and Figure 3 shows the bipartite leader synchroniza-
tion of equation (10). Further, using inequality (11), we obtain 0 ≤ τ̄ ≤ 1.1057.

Figure 2. Structurally balanced directed signed graph of eight vertices.

Figure 3. Bipartite leader synchronization of signed graph with eight vertices.

Example 2. Consider equation (14) with C =

10 0 0
0 15 0
0 0 20

, and the memristor values, activa-

tion functions and µ are taken as same as in example 1. By the bipartite consensus v1 = {1, 2, 3, 5},
v2 = {4, 6, 7, 8}, w = {1, 1, 1,−1, 1,−1,−1,−1}, Hence all the hypotheses of Theorem 2 are
satisfied, and with the support of MATLAB LMI toolbox, inequality (15) is validated with feasible
positive definite matrices as follows:

P =

0.1568 0.0076 0.0146
0.0076 0.1135 0.0062
0.0146 0.0062 0.0992

; P1 =

 1.2781 0.0566 −0.0490
0.0566 1.0928 −0.1944
−0.0490 −0.1944 0.8368

;

P2 =

0.8435 0 0
0 0.8435 0
0 0 0.8435

. Error system (14) achieves the bipartite leaderless synchro-

nization as shown in Figure 4. Further using inequality (15), we obtain 0 ≤ τ̄ ≤ 0.7724.

Remark 4. The memristor-based FCDNN of signed network equation (5) shows that signed graph
of eight vertices is structurally balanced. If the signed network has at least one negative cycle, it
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is structurally unbalanced. For Equation (10), the matrix values are the same as in Example 1
with λp = 0.6048. Hence by Theorem 1, we derive the structurally unbalanced bipartite leader
synchronization. Figures 5 and 6 show the structurally unbalanced directed signed graph with eight
vertices and its bipartite leader synchronization, respectively.

Figure 4. Bipartite leaderless synchronization of signed graph with eight vertices.

Figure 5. Structurally unbalanced directed signed graph.

Figure 6. Structurally unbalanced bipartite leader synchronization.
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7. Conclusions

In this paper, we studied the memristor-based FCDNN under pinning control. The
main results are proved under less restrictive conditions on the bipartite leader and leader-
less synchronization of the signed network through structurally balanced and unbalanced
concepts. In future, the FCDNN of Equation (10) with non-differentiable delay could be
discussed within the fractional settings.
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