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Abstract: Controlling time-delayed processes is one of the challenges in today’s process industries.
If the multi-input/multi-output system is dynamically coupled, the delay problem becomes more
critical. In this paper, a new method based on Smith’s predictive method, with the help of a type-2
fuzzy system to control the system with the mentioned features, is presented. The variability in the
time delay, the existence of disturbances and the existence of structural and parametric uncertainty
lead to the poor performance of the traditional Smith predictor. Even if the control system is set
up correctly at the beginning of the setup, it will eventually wear out, and the above problems will
appear. Therefore, computational intelligence is used here, and by updating the parameters of the
control system at the same time as the system changes, the control system adapts itself to achieve the
best performance. To evaluate the proposed control system, a complex process system is simulated,
the results of which show the good performance of Smith’s prediction method based on a type-2
fuzzy system.

Keywords: machine learning; parameter uncertainty; Smith predictive; MIMO control
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1. Introduction

Many processes in the chemical industry have time delays. Time delays in processes
cause the behavior of the open-loop function to be non-minimum system controlled, and
therefore, it is difficult to control these systems [1–5]. The presence of time delay in processes
is one of the major challenges in all control systems. In these processes, the control signal is
generated and applied to the process, but the output does not change for a certain period
of time. Therefore, if the output needs to change suddenly, the control system will not
work. In order to solve this problem, different methods have been proposed, the most
common of which is the use of model predictive control (MPC). This control system has
excellent performance for small time delays because it regularly predicts the output state.
However, if the time delay of the process is big, unfortunately, the efficiency of MPC will
decrease. Another solution is that the control system has a time delay just like the process.
However, this idea is not effective if the amount of time delay is variable. So far, the most
practical and comprehensive method for controlling processes with large time delays is
Smith’s method. The two basic challenges of Smith’s method are the non-minimum phase
of the process and the large variation in the time delay. In this article, we overcome both
problems with a new method. In single-input/output systems, using Smith’s predictor for
processes with long time delays can be effective in improving the system’s response. In this
method with process model prediction, the time delay parameter will be removed from
the equation [6–8]. The problems in this method can be attributed to its high sensitivity to
model error, a decrease in the control in response to turbulence control of integral processes
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and the inability to control unstable processes [9,10]. Many researchers have provided
various methods to solve these problems, known as “time delay compensators” [11–13].
There are also two general new methods that are based on output prediction with no delay
in the form of discrete-time control systems provided [14,15]. The authors of a number of
references tried to expand Smith’s method multi-input/output systems [16,17]. However,
the fact is that the usage of this method for such systems has more restrictions than single-
input/output systems. The existence of interference effects between control loops is one of
the biggest limitations to these methods. To avoid these effects, even if we want to use a
decoupler due to the high sensitivity of Smith’s method on model error, the selected model
should not have many mistakes because it will make the control system more unstable.
Compared to a conventional feedback method, to avoid interactions between loops, the
product of the process transfer function in the controller G p(s)G c(s) (which is a condition
of the absence of interactions between the loops in the conventional feedback method)
and multiplication to the process transfer function without time delay in the controller
G0

p(s)G c(s) must also be a diagonal matrix. In addition to this, in Smith’s method for
processes in which time delay parameters are not separable from the process transfer
method, the process is not applicable. Therefore, by focusing on the mentioned limitations,
the application of Smith’s method for controlling multi-input/output systems with time
latency has not received much attention from researchers, and in most cases, researchers
use the same common system feedback to control these systems. In [18,19], methods based
on Smith’s predictor are proposed to control multi-input/multi-output systems with time
delay. To adjust the parameters of the controllers in MIMO systems, many design methods
are mentioned in the references, which generally can be divided into five categories:

• Detuning methods [20,21];
• Methods of closing loops consecutively [22];
• Iterative methods or guess and error [23];
• Methods of the simultaneous solution of equations or optimization [24];
• Independent methods [25].

In detuning methods, each controller in the system is accordingly designed based on
the element of the diameter, and the interactions of the loops with each other are ignored.
Then, the controller is readjusted, taking into account the internal effects of the loops. The
simplicity of these methods is their main advantage, but their disadvantage is due to the
fact that the performance of the loop and its stability is not clearly and explicitly considered
in these methods. In the second method, the loops are sequential; they are closed and
adjusted. Usually, this starts with the fastest loop, and therefore, the dynamic interactions in
this loop are considered in setting the controller of the next loop, and the same is performed
for the others [26]. Some of the disadvantages of this method are reported in [27]. Some
disadvantages include the dependence of the last controller’s design on the order in which
the controllers were designed, and also, the selection of repetitive methods in response to
the designed loops.

In the iterative method (the third method), first, the controller parameters are set
as sequentially similar to the loop closure method, and after all the loops are closed, the
controllers are set again one after the other. This method continues until the answers
converge [28]. In the guessing and error method, the PID controller parameters are de-
termined step by step in such a way as to ensure the stability of the system. This type of
design is usually accompanied by “Relay Feedback” experiments known as “self-adjusting
variables” [29]. One of its main disadvantages is that this method not only requires the
successful testing of feedback relays, but also, in this method, there is no strong rela-
tionship between parameter regulation and system performance. Controller design in
multi-input/output loops by the simultaneous solution of equations (the fourth method) is
numerically difficult and complex. In [30], In this regard, one design method for PI/PID
controllers is provided in multi-input/output loops. In this reference, the modified Ziegler–
Nichols method is used, and the effects of interference between the loops are considered,
but there is no guarantee. For the existence of the answer, because the calculations are
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nonlinear and complex, this method is only used for two-input/output systems, and its
expansion to higher-dimensional systems seems to be difficult and has not been reported
so far. In [31], a multi-loop design is proposed as a nonlinear optimization problem. How-
ever, this formulation does not include systems with different latencies. Simultaneously
optimizing the equations of multi-input/output systems numerically is very difficult, and
the results are highly dependent on the conditions defined in the objective function, and
if the loops are closed in a distinctive order, the system may eventually become unstable.
In [32,33], independent design methods (fifth method) are used. In these methods, the
controllers are designed separately and with specific limits to ensure stability and proper
performance. However, detailed information about the dynamics of the controllers is not
used in other loops, so the final performance may be poor. In [34], a new method is pro-
posed for controlling time-delayed processes in single-input/output systems. The function
Gmb(S), which is often the first-order function with a predominant or equal interest to the
open-loop function of the system control, is added to the open-loop function of the control
system, and thus all the zeros on the right due to the time delay of the function are moved
to the left. The interval loops are moved to the left, thus improving the performance of the
control system.

Most of the used PID controllers consider time delays as a part of the system. These
dead times cause disturbances in the system. One of the ways to compensate for these
dead times is to use Smith’s technique [35–38]. In [39], a fuzzy PID controller is designed
based on Smith’s predictor technique for a heating system. By using this method, we can
compensate for the dead time. In these methods, it is possible to increase the speed of the
system by tuning the PID controller parameters. This has been completed in [40].

It should be noted that in any control system, its asymptotic stability is a basic re-
quirement. For this, a controller based on the nominal model is used, but the presence of
uncertainties in the system can cause it to operate incorrectly. In order to guarantee the
proper functioning of the system, robust controllers are used. Every robust control system
must have two conditions: closed-loop stability in nominal conditions and closed-loop
stability despite different uncertainties. In robust controllers, if the range of acceptable
values is greater, it indicates that the controller is more robust [41].

Fuzzy Smith has been used in articles [34–39], but it has some fundamental differences
with our work, which can be listed as follows:

1. In the mentioned articles, the main controller was PID, which has poor performance in
dealing with systems with high delay and a non-minimum phase, and unfortunately,
there was no mention of this issue in the mentioned articles. However, in our proposed
method, by designing and setting a first-order transformation function (with dominant
gain), the system was released from the non-minimum phase state and the system
was tamed (Tractable).

2. In all the mentioned articles, a type-1 fuzzy system was used, while we used type-2
fuzzy system. It is clear that a type-2 fuzzy system has more parameters than a type-1
system and therefore has more degrees of freedom and shows higher accuracy.

3. The last thing is that in our article, we applied some types of parametric uncertainties
and disturbances, but in the aforementioned articles, uncertainty and disturbance
were not applied in such a comprehensive and complete way.

The discussion of system robustness is fully presented in this paper. The rest of
the paper is organized as follows: Section 2 introduces Smith’s predictive control. The
proposed control system is described in Section 3. Section 4 shows the simulation results,
and Section 5 provides the conclusion.

2. Smith’s Predictive Control of Time-Delayed MIMO Systems

Smith’s predictive control method is a common and suitable solution for controlling
delayed systems. In this method, knowing the system model and the amount of delay is
necessary. Figure 1 shows Smith’s predictive control system for the time-delayed MIMO
system, and the proposed control system is described in Section 3.
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As shown in Figure 1, Smith’s method must specify the exact system model (G(s))
and the amount of time delay (τd); otherwise, the correct answer will not be received.
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Figure 1. Smith’s predictive control method.

3. The Proposed Control System

The proposed method in this paper has two phases: one is stabilizing and changes
the system behavior from a non-minimum phase to minimum phase, and the other is
the precise control of the system (process) by considering system dynamic changes and
parametric uncertainty. For the first phase, it is proposed to add the dominant gain transfer
function to the open-loop equations of the system (Figure 2).
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It is assumed that the measurement transfer function is equal to 1 (Gm(s) = 1). The
closed-loop transfer functions of this system are in the form of relations (1) and (2).

(Yn(s))
(
Ysp,n(s)

)−1
=
(
Gp,n(s)Gc,n(s)

)(
1 + Gmb,n(s) + Gc,n(s)Gn(s)

(
1− e−τds)+ Gp,n(s)Gc,n(s)

)−1 (1)

(Yn(s))(dn(s))
−1 = (Gd,n(s) + Gmb,n(s)Gd,n(s) + Gd,n(s)Gn(s)(1− e−τds)Gc,n(s))(

1 + Gmb,n(s) + Gc,n(s)Gn(s)(1− e−τds) + Gc,n(s)Gp,n(s)
)−1 (2)

In the above relationships, Yn(S), Ysp,n(S), dn(S), Gmb,n(S), Gp,n(S), Gc,nS and Gn(s)
from left to right, respectively, represent the response matrix, the reference input matrix,
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the input perturbation matrix, the matrix of predictive functions, the matrix of the process
include time delay, matrix functions of the controllers, and finally, the matrix of the process
without time delay. In this system, as in the proposed control system in single systems, the
input/output of the Gmb,n(S) function, which predicts the nth loop in the control system,
must be a function with a minimum phase behavior and a higher gain than other functions
in the open-loop function of that loop. The ideal mode for controlling multi-input/output
systems is the absence of loop interaction with each other. This happens when the matrix
Gp,2(s)Ge,2(s) is a diagonal matrix, in which case, the matrix of the open-loop transfer
function of the proposed control system will be as follows:

X(s) =
[

Gmb1(s) + Gp11(s)Gc11(s)
Gmb2(s) + Gp22(s)Gc22(s)

]
(3)

The conditions of the dominant interest concept must be established in a way that the
conditions of Equations (4) and (5) in the loops at all frequencies in phase diagrams do not
exceed the range from 0 to −180◦.

|Gmb1(s)| ≥
∣∣Gp11(s)Gc11(s)

∣∣ (4)

|Gmb2(s)| ≥
∣∣Gp22(s)Gc22(s)

∣∣ (5)

This method is effectively expandable for higher-dimensional systems, and it is only
necessary to have the necessary conditions to create a dominant interest constraint in the
open-loop function of each control loop [29]. If there are interaction effects between the
loops, then, for example, in a 2× 2 open-loop control system, the control system is obtained
as follows:

Q(s) =
(
1 + Gmb,11(s) + Gp11(s)Gc11(s)

)(
1 + Gmb,22(s) + Gp22(s)Gc22(s)

)
−

Gp12(s)Gp21(s)Gc11(s)Gc22(s)
(6)

which, in order to establish the dominant interest constraint, must have the following
equation in all or most of the curves so that in the phase diagram of the open-loop function,
the control system does not oscillate around the non-minimum phase function diagram
and does not exceed 180◦:

∣∣Gmb,11(s) + Gmb,22(s) + Gmb,11(s)Gmb,22(s)
∣∣ ≥

∣∣∣∣∣∣∣∣∣∣

Gp22(s)Gc22(s) + Gp11(s)Gc11(s)
+Gp11(s)Gp22(s)Gc11(s)Gc22(s)

+Gp11(s)Gc11(s)Gmb,22(s)
+Gp22(s)Gc22(s)Gmb,11(s)

−Gp11(s)Gp21(s)Gc11(s)Gc22(s)

∣∣∣∣∣∣∣∣∣∣
(7)

Of course, a simpler method can be used to apply the proposed method to control
systems in which the loops interact. In this method, first, the interactions of the loops are
eliminated from various methods, such as controller adjustment methods, and then, the
proposed method is used for the assumed system. This method is used in the example
given in this article. In the case of selecting the degree of the Gmb,j(s) function given that in
multi-input/output systems, the Gmb,n(s) function exists for each loop, we select the same
loop separately for the open-loop function; so, selecting the degree of this function is the
same as for single-input/output systems, which will be discussed below. In the case of
these systems, the general open-loop function can be represented as Equation (8):

overall open− loop trans f er f unction = G∞,j(s) = Gmb,j(s) + Gsol,j(s)

=
Kmb,j

D(pb)
mb,j (s)

+
Ksol,j N

(mo)
sol,j (s)

D(pb)
sol,j (s)

e−std,j , j = 1, 2, . . . , n
(8)

In the above relation, Gsol,j(s) is a simple open-loop function in the j-th loop. Addi-
tionally, Gool,j(s) is the general open-loop function for the j-th loop. Kmb,j and Ksol,j are
the compensatory gains and the simple open-loop function, respectively, and mo, pb, and
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po are the degrees of the polynomials. Thus, the equation characteristic of the proposed
method will be in the form of relation (9).

Kmb,jD
(po)
sol,j (s) + Ksol,jN

(mo)
sol,j (s)D(pb)

mo,j e
−std j = 0 (9)

In order for the dominant interest condition to be true in the general open-loop function
of each loop, Equation (10) must be true.

po ≥ mo + pb→ pb ≤ po−mo (10)

Now, if Gsol,j(s) is a suitable function, that is, po = mo, for the function to have a

minimum phase behavior in relation (10), (i.e., Kmb,jD
(po)
sol,j (s)) must be pb = 0, whereas if

Gsol,j(s) is a strictly suitable function, in order for the function to have a minimum phase
behavior in relation (10), it must be po > mo; in which case, we have pb ≥ 1. In this case,
pb = 1 is the most desirable degree because the first-degree functions have a finite phase.
Additionally, their phase curves will never reach −180◦, so they are always stable. In
general, the condition for the disappearance of all zeros to the right due to the time delay
parameter of the general open-loop function is to establish relation (11):∣∣∣Kmb,jD

(po)
sol,j (jw)

∣∣∣ ≥ ∣∣∣Ksol,jN
(mo)
sol,j (jw)D(pb)

mb (jw)e−jwtd,j
∣∣∣ (11)

which is equivalent to relation (12):∣∣∣Gmb,j(jw)
∣∣∣ ≥ ∣∣∣Gsol,j(jw)

∣∣∣ (12)

If there are interference effects between the control loops, then by using Equation (8)
and applying a method similar to the one mentioned above, the appropriate degree and
gain of the compensating function can be found.

The function Gmb is a first-order transfer function, and it is enough to apply in the con-
ditions of relations (5), (6) and (10). A first-order transfer function only has two parameters:
one is the gain and the other is the position of its pole. To set these two parameters, it is
enough to meet the mentioned conditions. Of course, various functions can be found that
satisfy the mentioned conditions, but definitely only one function can give us the optimal
answer. Currently, this optimal transfer function has been obtained by trial and error, but
we intend to provide a mechanism to obtain the optimal Gmb in future research.

This function gives us the task of stabilizing the control system and guaranteeing its
convergence; the next step is to accurately estimate the amount of delay using a type-2
fuzzy neural network and use it for Smith’s predictive control. Therefore, introducing
the existence of such a function is one of the innovations of this article, and the details
regarding this function and how to calculate the optimal Gmb will definitely be discussed in
future papers.

3.1. Sensitivity Analysis of the Proposed Method

In this section, the robustness of the proposed method to model error is investigated.
For simplicity, we discuss the inter-loop control system when there are no interactions.
Obviously, this method can be easily generalized to systems with interactions. The char-
acteristic equation of the proposed system is in the form of relation (13) if there are no
interactions in the control system.

1 + Gmb,n(s) + Gp,n(s)Gc,n(s) = 0 (13)

The error in the model can be represented as δGp,n(jω) = Gp,n(jω) − Gn,n(jω).
δGp,n(jω) is the difference between the actual model Gp,n(jω) and the nominal model
Gn,n(jω). By placing δGp,n(jω) in Equation (14), we will obtain Equation (14).

1 + Gmb,n(jω) + Gn,n(jω)Gc,n(jω) + δGn(jω)Gc,n(jω) = 0 (14)
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Through Equation (15), we can obtain the norm of the highest error range of the model,
which will be Equation (15)

∣∣δGp,n(jω)
∣∣ = ∣∣1 + Gmb,n(jω) + Gn,n(jω)Gc,n(jω)

∣∣
|Gc,n(jω)| (15)

In this way, we can obtain the norm obtained for a typical feedback loop:∣∣δGp,n(jω)
∣∣ = |1 + Gn,n(jω)Gc,n(jω)|

|Gc,n(jω)| (16)

According to Equations (15) and (16), under equal conditions, due to the Gmb,n(s)
function, the norm of the highest model error range in the proposed method is larger than a
normal feedback loop. Therefore, it can be said that the proposed method is more resistant
to model error. As a result, it can be said that the proposed method is more flexible in terms
of removing model errors.

In the second phase, it is time to accurately estimate the amount of system latency.
This is effectively completed using a type-2 fuzzy neural network (Figure 3).

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 19 
 

 

3.1. Sensitivity Analysis of the Proposed Method 

In this section, the robustness of the proposed method to model error is investigated. 

For simplicity, we discuss the inter-loop control system when there are no interactions. 

Obviously, this method can be easily generalized to systems with interactions. The char-

acteristic equation of the proposed system is in the form of relation (13) if there are no 

interactions in the control system. 

1 + 𝐺𝑚𝑏,𝑛(𝑠) + 𝐺𝑝,𝑛(𝑠)𝐺𝑐,𝑛(𝑠) = 0  (13) 

The error in the model can be represented as 𝛿𝐺𝑝,𝑛(𝑗𝜔) = 𝐺𝑝,𝑛(𝑗𝜔) − 𝐺𝑛,𝑛(𝑗𝜔) . 

𝛿𝐺𝑝,𝑛(𝑗𝜔) is the difference between the actual model 𝐺𝑝,𝑛(𝑗𝜔) and the nominal model 

𝐺𝑛,𝑛(𝑗𝜔). By placing 𝛿𝐺𝑝,𝑛(𝑗𝜔) in Equation (14), we will obtain Equation (14). 

1 + 𝐺𝑚𝑏,𝑛(𝑗𝜔) + 𝐺𝑛,𝑛(𝑗𝜔)𝐺𝑐,𝑛(𝑗𝜔) + 𝛿𝐺𝑛(𝑗𝜔)𝐺𝑐,𝑛(𝑗𝜔) = 0  (14) 

Through Equation (15), we can obtain the norm of the highest error range of the 

model, which will be Equation (15) 

|𝛿𝐺𝑝,𝑛(𝑗𝜔)| =
|1 + 𝐺𝑚𝑏,𝑛(𝑗𝜔) + 𝐺𝑛,𝑛(𝑗𝜔)𝐺𝑐,𝑛(𝑗𝜔)|

|𝐺𝑐,𝑛(𝑗𝜔)|
 (15) 

In this way, we can obtain the norm obtained for a typical feedback loop: 

|𝛿𝐺𝑝,𝑛(𝑗𝜔)| =
|1 + 𝐺𝑛,𝑛(𝑗𝜔)𝐺𝑐,𝑛(𝑗𝜔)|

|𝐺𝑐,𝑛(𝑗𝜔)|
 (16) 

According to Equations (15) and (16), under equal conditions, due to the 𝐺𝑚𝑏,𝑛(𝑠) 

function, the norm of the highest model error range in the proposed method is larger than 

a normal feedback loop. Therefore, it can be said that the proposed method is more re-

sistant to model error. As a result, it can be said that the proposed method is more flexible 

in terms of removing model errors. 

In the second phase, it is time to accurately estimate the amount of system latency. 

This is effectively completed using a type-2 fuzzy neural network (Figure 3). 

 

Figure 3. The proposed control system. Figure 3. The proposed control system.

Since the analysis is based on the transfer functions and is unlike the state space
equations, the input cannot be separated, so the sensitivity analysis is presented only based
on the uncertainty of the model. A control system, if it is designed correctly, can consider
disturbance as an uncertainty of the model, reduce its effect, and provide the appropriate
response. Two important challenges of a control system are uncertainty in the model and
the presence of disturbances. Therefore, in order to evaluate the control system, we had to
apply both challenges, and fortunately, the proposed method came out victorious.

Figure 3 shows the general structure of the process control system (including both
phases). The T2FNN inputs are: the process inputs, process outputs, as well as the process
outputs of the previous moments. The output of the type-2 fuzzy neural network is the
instantaneous estimation of the time delay of the process. Any change in process dynamics
and any factor that changes the system time delay (such as time-lapse and system wear) is
immediately observed by the type-2 fuzzy system, and a new Td is generated.
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3.2. Type-2 Fuzzy System

In this section, the structure of type-2 fuzzy systems is introduced. Figure 3 shows the
proposed type 2 fuzzy system.

The calculations of the first layer are as follows:

∅ji
(

xj
)
=


(

xj − c1
ji

)2
xj < c1

ji

1 c1
ji ≤ xj ≤ c2

ji(
xj − c2

ji

)2
xj > c2

ji

∅ji
(

xj
)
=


(

xj − c2
ji

)2
xj ≤

c1
ji+c2

ji
2(

xj − c1
ji

)2
xj >

c1
ji+c2

ji
2

(17)

The upper and lower of the ith neuron and the jth input are denoted by ∅ji and ∅ji,
respectively. Therefore, the outputs of the first layer are as follows:

∅i(x) = exp
(
−∑n+1

j=1 ∅̃ji(xj)
σ2

i

)
∅i(x) = exp

(
−∑n+1

j=1 ∅ji(xj)
σ2

i

) (18)

where ∅i and ∅i are the upper and lower of the ith neuron (i = 1, 2, . . . , m), respectively.

x ∈
(

xj
)
, j = 1, . . . , n is the input vector, and cji ∈

[
c1

ji, c2
ji

]
is the center of all the type-2

fuzzy neurons. Next, the left and right endpoints of the second layer are as follows:
ŷl =

∑
q
i=1 ∅i(x)c2

wi
σwi+∑m

i=q+1 ∅i(x)c1
wi

σwi

∑
q
i=1 ∅i(x)σwi+∑m

i=q+1 ∅i(x)σwi

ŷr =
∑

p
i=1 ∅i(x)c1

wi
σwi+∑m

i=p+1 ∅i(x)c2
wi

σwi

∑
p
i=1 ∅i(x)σwi+∑m

i=p+1 ∅i(x)σwi

(19)

where p and q are the left and right switching points the type-2 fuzzy system, which can
be calculated using the trial-and-error method or the Karnik–Mendel (KM) algorithm.
Additionally, m, wi, cwi , and σwi are the mean value of the first-layer neurons, the weights,
the center of the weights, and the spread of the weights, respectively. Lastly, the general
output of the network can be derived as follows:

ŷ =
1
2

∑
q
i=1 ŷrcr

wi
σwi + ∑m

i=q+1 ŷlcl
wi

σwi

∑
q
i=1 ŷrσwi + ∑m

i=q+1 ŷlσwi

(20)

In Equation (20), cr
wi

and cl
wi

are the centers of W̃r and W̃ l , respectively. The gradient
descent method is used to teach the network. See [42] for more details.

4. Simulation

In the following, there are two examples of using the proposed system to control
multi-input/output processes and how it is used for these systems.

Example 1: The process function of the distillation tower Wood-Berry, which is a well-
known function in the field of multi-input/output systems, is considered as follows [30]:

Gp(s) =

[
12.8e−s

16.7s+1
−18.9e−3s

21s+1
6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1

]

The first point to consider in solving these problems is the interaction of control loops
Is on each other. In order for the loops not to interact with each other, the product of
Gp × Gc must be the product of a diagonal matrix. Various methods are used to diameter
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the open-loop function matrix of the control system. In some references, this is achieved
using decouplers [31–35], and in others, by adjusting the controller parameters [36–40].
This operation is performed. In this example, the second method is used. A method
according to which the parameters of the controllers are adjusted so that the loops do not
interact with each other is presented in [37]. Based on this method, for this example, the
parameters of the controllers for the two control loops are obtained as Gc1 = 0.547 + 0.0915

s
and Gc2 = −0.107− 0.021

s for the PI controllers.
In the proposed method, to design the control structure, we must first select the

Gmb,n(s) function. Given that in this example, we want to show the resistance of the
proposed method to the model error for all time delay parameters in Gpij(s), the probability
of error is set as up to +50%. We consider the percentage in the proposed method, the
Gmb,n(s) function must be selected so that it has the ability to cover the highest error limit
so that at most frequencies, the dominant interest condition is observed, and the open-loop
function has a minimum phase behavior. By selecting Gmb1(s) = 1

s+1 for the first loop and
Gmb2(s) = 0.5

s+1 for the second loop, as shown in Figures 3 and 4, the dominant interest
condition for the highest model error range norm, with the conditions mentioned, is met.
Figures 5 and 6 show the frequency response diagram for the open-loop function of the
first and second loops in the proposed control structure.
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As can be seen in these figures, the condition for the superiority of the Gmb,n(s) gain
in most frequencies is such that the phase diagram is limited before reaching the −180◦

point in these two loops. Therefore, it can be concluded that the selection of Gmb,ii(s) is
appropriate in both loops. Additionally, the minimum phase behavior of the open-loop
function in the proposed method is one of the advantages of this method compared to the
methods in which the open-loop function of the control system has non-minimum phase
behavior. Figures 7–10 show the performance of Smith’s predictive control systems, Smith’s
predictor with dominant gain, and the proposed control system (Smith’s predictor with
dominant gain and type-2 fuzzy estimator for time delay). In this example, y1 is distillate
composition, y2 is bottom composition, and u is reflux flow rate. It should be noted that
the reference for y1 is the step signal with the step time t = 50 s, and for y2, this is the step
with the step time t = 200 s. The control signals u1 and u2 are shown in Figures 8 and 9,
respectively.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 19 
 

 

  
(a) (b) 

Figure 5. Frequency response of open-loop function for the first loop. (a) Amplitude Ratio (b) 

Phase 

  

(a) (b) 

Figure 6. Frequency response of open-loop function for the second loop. (a) Amplitude Ratio (b) 

Phase 

As can be seen in these figures, the condition for the superiority of the Gmb,n(s) gain 

in most frequencies is such that the phase diagram is limited before reaching the −180° 

point in these two loops. Therefore, it can be concluded that the selection of Gmb,ii(s) is 

appropriate in both loops. Additionally, the minimum phase behavior of the open-loop 

function in the proposed method is one of the advantages of this method compared to the 

methods in which the open-loop function of the control system has non-minimum phase 

behavior. Figures 7–10 show the performance of Smith’s predictive control systems, 

Smith’s predictor with dominant gain, and the proposed control system (Smith’s predictor 

with dominant gain and type-2 fuzzy estimator for time delay). In this example, y1 is dis-

tillate composition, y2  is bottom composition, and u is reflux flow rate. It should be 

noted that the reference for y1 is the step signal with the step time t = 50 s, and for y2, this 

is the step with the step time t = 200 s. The control signals u1 and u2 are shown in Figures 

8 and 9, respectively.  

 

Figure 7. Performance of three control methods for y1 for example 1.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 19 
 

 

Figure 7. Performance of three control methods for 𝑦1 for example 1. 

 

Figure 8. Performance of three control methods for 𝑦2 for example 1. 

 

Figure 9. The control signal 𝑢1 for all three methods for example1. 

 

Figure 10. The control signal 𝑢2 for all three methods for example 1. 

It is clear from Figures 7–10 that the proposed method (Smith’s predictor with dom-

inant gain and type-2 fuzzy estimator) performs better both in terms of accuracy and re-

sponse speed. In addition, the proposed method has a minimum control cost. In order to 

challenge the control systems, a disturbance signal (a pulse with a height of 1 and a width 

of 2 s) is applied at the moment t = 150 s (Figures 11–14). 

Figure 8. Performance of three control methods for y2 for example 1.



Mathematics 2022, 10, 3696 11 of 19

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 19 
 

 

Figure 7. Performance of three control methods for 𝑦1 for example 1. 

 

Figure 8. Performance of three control methods for 𝑦2 for example 1. 

 

Figure 9. The control signal 𝑢1 for all three methods for example1. 

 

Figure 10. The control signal 𝑢2 for all three methods for example 1. 

It is clear from Figures 7–10 that the proposed method (Smith’s predictor with dom-

inant gain and type-2 fuzzy estimator) performs better both in terms of accuracy and re-

sponse speed. In addition, the proposed method has a minimum control cost. In order to 

challenge the control systems, a disturbance signal (a pulse with a height of 1 and a width 

of 2 s) is applied at the moment t = 150 s (Figures 11–14). 

Figure 9. The control signal u1 for all three methods for example 1.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 19 
 

 

Figure 7. Performance of three control methods for 𝑦1 for example 1. 

 

Figure 8. Performance of three control methods for 𝑦2 for example 1. 

 

Figure 9. The control signal 𝑢1 for all three methods for example1. 

 

Figure 10. The control signal 𝑢2 for all three methods for example 1. 

It is clear from Figures 7–10 that the proposed method (Smith’s predictor with dom-

inant gain and type-2 fuzzy estimator) performs better both in terms of accuracy and re-

sponse speed. In addition, the proposed method has a minimum control cost. In order to 

challenge the control systems, a disturbance signal (a pulse with a height of 1 and a width 

of 2 s) is applied at the moment t = 150 s (Figures 11–14). 

Figure 10. The control signal u2 for all three methods for example 1.

It is clear from Figures 7–10 that the proposed method (Smith’s predictor with dom-
inant gain and type-2 fuzzy estimator) performs better both in terms of accuracy and
response speed. In addition, the proposed method has a minimum control cost. In order to
challenge the control systems, a disturbance signal (a pulse with a height of 1 and a width
of 2 s) is applied at the moment t = 150 s (Figures 11–14).
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It can be seen from Figures 11–14 that the performance of the proposed method with a
type-2 fuzzy estimator is very good, and the system reaches its equilibrium point in less
than 20 s. In the meantime, the worst performance is related to Smith’s pure predictive
method, which fluctuates more than 200 s after applying disturbance.

Another challenge for the control system is the uncertainty or changes in the parame-
ters of the controlled system (process). This challenge inevitably arises because systems
wear out over time and their behavior changes. Next, it is assumed that the system pa-
rameters (numerator and denominators coefficients of the transfer function as well as time
delay) are doubled at t = 150 s (Figures 15–18).
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Interesting results can be seen in Figures 11–18. Smith’s pure prediction method
diverges against large changes in parameters. Since after the initial adjustment of Smith’s
prediction method, it is assumed that the system does not change behavior (or at least
changes very little), this method has nothing to say in the face of major changes. On the
other hand, it is observed that the convergence of the control system is adjusted by adding
the dominant gain transfer function (Gmb) to Smith’s predictive method. Finally, with
the addition of a type-2 fuzzy estimator to the control system, the accuracy and speed of
convergence is dramatically improved. It should be noted that for example 1, the phase
margin is 43

◦
and the gain margin is 18.6 dB.

Example 2: A 3× 3 subsystem of the shell heavy-oil fractionator is as follows [31]:

G(s) =


4.05e−27s

50s+1
1.77e−28s

60s+1
5.88e−27s

50s+1
5.39e−18s

50s+1
5.27e−8s

60s+1
6.9e−15s

60s+1
4.38e−20s

33s+1
4.42e−22s

44s+1
7.2

19s+1


In order to avoid cluttering the article and confusing the readers, we do not intend

to carry out all the steps in Example 1 for this example, but only to show the ability
of the control system for the system with any number of inputs and outputs and any
amount of interaction. Based on this method, for this example, the parameters of the
controllers for the three control loops are obtained as Gc1 = 0.662 + 0.0365

s , Gc2 = 1 + 0.019
s

and Gc3 = 4 + 0.077
s . Figures 19–21 show the performance of Smith’s predictive control

systems, Smith’s predictor with dominant gain, and the proposed control system (Smith’s
predictor with dominant gain and a type-2 fuzzy estimator for time delay). It should be
noted that the reference for y1 is the step signal with the step time t = 300 s; for y2, this is the
step with the step time t = 600 s; and for y3, this is the step with the step time t = 900. The
control signals u1, u2, and u3 are shown in Figures 22–24, respectively. In this example, y1
is the top endpoint composition, y2 is the side end point composition, and y3 is the bottom
reflux temperature. The inputs are the top drawn flow rate (u1), the side drawn flow rate
(u2), and the bottom reflux heat duty (u3). It should be noted that the reference for y1 is the
step signal with the step time t = 300 s; for y2, this is the step with the step time t = 600 s;
and for y3, this is the step with the step time t = 900.
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Example 2 is a system with high latency and relatively strong interaction. It can be
seen from Figures 18–20 that the proposed method has been able to successfully provide a
suitable answer. It is carefully observed in Figure 18 that by applying the second step, the
Smith’s pure predictive method has more than 150% overshoot, Smith’s predictive method
with dominant gain has 60%, and finally, this method with a type-2 fuzzy estimator has less
40%. The minimum cost of the control signal of the proposed method is clearly shown in
Figure 22. Table 1 shows a comparison between some methods based on root mean square
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error (RMSE) criterion. It should be noted that for example 2, the phase margin is 29
◦

and
the gain margin is 12.2 dB.

Table 1. A comparison between some methods for example 2.

y1 y2 y3

SP 0.135 0.089 0.051
SP + Gmb 0.073 0.059 0.038

SP + Gmb + T2Fuzzy 0.061 0.045 0.032
Method of [43] 0.063 0.055 0.040
Method of [44] 0.061 0.049 0.034

It can be seen from Table 1 that the proposed method has the best answer in terms of
accuracy (RMSE criterion). Although in control y1, the method of [41] has an RMSE equal
to our method, for the other two outputs, our proposed method works better.

5. Conclusions

In this paper, a new method based on Smith’s predictor for controlling time-delayed
MIMO systems is presented. The proposed control system had two phases: one is the
addition of a transfer function with a dominant gain to stabilize the system, and the second
phase is the use of a type-2 fuzzy estimator to estimate the system time delay online. In the
simulation with two examples, it was shown that the proposed method is very robust and
can control the system (process) well with proper accuracy and speed of response. Control
challenges, disturbance and parametric uncertainty were also applied, which showed that
the proposed system is highly efficient in facing these two challenges. The simulation
results clearly showed how much the addition of the transfer function with the dominant
gain can improve the performance of the control system. In addition, a type-2 fuzzy system
with the ability to accurately estimate the amount of time delay was able to provide a
very suitable answer. As a suggestion to continue the work, in addition to estimating the
amount of time delay, the process parameters can also be estimated using the fuzzy system.
In addition, other more accurate estimators (type-3 fuzzy, etc.) can be used.
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Nomenclature

G(s) Exact system model
τd Time delay
Gm(s) Measurement transfer function
Yn(S) Response matrix
Ysp,n(S) Reference input matrix
dn(S) Input perturbation matrix
Gmb,n(S) Matrix of predictive functions
Gc,nS Matrix functions of the controllers
Gp,n(S) Matrix of process including time delay
Gn(s) Matrix of process without time delay
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