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Abstract: With the rapid development of cloud computing and mobile networks, more and more
application scenarios require a secret group key for secure communication. Group Key Exchange
(GKE) protocol provides a secret group key for three or more members. Burmester and Desmedt
presented an influential GKE protocol, which has a broadcast version and a cyclic version. In this
paper, we investigate the security weaknesses of the Burmester-Desmedt protocol. We report that
both the broadcast version and the cyclic version of the Burmester-Desmedt protocol suffer member
tampering attacks if the two members that belong to both group A and group B are corrupted. That
is, two corrupted members can add some unknowing members of group A to group B and trick the
legal members of group B to believe that these unknowing members share the secret group key with
them after a protocol run. Furthermore, to defeat the member tampering attack, we propose digital
signature-based improvements on the broadcast version and the cyclic version of the Burmester-
Desmedt protocol. We hope our research results will encourage the development of more robust and
effective GKE protocols that stand rigorous security analysis.
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1. Introduction

Group Key Exchange (GKE) protocol makes an extension for the traditional two-
member key establishment [1]. The function of the GKE protocol is to provide a shared se-
cret group key for three or more members. With the rapid development of cloud computing
and mobile networks, more and more application scenarios require group communication.
Naturally, the security of group communication depends on the security of the group
key [2,3]. We can summarize the general requirements of the GKE protocols as follows.

(1) Members in various groups generate different shared secret group keys (also named
group session keys).

(2) The group session key is dynamic and can be updated as needed.
(3) The protocol messages exchanged among the members are open and via the public channel.
(4) Each member calculates his group session key independently.

To realize group key generation, an obvious method is to deploy a Trusted Third
Party (TTP) recognized by all members in a group communication system. Moreover,
each member shares a secret key with the TTP in advance. When the group session key
needs to be established, the TTP randomly generates a group session key, determines the
group of members and encrypts the group session key by using the shared secret key
with each member. Upon receiving the ciphertext of the group session key, each member
in the group can decrypt it using his shared key and obtain the group session key. The
disadvantage of this method is that there must be a TTP to provide group key generation
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services for all members in real-time. That is, the online TTP means heavy computation
and communication overhead and may become the technical bottleneck.

Another optional method that does not require a TTP is to choose a member of the
group as the group controller. The group controller negotiates a secret Diffie-Hellman
key [4] with each member of the group. Then, the group controller randomly generates
a group session key, uses each Diffie-Hellman key to encrypt the group session key, and
sends it to each member of the group. After receiving the ciphertext of the group session
key, the members can respectively decrypt the group session key using its own Diffie-
Hellman key. The disadvantage of this method is that the large overhead of computation
and communication is a burden on the group controller, and the members of the group
need to designate a group controller before the group key generation services.

In this paper, we investigate the GKE protocols based on generalizing Diffie-Hellman
two-member key exchange [4], because such protocols can potentially avoid the TTP or the
group controller. This is a desirable feature under decentralized computing environments
such as ad hoc networks and Blockchain.

1.1. Basic Notion of Group Key Exchange

Let k be a security parameter and U1, U2, . . . , Un, n = poly(k) (a polynomial in the
security parameter k), be members that are allowed to take part in a specified GKE protocol
P to generate a group session key K. We can define the GKE protocol as follows.

Definition 1. Protocol P is called a GKE if: when a group of any t members has honestly executed
the protocol P as specified, then each member Ui in the group will finally compute his own session
key Ki such that K = Ki, where 3 ≤ t ≤ n and i ∈ {1,2, . . . , n}.

Assume that any GKE protocol P runs on public networks in which all members in
a group can broadcast or send messages (bit strings) to other members in the presence
of a (polynomially bounded) passive adversary E. Passive adversary E can eavesdrop
on the transmitting messages and keep a log of the messages during past protocol runs.
However, the passive adversary E does not modify the transmitting messages of protocol
runs. A formal security definition as an example is presented to address the above passive
adversary of the GKE protocol P [5] as follows.

Definition 2. The GKE protocol P guarantees privacy if it is computationally infeasible for the
passive adversary E to compute the group session key K. The GKE protocol P guarantees secrecy if
the passive adversary E cannot distinguish the group session key K from a random bit string of the
same length with probability better than 1/2 + ε, where ε is negligible (in the security parameter k).

1.2. Related Work

Some of the literature in the GKE domain mainly revolves around the exposition of new
construction of the GKE protocols. An early investigation of GKE protocols by Ingemarsson,
Tang, and Wong [6] described a number of so-called Diffie-Hellman generalizations based
on the idea of symmetric functions. Steer et al. [7] gave other GKE protocols generalizing
the Diffie-Hellman two-member key exchange. Their protocol is suitable for adding new
group members; however, deleting members is relatively difficult. Latter, Steiner, Tsudik,
and Waidner [8] presented three GKE protocols (named GDH.1, GDH.2, and GDH.3)
to improve the communication and computation costs of the Ingemarsson-Tang-Wong
GKE protocols. Kim, Perrig, and Tsudik [9], and Bresson and Manulis [10] considered
tree-based Diffie-Hellman two-member key exchange and showed that their protocols are
very suitable when the composition of the group is changed without restarting the whole
protocol. Burmester and Desmedt [5] presented an influential GKE protocol by extending
in a natural way of the Diffie-Hellman two-member key exchange. Harn and Lin [11], Harn
and Hsu [12] proposed GKE protocols based on both the secret sharing scheme and the
group Diffie-Hellman key exchange scheme. Moriya, Takashima, and Takagi [13] and Fan,
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Xu, and Li [14] proposed the GKE protocols based on Commutative Supersingular Isogeny
Diffie-Hellman (CSIDH), which are the post-quantum Diffie-Hellman type key exchange
protocols from commutative group action.

Some of the literature in the GKE domain research on the security analysis of the GKE
protocols. Katz and Yung [15] presented a compiler that transforms the GKE protocol secure
against a passive adversary and proved the Burmester-Desmedt protocol secure against the
passive adversary. Emmanuel, Chevassut, and Pointcheval [16] provided a formal security
model and several security definitions, which are adapted to many cryptographic scenarios
for authenticated Diffie-Hellman key exchange in a group. To prevent stronger attacks
against honest but open members, Bresson, Manulis, and Schwenk [17] gave examples
where m uncorrupted members accept each other but have different session keys. Gorantla,
Boyd, and Nieto [18] specifically analyzed the security of the GKE protocol under the
key-compromise impersonation attacks. Baouch et al. [19] introduced an active attack on
the Burmester-Desmedt protocol, that is, the adversary can obtain a copy of the shared
key, which is created in a collaborative manner with the legal members in a group. Yang
et al. [20] presented a security model for generic dynamic authenticated GKE to cover more
active attacks (such as leakage of the ephemeral secret key) than previous similar models.
As another line of security analysis work on GKE, Cohn-Gordon et al. [21] considered the
post-compromise security of group messaging, that is, an adversary who compromises a
single group member can indefinitely read and inject messages and built a formal security
model on the ideas of multi-stage key exchange by Fischlin and Günther [22]. Alwen
et al. [23] further analyzed the TreeKEM protocol [24], which is proposed by the Internet
Engineering Task Force (IETF) working group and is the core of the secure group messaging
protocols on message-layer security. Alwen et al. [25] also defined optimal security notions
for GKE and considered two settings, i.e., the passive setting and the active setting. In
addition, Hougaard and Miyaji [26] recently proposed a GKE compiler using any two-
member key exchange for which the shared key space is the subset of a group and whose
security reduces to the Decisional Diffie-Hellman (DDH) problem. Poettering et al. [27]
classified characteristics of a large selection of game based GKE models, including those
proposed for GKE with post-compromise security, and observed a range of shortcomings
in some of the studied models.

1.3. Our Motivations and Contributions

When a GKE protocol is running, the adversary may illegally add some dummy
members to the group. Although these dummy members do not belong to the group,
the legal members believe that they are in the group and share a group session key with
them. We call it the member tampering attack. To the best of our knowledge, the member
tampering problem of the GKE protocol has not been studied yet. It is widely known
that the Burmester-Desmedt protocol has advantages over other existing GKE protocols
in terms of computation cost, communication cost, and the number of rounds. Moreover,
since broadcasting messages can be expensive in some communications networks, the
Burmester-Desmedt protocol [1,5] has not only a broadcast version but also a cyclic version.
Therefore, we investigate the member tampering attack on the broadcast version and cyclic
version of the Burmester-Desmedt protocol. We report that both the broadcast version and
cyclic version suffer the member tampering attack when two members are corrupted. That
is, two corrupted members, who belong to two groups A and B, can collude to include
some unknowing members of group A into the group B and cheat other legal members
of the group B to believe that these unknowing members exist in their group and share a
group session key after the protocol run.

2. Review of the Burmester-Desmedt Group Key Exchange Protocol

Burmester and Desmedt [5] employed a certain structure of the cyclic group to design
their GKE protocol. Without loss of generality, we can write it as follows. Let G be a cyclic
group with prime order q and let g be a fixed generator of G. Let Zp = Z/pZ be the integers
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modulo p. The cyclic group requires choosing two primes p and q such that q|p−1 and a
generator g ∈ Zp with the order q. Then, the cyclic group is formed by G = {gx mod p, x ∈ Z}.

Assume that U1, U2, . . . , Un are all legal members of the GKE system. Initially, a
GKE center chooses the system parameters for the GKE protocol. That is, the GKE center
determines a security parameter k and a constant c ≥ 1, randomly generates a prime
p = Θ(2ck) and an element g ∈ Zp of order q = Θ(2k), where Θ denotes asymptotic tight
bound, and publishes the parameters p, g, and q to build the cyclic group G. Let U1, U2,
. . . , Ut ≤ n be a group of members who want to generate a group session key K. To enable
a general description, we always allow any index i but Ui and Uj are the same members
when satisfying i = j mod t.

2.1. Broadcast Version

The Burmester-Desmedt protocol is simplest to describe in the version that allows broadcast
communications. Here, any message sent to more than one member means the broadcast.

Protocol 1: Broadcast version

Round 1. Each member Ui (i = 1, 2, . . . , t) selects a random ri ∈ Zq and computes and
broadcasts zi = gri mod p.

Round 2. Each member Ui (i = 1, 2, . . . , t) computes and broadcasts Xi = (zi+1/zi−1)ri mod p.
Key Computation. Each member Ui (i = 1, 2, . . . , t) computes his own session key:

Ki = (zi−1)
tri Xt−1

i Xt−2
i+1 . . . Xi−2 mod p. (1)

Figure 1 shows the communication and computation of broadcast version. If each
member Ui (i = 1, 2, . . . , t) honestly generates and broadcasts his zi and Xi, all members
will secretly share the same group session key K = gr1rt+r1r2+ r2r3+ . . . +rt−2rt−1+rt−1rt mod p.
That is to say, for every member Ui (i = 1, 2, . . . , t), we have

Ki = (zi−1)
tri Xt−1

i Xt−2
i+1 . . . Xi−2 mod p =

(zi−1)
tri
(

zi+1
zi−1

)(t−1)ri
(

zi+2
zi

)(t−2)ri+1
. . .
(

zi−1
zi−3

)ri−2
mod p =

(gri−1)tri
(

gri+1

gri−1

)(t−1)ri
(

gri+2

gri

)(t−2)ri+1
. . .
(

gri−1

gri−3

)ri−2
mod p =

(gri−1)ri (gri+1)ri (gri+2)ri+1 . . . (gri−3)ri−2(gri−1)ri−2 mod p =
gr1rt+r1r2+r2r3+...+rt−2rt−1+rt−1rt mod p = K

(2)

2.2. Cyclic Version

In the broadcast version, the protocol messages always need to be sent to all of the
members. In some communications environments such as wired communications, the
broadcast of messages to all involved members may be more costly than sending them
to a single member. Therefore, the cyclic version can maintain the same Diffie-Hellman
generalization function as the broadcast version but implement the point-to-point message
transmission among the members.

Protocol 2: Cyclic version

Round 1. Each member Ui (i = 1, 2, . . . , t) selects a random ri ∈ Zq, and then computes
and sends zi = gri mod p to the members Ui−1 and Ui−1.

Round 2. Each member Ui (i = 1, 2, . . . , t) computes Xi = (zi+1/zi−1)ri mod p. Let
b0 = c0 = 1. For i = 1 to t, the member Ui computes bi = bi−1Xi mod p and ci= bi−1ci−1 mod p,
and then sends bi and ci to the member Ui+1.

Round 3. Let d0 = ct and d = bt. For i = 1 to t − 1, the member Ui computes
di = ddi−1Xi

−t mod p, and then sends di and d to the member Ui+1.
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zt-1

U1

X1=(z2/zt)
r1

X1X1

X1

…

U2
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Figure 1. Communication and computation of broadcast protocol.

Key Computation. Each member Ui (i = 1, 2, . . . , t) computes his own session key:

Ki = (zi−1)
tri di−1 mod p. (3)

It is easily to see that cyclic version does not require the broadcast channel. We
know that in Round 2, b0 = c0 = 1, b1 = b0X1 = X1 mod p, c1 = b0c0 = 1, b2 = b1X2 =
X1X2 mod p, c2 = b1c1 = X1 mod p, b3 = b2X3 = X1X2X3 mod p, c3 = b2c2 = X1

2X2 mod p,
. . . , bt = bt−1Xt = X1X2 . . . Xt mod p, ct = bt−1ct−1 = X1X2 . . . Xt−2Xt−1X1

t−2X2
t−3 . . .

Xt−2 = X1
t−1X2

t−2 . . . Xt−2
2Xt−1 mod p. Since d0 = ct = X1

t−1X2
t−2 . . . Xt−1 mod p

and d = bt = X1X2 . . . Xt mod p during Round 3, we get d1 = dd0X1
−t = X1X2X3 . . .

Xt−1XtX1
t−1X2

t−2 X3
t−3 . . . Xt−1X1

−t = X2
t−1X3

t−2 . . . Xt−1
2Xt mod p, d2 = dd1X2

−t =
X1X2X3X4 . . . XtX2

t−1X3
t−2X4

t−3 . . . XtX2
−t = X3

t−1X4
t−2 . . . Xt

2X1 mod p, . . . , dt−1
= ddt−2Xt−1

−t = X1X2 . . . Xt−3Xt−2Xt−1XtXt−1
t−1Xt

t−2X1
t−3 X2

t−4 . . . Xt−3Xt−1
−t =

Xt
t−1X1

t−2X2
t−3 . . . Xt−3

2Xt−2 mod p. We therefore know di−1 = Xi
t−1Xi+1

t−2 . . . Xi−2
mod p, where i = 1, 2, . . . , t. Thus, for all 1 ≤ i ≤ t, it follows that

Ki = (zi−1)
tri di−1 mod p = (zi−1)

tri Xt−1
i Xt−2

i+1 . . . Xi−2 mod p =

gr1rt+r1r2+r2r3+...+rt−2rt−1+rt−1rt mod p = K.
(4)
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Hence, we conclude that all members in cyclic version can finally share the same group
session key as broadcast version. Figure 2 shows the communication and computation of
cyclic version.

Figure 2. Communication and computation of cyclic protocol.
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2.3. Security Results

The security of the Burmester-Desmedt protocol depends on the Computational Diffie-
Hellman (CDH) problem and the DDH problem. We describe the CDH problem and the
DDH problem as follows.

Definition 3. The CDH problem: given two primes p and g and two random numbers x = ga mod p,
y =gb mod p, find gab mod p.

Definition 4. The DDH problem: given two primes p and g and three random numbers x = ga mod p,
y = gb mod p, and z = gc mod p, decide if ab = c.

The Burmester-Desmedt protocol achieves the following security properties [5].

Fact 1. Protocol 1 and Protocol 2 guarantee the privacy as in Definition 2 if, and only if, the CDH
problem is intractable. Protocol 1 and Protocol 2 guarantee the secrecy as in Definition 2 if, and
only if, the DDH problem is intractable.

Fact 1 indicates that both Protocol 1 and Protocol 2 maintain a sound security promise
when the CDH problem and the DDH problem are hard to solve.

3. Member Tampering Attacks on the Burmester-Desmedt Protocol

We know that any group U1, U2, . . . , Ut named as group A can execute a protocol run
and negotiate a group session key K by using Equation (1) or Equation (3). We assume that
members Ui ′ and Ui ′′ are two malicious insiders in group A, that is, i′, i′′∈ {1, 2, . . . , t} and
i′ 6= i′′. Without loss of generality, let 0 < i′ < i” < t+1. Moreover, both members Ui ′ and Ui ′′

simultaneously initiate an abnormal protocol run with another group Ua1 , Ua2 , . . . , Uat ′

named as the group B. Here, 0 < aj < n + 1 for 0 < j < t′+ 1.

3.1. Attacks on Broadcast Version

In the protocol run as shown in Figure 1, each member Ui (i = 1, 2, . . . , t) of group A
should compute and broadcast zi = gri mod p and Xi = (zi+1/zi−1)ri mod p during Round 1
and Round 2 of Protocol 1. Finally, each member Ui (i = 1, 2, . . . , t) is able to compute and
share the same group session key K = gr1rt+r1r2+ r2r3+ . . . +rt−2rt−1+rt−1rt mod p by computing
(zi−1)tri Xi

t−1Xi+1
t−2 . . . Xi−2 mod p. To realize the member tampering attack, two malicious

insiders Ui ′ and Ui ′′ of group A simultaneously start an abnormal protocol run with another
group B. Let i′′ − i′ > 1. We assume that each member Ui (i = i′ + 1, i′ + 2, . . . , i′′ − 1) in the
group A does not belong to the group B, that is, aj /∈ {i′+1, i′+2, . . . , i” − 1} for all j ∈ {1, 2,
. . . , t′}. After the abnormal protocol run of the group B, each member Uaj (j = 1, 2, . . . , t′)
believes that not only members Uaj (j = 1, 2, . . . , t′) but also members Ui (i = i′, i′ + 1, . . . ,
i′′) take part in negotiating a group session key. However, all members Ui (i = i′ + 1, i′ + 2,
. . . , i′′ − 1) in group A actually do not involve themselves in the abnormal protocol run of
group B. In the following, we always write t′ + i′′ − i′ as f to make the expression concise
and easy to understand. We describe the abnormal protocol run as follows.

Round 1. Each member Uaj (j = 1, 2, . . . , t′) selects a random number r′j∈ Zq, and

computes and broadcasts z′j= gr′ j mod p. Each zi generated by the member Ui (i = i′, i′+1,
. . . , i′′) also is broadcasted to group B.

Round 2. The malicious insider Ui ′′ computes and broadcasts X′f+1 = (z′1/zi ′′−1)ri
′′

mod p and the member Ua1 computes and broadcasts X′1 = (z′2/zi ′′ )r ′1 mod p. Each member
Uaj (j = 2, . . . , t′ − 1) computes and broadcasts X′j = (z′j+1/z′j−1)r ′ j mod p. The member Uat ′

computes and broadcasts X′t′ = (zi ′/z′t ′−1)r′t′ mod p and the malicious insider Ui ′ computes
and broadcasts X′t ′+1 = (zi ′−1/z′t ′ )ri

′ mod p. In addition, each Xi generated by the member
Ui (i = i′ + 1, . . . , i′′ − 1) is broadcasted to all members Uaj (j = 1, 2, . . . , t′).
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Key Computation. Assume that r′i= ri+i′−t ′−1 and z′i= zi+i′−t ′−1, where i = t′ + 1, t′ + 2,
. . . , t′ + i′′ − i′ + 1 and X′i= Xi+i′−t ′−1, where i = t′ + 2, t′ + 3, . . . , f. Each member Uaj (j = 1,
2, . . . , t′) computes the group session key:

K′j =
(

z′j−1

)( f+1)r′j X′ fj X′ f−1
j+1 . . . X′ j−2 mod p, (5)

where the indexes j in both z′j and X′j are performed modulo f + 1.
The member Ui ′ can share the group session key by calculating

K′i′ =
(
z′t′
)( f+1)ri′X′ ft′+1X′ f−1

t′+2 . . . X′t′−1 mod p. (6)

The member Ui” also can obtain the group session key by calculating

K′i′′ =
(

z′ f
)( f+1)ri′′ X′ ff+1X′ f−1

1 . . . X′ f−1 mod p. (7)

According to Equation (5), we have

K′ j =
(
z′ j−1

)( f+1)r′j X′ fj X′ f−1
j+1 . . . X′ j−2 mod p =(

z′ j−1
)( f+1)r′j

(
z′ j+1
z′ j−1

) f r′j
(

z′ j+2
z′ j

)( f−1)r′j+1
. . .
(

z′ j−1
z′ j−3

)r′j−2
mod p,

(8)

K′ j =
(

gr′j−1
)( f+1)r′j

(
g

r′j+1

g
r′j−1

) f r′j
(

g
r′j+2

g
r′j

)( f−1)r′j+1

. . .

(
g

r′j−1

g
r′j−3

)r′j−2

mod p

=
(

gr′j−1
)r′j
(

gr′j+1
)r′j
(

gr′j+2
)r′j+1 . . .

(
gr′j−3

)r′j−2
(

gr′j−1
)r′j−2 mod p,

(9)

K′ j = gr′1r′ f+1+r′1r′2+r′2r′3+...+r′f−1r′f +r′f r′f+1 mod p =

gr′1ri′′ +r′1r′2+r′2r′3+...+ri′′ −2ri′′ −1+ri′′ −1ri′′ mod p.
(10)

Since ri′ = r′t′+1 and ri′′ = r′f+1, we know that Equations (6) and (7) satisfy Equation (5)
when j = t′ + 1 and j = f + 1. Hence, all members Ui′ , Uaj (j = 1, 2, . . . , t′), Ui′′ should share
the same group session key K′ = K′i′ = K′i′′ = K′j = gr′ 1rt′′+r′1r′2+ r′2r′3+ . . . + ri′′−2ri′′−1+ri′′−1ri′′ mod p.
Moreover, all members Uaj (j = 1, 2, . . . , t′) believe that the members Ui (i = i′ + 1, i′ + 2, . . . ,
i′′ − 1) also exist in their group. Figure 3 shows member tampering attacks, which exploits
two parallel protocol runs of group A and group B. In fact, the malicious insiders Ui′ and Ui′′

also can use above attack to add the unknowing members Ui (i = 1, 2, . . . , i′ − 1, i′′ + 1, i′′ + 2,
. . . , t) of the group A into the group B.

3.2. Attack on Cyclic Version

Consider the protocol run of group A. As shown in Figure 2, each member Ui (i = 1, 2,
. . . , t) computes zi = gri mod p and sends it to the members Ui−1 and Ui+1 during Round 1
of Protocol 2. Each member Ui (i = 1, 2, . . . , t) computes Xi = (zi+1/zi−1)ri mod p, bi = bi−1Xi
mod p, ci = bi−1ci−1 mod p, where b0 = c0= 1, and then sends bi and ci to the member Ui+1
during Round 2 of Protocol 2. In Round 3 of Protocol 2, each member Ui (i = 1, 2, . . . , t − 1)
computes di = ddi−1Xi

−t mod p, where d = bt and d0 = ct, and then sends di and d to the next
member Ui+1. Finally, each member Ui (i = 1, 2, . . . , t) computes and secretly shares the
group session key K = Ki = (zi−1)tri di−1 mod p.

Meanwhile, the malicious insiders Ui ′ and Ui ′′ of group A also simultaneously start
another abnormal protocol run with the group Ua1 , Ua2 , . . . , Uat′ , i.e., group B. Here, we
assume that i′′ − i′ < t − 1 and aj /∈ {1, 2, . . . , i′ − 1, i”+1, i′′+2, . . . , t} for any j ∈ {1, 2, . . . ,
t′}. At the end of the abnormal protocol run of group B, each member Uaj (j = 1, 2, . . . , t′)
mistakenly believes that the members Ui, where i = 1, 2, . . . , i′ − 1, i′′ + 1, i′′+ 2, . . . , t, also
are in their group and share a group session key with them, although any of these members
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do not participate in in the abnormal protocol run. We assume that the malicious insider
Ui ′′ eavesdrops on all bi, where i = 1, 2, . . . , i′ − 2, i′′ + 1, i′′ + 2, . . . , t. Since the malicious
insider Ui ′′ knows b0 = 1, he can further compute all Xi = bi/bi−1 mod p, where i = 1, 2,
. . . , i′ − 1, i′′ + 1, i′′ + 2, . . . , t. Figure 4 depicts the member tampering attack on the cyclic
version. For simplicity, we write t + i′ + t′ − i′′ as h in the following. We further describe
the abnormal protocol run of group B as follows.

Round 1. The member Ui ′ sends zi′ to member Ua1 . The member Ua1 selects a random
number r′1 ∈ Zq, computes z′1 = gr′1 mod p and sends z′1 to the members Ui ′ and Ua2 . Each
member Uaj (j = 2, 3, . . . , t′ − 1) selects a random number r′j ∈ Zq, computes z′j = gr′ j mod p,
and sends z′j to the members Uaj−1 and Uaj +1. The member Uat ′ selects a random number

r′t′ ∈ Zq and computes z′t′ = gr′t′ mod p, and then sends z′t′ to the members Uat′−1 and Ui”.
The member Ui” sends his zi” to the member Uat′ .

Round 2. The member Ui′ computes and updates his new X′h+1 = (z′1/zi′−1)ri′ mod p.
The member Ui′ then computes b′ = bi′−1X′h+1 mod p and c′ = ci′ = bi′−1ci′−1 mod p, and
further sends b′ and c′ to the member Ua1 . The member Ua1 computes X′1 = (z′2/zi′)r′1 mod p.
Moreover, member Ua1 computes b′1 = b′X′1 mod p and c′1 = b′c′ mod p, and then sends
b′1 and c′1 to the next member Ua2 . Each member Uaj (j = 2, 3, . . . , t’ − 1) computes X′j =

(z′j+1/z′j−1)r′ j mod p. For j = 2 to t′ − 1, the member Uaj computes b′j = b′j−1X′j mod p and c′j
= b′j−1c′j−1 mod p, and then sends b′j and c′j to Uaj +1. Upon receiving the member Uat′−1’s

b′t′−1 and c′t′−1, the member Uat’ computes X′t′ = (zi”/z′t′−1)r′t′ mod p, b′t′ = b′t′−1X′t′ mod p,
c′t′ = b′t′−1c′t′−1 mod p, and then sends b′t′ and c′t′ to the member Ui”. Upon receiving the
member Uat′ ’s b′t′ and c′t′ , the member Ui” calculates his X′t′+1 = (zi”−1/z′t′)

ri” mod p, b′t′+1 =
b′t′X′t′+1 mod p, c′t′+1 = b′t′c′t′ mod p. For i = i” + 1 to t, the member Ui” further computes
b′i+t′−i”+1 = b′i+t′−i”Xi mod p and c′i+t′−i”+1 = b′i+t′−i”c′i+t′−i” mod p.

Round 3. Let d′0 = c′t+t′−i′′+1. For i = 1 to i′ − 1, the member Ui ′′ computes d′i =
b′t+t′−i′′+1d′i−1Xi

−(h+1) mod p. And then, the member Ui ′′ sends d′i′−1 and b′t+t′−i′′+1 to the
member Ui ′ . The member Ui ′ computes d′i ′ = b′t+t′−i′′+1d′i ′−1X′h+1

−(h+1) mod p and sends
d′i′ and b′t+t′−i′′+1 to the member Ua1 . For j = 1 to t′ − 1, the member Uaj computes d′j+i ′ =
b′t+t′−i′′+1d′j+i ′−1X′j−(h+1) mod p, and then sends dj+i ′ and b′t+t′−i′′+1 to the member Uaj +1.
Upon receiving the member Uaj−1

′s d′i′+t′−1 and b′t+t′−i′′+1, the member Uat′ computes d′i ′+t′

= b′t+t′−i”+1d′i′+t′−1X′t′
−(h+1) mod p, and then sends d′i ′+t and b′t+t′−i′′+1 to the member Ui′′ .

Key Computation. Let z′0 = zi′ . Each member Uaj (j = 1, 2, . . . , t′) computes the group
session key:

K′j =
(
z′j−1

)(h+1)r′j d′j+i′−1 mod p. (11)

The member Ui ′ shares the group session key by calculating

K′i′ = (zi′−1)
(h+1)ri′ d′i′−1 mod p. (12)

The member Ui” also obtains the group session key by computing

K′i′′ =
(
z′t′
)(h+1)ri′′ d′i′+t′ mod p. (13)

In the following, we analyze and confirm the group session key shared among the
members Ui ′ , Uaj (j = 1, 2, . . . , t′), Ui”. During Round 1, the members Ui ′ and Ui” reuse
their zi′ and zi” generated in the protocol run of the group A and send zi′ to the member
Ua1 and zi” to the member Uat′ . During Round 2, the member Ui′ computes his new
X′h+1 = (z′1/zi′−1)ri′ mod p instead of the old X i′ = (z i′+1/zi′−1)ri′ mod p in the protocol
run of the group A, and uses this X′h+1 to compute b′ = bi′−1X′h+1 mod p. Then, the
member Ua1 computes X′1 = (z′2/zi ′ )r ′1 mod p and b′1 = b′X′1 mod p and the member Uaj

computes X′j = (z′j+1/z′j−1)r ′ j mod p and b′j = b′j−1X′j mod p for j = 2 to t′. After calculating
X′t′+1 = (zi”−1/z′t′ )

ri” mod p and b′t ′+1 = b′t ′X′t′+1 mod p, the member Ui” can sequentially
compute each member Ui

′s b′i+t′−i”+1 = b′i+t′−i”Xi mod p, where i = i” + 1, i” + 2, . . . , t. The
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reason is that the member Ui” had eavesdropped on all bi for i = i” + 1, i” + 2, . . . , t in
the protocol run of the group A and can derive the member Ui

′s Xi by computing bi/bi−1
mod p. Therefore, we know that

b′ = bi′−1X′h+1 = X1X2 . . . Xi′−1X′h+1 mod p, (14)

b′t′ = b′t′−1X′t′ = b′t′−2X′t′−1X′t′ = b′X′1 . . . X′t′−1X′t′
= X1X2 . . . Xi′−1X′h+1X′1 . . . X′t′−1X′t′ mod p,

(15)Mathematics 2022, 10, 3685 9 of 18 
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and

b′t+t′−i′′+1 = b′t+t′−i′′ Xt = b′t+t′−i′′−1Xt−1 = . . . =
b′t′+1Xi′′+1Xi′′+2 . . . Xt−1Xt = b′t′X′t′+1Xi′′+1Xi′′+2 . . . Xt−1Xt =

X1X2 . . . Xi′−1X′h+1X′1 . . . X′t′−1X′t′X′t′+1Xi′′+1Xi′′+2 . . . Xt−1Xt mod p.
(16)

According to the analysis in Section 2.2, we have c′ = ci′ = bi′−1ci′−1 = X1X2 . . .
Xi′−2Xi′−1X1

i′−2 X2
i′−3 . . . Xi′−2 = X1

i′−1X2
i′−2 . . . Xi′−2

2Xi′−1 mod p. Since b′ = bi′−1X′h+1
mod p in Round 2 of the group B, c′1 = b′c′ = bi′−1X′h+1c′ = bi′−1X′h+1X1

i′−1X2
i′−2 . . .

Xi′−2
2Xi′−1 = X1X2 . . . Xi′−2Xi′−1X′h+1X1

i′−1X2
i′−2 . . . Xi′−2

2Xi′−1 = X1
i′X2

i′−1 . . .
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Xi′−2
3Xi′−1

2X′ h+1 mod p. We further get c′j= b′j−1c′j−1 = b′j−1b′j−2 c′j−2 = . . . = b′j−1b′j−2
. . . b′1c′1 mod p for j = 2 to t′. Therefore,

c′t′ = b′t′−1b′t′−2 . . . b′1c′1 = X′t′−1b′t′−2b′t′−2 . . . b′1c′1 = . . .
= X′t′−1X′2t′−2 . . . X′t

′−2
2 b′t

′−1
1 c′1 = X′t′−1X′2t′−2 . . . X′t

′−2
2 X′t

′−1
1 b′t

′−1c′1
= X′t′−1X′2t′−2 . . . X′t

′−2
2 X′t

′−1
1 Xt′−1

1 Xt′−1
2 . . . Xt′−1

i′−1 X′t
′−1

h+1 Xi′
1 Xi′−1

2 . . . X2
i′−1X′h+1mod p,

(17)
c′t′ = X′t′−1X′2t′−2 . . . X′t

′−2
2 X′t

′−1
1 X′t

′

h+1Xt′+1
i′−1 . . . Xt′+i′−2

2 Xt′+i′−1
1 mod p. (18)

Since the member Ui” in Round 2 of the group B computes b′t ′+1 = b′t ′X′t′+1 mod p
and c′t ′+1 = b′t ′c′t ′ mod p, and then calculates b′i+t′−i”+1 = b′i+t′−i”Xi mod p and c′i+t′−i”+1 =
b′i+t′−i”c′i+t′−i” mod p for i = i” + 1 to t, we have

c′t+t′−i′′+1 = b′t+t′−i′′ c′t+t′−i′′ = b′t+t′−i′′ b′t+t′−i′′−1c′t+t′−i′′−1 = . . . =
b′t+t′−i′′ b′t+t′−i′′−1 . . . b′t′+1c′t′+1 = b′t+t′−i′′ b′t+t′−i′′−1 . . . b′t′+1b′t′c′t′ ,

(19)

c′t+t′−i′′+1 = Xt−1X2
t−2 . . . Xt−i′′−1

i′′+1 X′t−i′′
t′+1 b′t−i′′+1

t′ c′t′

= Xt−1X2
t−2 . . . Xt−i′′−1

i′′+1 X′t−i′′
t′+1 Xt−i′′+1

1 Xt−i′′+1
2 . . .

Xt−i′′+1
i′−1 X′t−i′′+1

h+1 X′t−i′′+1
1 X′t−i′′+1

2 . . . X′t−i′′+1
t′−2 X′t−i′′+1

t′−1 X′t−i′′+1
t′ X′t′−1

X′2t′−2 . . . X′t
′−2

2 X′t
′−1

1 X′t
′

h+1Xt′+1
i′−1 . . . Xt′+i′−2

2 Xt′+i′−1
1 mod p,

(20)

c′t+t′−i′′+1 = Xh
1 Xh−1

2 . . . Xt+t′−i′′+2
i′−1 X′t+t′−i′′+1

h+1 X′t+t′−i′′
1 X′t+t′−i′′−1

2

. . . X′t−i′′+3
t′−2 X′t−i′′+2

t′−1 X′t−i′′+1
t′ X′t−i′′

t′+1 Xt−i′′−1
i′′+1 . . . X2

t−2Xt−1 mod p.
(21)

In Round 3 of the group B, we know d′0 = c′t+t′−i”+1 and d′i = b′t+t′−i”+1d′i−1Xi
–(h+1) mod p

or i = 1 to i′− 1. That is, d′i′−1 = b′t+t′−i”+1d′i′−2Xi′−1
−(h+1) = b′t+t′−i”+1

2d′i′−3Xi′−1
−(h+1)Xi′−2

−(h+1)

= . . . = b′t+t′−i”+1
i′−1Xi′−1

−(h+1)Xi′−2
−(h+1) . . . X1

−(h+1)d′0 = b′t+t′−i”+1
i′−1Xi′−1

−(h+1)Xi′−2
−(h+1)

. . . X2
−(h+1)X1

−(h+1)c′t+t′−i”+1 mod p. Now we have

d′ i′−1 = b′ i
′−1

t+i′−i′′+1X−(h+1)
i′−1 X−(h+1)

i′−2 . . . X−(h+1)
2 X−(h+1)

1 c′t+t′−i′′−1 =

(X1X2 . . . Xi′−2Xi′−1X′h+1X′1X′2 . . . X′t′−2X′t′−1X′t′X′t′+1Xi′′+1 . . . Xt−2Xt−1Xt)
i′−1

X−(h+1)
i′−1 X−(h+1)

i′−2 . . . X−(h+1)
2 X−(h+1)

1 Xh
1 Xh−1

2 . . . X′t+t′−i′′−1
2 . . . X′t−i′′+3

t′−2 X′t−i′′+2
t′−1

X′t−i′′+1
t′ X′t−i′′

t′+1 Xt−i′′−1
i′′+1 . . . X2

t−2Xt−1mod p,
(22)

d′i′−1 = X′hh+1X′h−1
1 X′h−2

2 . . . X′t+i′−i′′+2
t′−2 X′t+i′−i′′+1

t′−1 X′t+i′−i′′
t′

X′t+i′−i′′−1
t′+1 Xt+i′−i′′−2

i′′+1 . . . Xi′+1
t−2 Xi′

t−1Xi′−1
t Xi′−2

1 Xi′−3
2 . . . Xi′−2 mod p.

(23)

Owing to d′i ′ = b′t+t′−i”+1d′i ′−1X′h+1
−(h+1) mod p, we get

d′i′ = X1X2 . . . Xi′−2Xi′−1X′h+1X′1X′2 . . . X′t′−2X′t′−1X′t′X′t′+1Xi′′+1 . . .
Xt−2Xt−1XtX′hh+1X′h−1

1 X′h−2
2 . . . X′t+i′−i′′+2

t′−2 X′t+i′−i′′+1
t′−1 X′t+i′−i′′

t′

X′t+i′−i′′−1
t′+1 Xt+i′−i′′−2

i′′+1 . . . Xi′+1
t−2 Xi′

t−1Xi′−1
t Xi′−2

1 Xi′−3
2 . . . Xi′−2X′−(h+1)

h+1 mod p,
(24)

d′i′ = X′h1X′h−1
2 . . . X′t+i′−i′′+3

t′−2 X′t+i′−i′′+2
t′−1 X′t+i′−i′′+1

t′ X′t+i′−i′′
t′+1 Xt+i′−i′′−1

i′′+1
. . . Xi′+2

t−2 Xi′+1
t−1 Xi′

t Xi′−1
1 Xi′−2

2 . . . X2
i′−2Xi′−1 mod p.

(25)

Since d′j+i′ = b′t+t′−i”+1d′j+i′−1X′j–(h+1) mod p for j = 1 to t′−1 and d′t′+i′ = b′t+t′−i”+1d′t′+i′−1X′t–(h+1)

mod p, we get

d′ j+i′ = b′2t+i′−i′′+1d′ j+i′−2X′−(h+1)
j = . . . = b′ jt+i′−i′′+1d′ i′X′

−(h+1)
j

X′−(h+1)
j−1 X′−(h+1)

j−2 . . . X′−(h+1)
1 mod p,

(26)
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d′ j+i′

=
(
X1X2 . . . Xi′−1X′h+1X′1 . . . X′ j−2X′ j−1X′ jX′ j+1X′ j+2 . . . X′t′X′t′+1Xi′′+1 . . . Xt−2Xt−1Xt

)j

X′h1 . . . X′h−j+3
j−2 X′h−j+2

j−1 X′h−j+1
j X′h−j

j+1X′h−j−1
j+2 . . . X′t+i′−i′′+1

t′ X′t+i′−i′′
t′+1 Xt+i′−i′′−1

i′′+1 . . .

Xi′+2
t−2 Xi′+1

t−1 Xi′
t Xi′−1

1 Xi′−2
2 . . . Xi′−1X′−(h+1)

j X′−(h+1)
j−1 X′−(h+1)

j−2 . . . X′−(h+1)
1 mod p,

(27)
d′ j+i′ = X′hj+1X′h−1

j+2 . . . X′ j+t+i′−i′′+1
t′ X′ j+t+i′−i′′

t′+1 X j+t+i′−i′′−1
i′′+1 . . .

X j+i′+2
t−2 X j+i′+1

t−1 X j+i′
t X j+i′−1

1 X j+i′−2
2 . . . X j+1

i′−1X′ jh+1X′ j−1
1 . . . X′2j−2X′ j−1 mod p

(28)

and

d′ i′+t′ = b′t+i′−i′′+1d′ i′+t′−1X′−(h+1)
t′ = X1X2 · · ·Xi′−1X′h+1X′1 · · ·X′t′−3

X′t′−2X′t′−1X′t′X′t′+1Xi′′+1 · · ·Xt−2Xt−1XtX′
h
t′X′

h−1
t′+1Xh−2

i′′+1 · · ·X
i′+t′+1
t−2 Xi′+t′

t−1

Xi′+t′−1
t Xi′+t′−2

1 Xi′+t′−3
2 · · ·Xt′

i′−1X′t′−1
h+1 X′t′−2

1 · · ·X′2t′−3X′t′−2X′−(h+1)
t′ mod p,

(29)

d′ i′+t′ = X′ht′+1Xh−1
i′′+1 · · ·X

i′+t′+2
t−2 Xi′+t′+1

t−1 Xi′+t′
t Xi′+t′−1

1 Xi′+t′−2
2 · · ·

X′ht′+1Xh−1
i′′+1 · · ·X

i′+t′+2
t−2 Xi′+t′+1

t−1 Xi′+t′
t Xi′+t′−1

1 Xi′+t′−2
2 · · ·

Xt′+1
i′−1 X′t′h+1X′t′−1

1 · · ·X′3t′−3X′2t′−2X′t′−1 mod p.

(30)

Let X′ l+t+t′−i”+1 = Xl mod p for l = 1 to i′ − 1 and X′ l+t′−i”+1 = Xl mod p for l = i” + 1 to t.
Moreover, let n′ = h + 1 and any index j but X′i and X′j are the same value when satisfying
i = j mod n’. According to Equations (11), (25), and (28), we have

K′j =
(

z′j−1

)(h+1)r′j d′j+i′−1

=
(

z′j−1

)(h+1)r′j X′hj+1X′h−1
j+2 . . . X′ j+t+i′−i′′+1

t′ X′ j+t+i′−i′′

t′+1

X′j+t+i′−i′′−1
t′+2 . . . X′j+i′+2

t+t′−i′′−1X′j+i′+1
t+t′−i′′ X

′j+i′

t+t′−i′′+1X′j+i′−1
t+t′−i′′+2X′j+i′−2

t+t′−i′′+3 . . .

X′j+1
h X′ jh+1X′ j−1

1 . . . X′2j−2X′ j−1 mod p

(31)

for j = 1, 2, . . . , t′. We write z′h = zi′−1, r′h+1 = ri′ , r′t′+1 = ri”. By Equations (23) and (30), and
Equations (12) and (13) become

K′i′ = (zi′−1)
(h+1)ri′ d′i′−1 = (z′h)(h+1)r′h+1 X′hh+1X′h−1

1 X′h−2
2 . . .

X′t+i′−i′′+2
t′−2 X′t+i′−i′′+1

t′−1 X′t+i′−i′′
t′ X′t+i′−i′′−1

t′+1 X′t+i′−i′′−2
t′+2 . . . X′i

′+1
t+t′−i′′−1

X′i
′

t+t′−i′′ X
′i′−1
t+t′−i′′+1X′i

′−2
t+t′−i′′+2X′i

′−3
t+t′−i′′+3 . . . X′h−1 mod p

(32)

and

K′i′′ = (z′t′)
(h+1)ri′′ d′i′+t′ = (z′t′)

(h+1)r′t′+1 X′ht′+1X′h−1
t′+2 · · ·X′

i′+t′+2
t+t′−i′′−1X′i′+t′+1

t+t′−i′′

X′i′+t′
t+t′−i′′+1X′i′+t′−1

t+t′−i′′+2X′i′+t′−2
t+t′−i′′+3 · · ·X

′t′+1
h X′t

′
h+1X′t

′−1
1 · · ·X′3t′−3X′2t′−2X′t′−1 mod p.

(33)
According to Equations (31)–(33), we know Equations (11)–(13) are strictly consistent

with Equation (1). This means that h+1 members, i.e., the members Uaj (j = 1, 2, . . . ,
t′) and Ui (i = 1, 2, . . . , i′, i′′, i′′ + 1, . . . , t), run cyclic version of the protocol. Finally,
we can concluded that each member Uaj (j = 1, 2, . . . , t′) believes the members Ui (i =
1, 2, . . . , i′, i′′, i′′ + 1, . . . , t) of group A are in their group and share the secret key, i.e.,
K′ =gr1r2+r2r3+ . . . +ri′ r′1+ r′1 r′2+ . . . + r′t′ ri′′ + ri′′ ri′′ +1+ . . . + rt r1 mod p. However, the fact is that the
members Ui (i = 1, 2, . . . , i′ − 1, i′′ + 1, i′′ + 2, . . . , t) do not take part in the abnormal
protocol run with the group B. It needs to point out that the member Ui ′′ can select the part
of the members Ui (i = i′′ + 1, i′′ + 2, . . . , t) to add in the group B or ignore them all. Assume
that S ⊂ {i′′ + 1, i′′ + 2, . . . , t } and the member Ui ′′ wants to include the members Ui∈S into
group B. The member Ui ′′ only modifies the computation of the b′i+t′−i′′+1 and c′i+t′−i′′+1 in
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Round 2. That is, for i = i′′ + 1 to t, the member Ui ′′ computes b′i+t′−i′′+1 = b′i+t′−i′′Xi mod p
and c′i+t′−i′′+1 = b′i+t′−i′′c

′
i+t′−i′′ mod p, when i∈S.

Further comment. The member tampering attacks are possibly exploited to cheat the
members of the group and threaten group communication security. One threat scenario is
patient consultation in telemedicine. When the medical experts and the patient establish a
group communication by using the Burmester-Desmedt protocol, two medical experts can
add some experts who have not participated in the consultation to the group as needed.
This behavior can improve the authority of the consultation. Another threat scenario is the
online auction system. If the online auction system runs the Burmester-Desmedt protocol,
two members in the auction group can include the auction notaries, who do not exist in the
auction group.

4. Countermeasure and Open Problem

The reason why the Burmester-Desmedt protocol suffers is that the members have
not explicitly verified the identity of other members in the group. Therefore, the malicious
insiders in the group can reuse messages of another protocol run to cheat other members
into believing the non-existent members. If each member can confirm the identity of other
members in the group during the protocol run, it is difficult for malicious insiders to add
those dummy members.

Let SignskUi
() and VrfypkUi

() (i = 1, 2, . . . , n) denote the member Ui’s signature function
using private key skUi and verification function using public key pkUi. We require the
signature scheme that is existentially unforgeable under an adaptive chosen-message
attack. Here, the existentially unforgeable property and the game of adaptive chosen-
message attack are the standard notions of security for digital signature schemes. Let UIi
(i = 1, 2, . . . , n) be the member Ui’s recognizable identities (in lexicographic order) wishing
to establish the group session key. Let ‖ be the concatenation operator. In the following,
we provide the improvements on the Burmester-Desmedt protocol to defeat the member
tampering attack.

In broadcast version as Figure 1, we require each member Ui (i = 1, 2, . . . , t) to receiving
all zj and Xj during Round 1 and Round 2, where j = 1, 2, . . . , t and j 6= i. More importantly,
each member Ui simultaneously computes and broadcasts Si = SignskUi

(z1 ‖ X1 ‖ UI1 ‖ z2 ‖
X2 ‖ UI2 ‖ . . . ‖ zt ‖ Xt ‖ UIt) in Round 2. Moreover, upon receiving all messages from other
members, each member Ui also should verify all Sj by computing VrfypkUj

(Sj), where j = 1,
2, . . . , t and j 6= i. If any verification operation fails, the member Ui should terminate the
protocol run. When an adversary wants to illegally include any member Uj into a certain
group and cheat other members of the group, he must forge the member Uj’s signature Sj
during the protocol run. This signature signs recognizable identities of all group members
and the fresh random values generated by all group members. However, the security of
the signature algorithm [28] prevents the possibility of forging the member Uj’s signature
without his private key skUi.

In cyclic version as Figure 2, we assume that each member Ui (i = 1, 2, . . . , t) knows
all other members Uj, where j = 1, 2, . . . , t and j 6= i, potentially are in the group before the
protocol run starts. Figure 5 shows our improvement of cyclic version. Our Round 1 and
Round 2 are fully same as cyclic version described in Figure 2. During Round 3, we require
each member Ui (i = 1, 2, . . . , t) simultaneously computes the signature SCi = SignskUi

(Ki ‖
UI1 ‖ UI2 ‖ . . . ‖ UIt), and then each member Ui (i = 1, 2, . . . , t − 1) sends the signatures
SC1, SC2, . . . , SCi to the next member Ui+1 and the member Ut sends the signatures SC2,
SC3, . . . , SCt to the member U1. After Round 3, we additionally demand a new round
named Round 4. In Round 4, each member Ui (i = 1, 2, . . . , t − 2) sends the signatures
SCi+2, SCi+3, . . . , SCt to the member Ui+1. In Round 3 and Round 4, each member Ui
(i = 1, 2, . . . , t) should verify all signatures SCj by computing VrfypkUj

(SCj), where j = 1,
2, . . . , t and j 6= i. If any verification operation fails, the member Ui should immediately
terminate the protocol run. For reasons similar to the improved broadcast version, the
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improved cyclic version also can resist the member tampering attack under the malicious
active insider or outsider, when the signature algorithm is secure.
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However, we argue that the above signature-based improvements on the Burmester-
Desmedt protocol have at least two disadvantages, though they can resist member tam-
pering attacks. First, the signature mechanism means that the group system needs to
be equipped with Public Key Infrastructure (PKI) and issue digital certificates to ensure
the authenticity of the members’ public keys. In addition, the certificate chain may also
increase the complexity of the group system. Second, the signature mechanism requires the
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members of the group to generate, verify, transmit, and receive a considerable number of
signatures. For example, each member in the improved broadcast version needs to generate
and broadcast 1 signature and receive and verify the t − 1 signature, if there are t members
in the group. Moreover, the members of the group must run an extra round in an improved
cyclic version. Obviously, these two disadvantages indicate a significant increase in the im-
plementation overheads of the group system, when the Burmester-Desmedt protocol adopts
the signature mechanism. Hence, the signature-based improvements on the Burmester-
Desmedt protocol are not suitable for resource-constrained security environments, such as
Bluetooth security [29,30]. The group systems based on Bluetooth low-energy devices are
very popular in wireless personal area networks and Internet-of-Things (IoT). However,
to maintain the low energy feature, Bluetooth security currently does not support the
signature mechanism. Hence, an interesting open problem is whether one could enhance
the Burmester-Desmedt protocol to prevent member tampering attacks without relying
on resource-intensive public key algorithms, e.g., the signature and the public encryption.
A related approach might be to rely on the cryptographic hash techniques to develop a
more intricate hybrid structure for the Burmester-Desmedt protocol. This requires in-depth
studies, including protocol design, efficiency evaluation, security analysis, etc. We leave it
as future work.

5. Conclusions

One advantage of the Burmester-Desmedt protocol is scalability, that is, any t > 2
members can establish a group session key after the protocol run. The scalability is very
fit to ad hoc networks, where the number of members is often changing. However, we
have shown that two malicious insiders in both group A and the group B can exploit its
scalability to add the unknowing members of group A into the group B and make other
members of the group B mistakenly believe that their group session key is shared with
those unknowing members. Hence, owing to our member tampering attacks, the number
of members is a security parameter and needs to be protected in the appropriate way when
the scalable GKE protocol is deployed.

We proposed the signature-based improvement on the Burmester-Desmedt protocols,
which is secure against our member tampering attacks. We compared our improvement
with Katz-Yung protocol [15], because they are all base on the Burmester-Desmedt protocol
and employ the signature schemes. In the broadcast version, the Katz-Yung protocol re-
quires signing the messages of Round 1 and Round 2, respectively. Therefore, each member
in the Katz-Yung protocol demands double signature operations compared with our im-
provement on the broadcast version. To the best of our knowledge, no other signature-based
improvement on the cyclic version is proposed. However, under resource-constrained
environments, our signature-based improvement is still not practical in view of the imple-
mentation costs.
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